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It is unknown whether anatomical specializations in the endbrains
of different vertebrates determine the neuronal code to represent
numerical quantity. Therefore, we recorded single-neuron activity
from the endbrain of crows trained to judge the number of items
in displays. Many neurons were tuned for numerosities irrespec-
tive of the physical appearance of the items, and their activity
correlated with performance outcome. Comparison of both be-
havioral and neuronal representations of numerosity revealed
that the data are best described by a logarithmically compressed
scaling of numerical information, as postulated by the Weber–
Fechner law. The behavioral and neuronal numerosity representa-
tions in the crow reflect surprisingly well those found in the pri-
mate association cortex. This finding suggests that distantly
related vertebrates with independently developed endbrains
adopted similar neuronal solutions to process quantity.
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Birds show elaborate quantification skills (1–3) that are of
adaptive value in naturalistic situations like nest parasitism

(4), food caching (5), or communication (6). The neuronal cor-
relates of numerosity representations have only been explored in
humans (7–9) and primates (10–18), and they have been found to
reside in the prefrontal and posterior parietal neocortices. In
contrast to primates, birds lack a six-layered neocortex. The
birds’ lineage diverged from mammals 300 Mya (19), at a time
when the neocortex had not yet developed from the pallium of
the endbrain. Instead, birds developed different pallial parts
as dominant endbrain structures (20, 21) based on convergent
evolution, with the nidopallium caudolaterale (NCL) as a high-
level association area (22–26). Where and how numerosity is encoded
in vertebrates lacking a neocortex is unknown. Here, we show that
neurons in the telencephalic NCL of corvid songbirds respond to
numerosity and show a specific code for numerical information.

Results
Crows were trained in a delayed matching-to-sample task to match
the number of (one to five) dots presented on touch-sensitive
computer displays (Fig. 1 A and B). Crows watched two displays
(first sample, then test) separated by a 1-s delay. They were trained
to peck at the displays on the screen if the test displays contained
the same number of items as the sample. We varied the exact
physical appearance of the displays by randomly placing dots in
arbitrary locations, and by randomly choosing dot size.
The crows performed the task proficiently (73.8± 0.4% and 77.5±

0.5% correct over all recording sessions for crow A and crow J, re-
spectively; Fig. 1C). Average performance of both crows was signif-
icantly better than chance (50%) for all sample numerosities relative
to the numerically most distant nonmatches (Binomial test, P < 0.01).
Better performance for sample numerosities at the low (one) and
high (five) numerosity range (Fig. 1D) are most likely due to “end-
effects,” because one and five items had to be discriminated only
from higher or lower nonmatch stimuli, respectively, whereas sample
numerosity three needed to be discriminated from both high and low
nonmatches. Similar performance effects are seen in monkeys (11).
To determine whether the crows solved the task by truly

abstracting quantity, rather than attending to low-level visual

features, we used different sets of control stimuli targeting the
different covarying visual parameters (Fig. 1B and Table 1). Thus,
across these stimulus sets, the exact physical appearance of each
numerical quantity varied widely. The crows readily generalized to
the control stimulus sets; performance was similar across them (Fig.
1D). This result suggests that crows were indeed judging numerosity.
Crows made most errors for quantities that were adjacent to the

cued quantity of dots and performed progressively better as nu-
merical distance between two displays increased (“numerical dis-
tance effect”). Also, it was harder for the crows to discriminate
between two quantities of equal numerical distance as their mag-
nitude increased. For larger sample numerosities, thus, nonmatches
had to be numerically more distant to reach a similar performance
level as for small sample quantities, resulting in the “numerical
magnitude effect” (Fig. 1E).
We investigated the coding scheme by plotting the perfor-

mance data on different number scales. When plotted on a linear
number scale, the shapes of the behavioral performance func-
tions were asymmetric with a steeper slope toward smaller
numerosities. However, when the same behavioral discrimina-
tion functions were plotted on a logarithmic axis, the shapes were
roughly Gaussian, suggesting a logarithmic representation of
numerosities. We verified this finding by fitting Gauss functions
to the behavioral discrimination functions when plotted on a
linear or three nonlinear scales with increasing compression,
namely power functions with exponent 0.5 and 0.33, or a loga-
rithmic scale (Fig. 1F). The goodness-of-fit (r2) values of the Gauss
fits, which were taken as a quantitative measure of the tuning
curves’ symmetry, differed between the four scaling schemes (P <
0.001, Friedman test, n = 81 sessions). The (nonlinear) power
functions and logarithmic scales provided a better fit to the data
than the linear scale (Fig. 1G), with better r2 values the more
compressed the scales became up to the logarithmic scale (P <
0.001, Wilcoxon test). Moreover, the variance of the distributions
for each numerosity (i.e., sigma of the Gauss fit to the performance
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curves) was constant when the data were plotted on a power
function scale with 0.33 exponent (slope of linear fit = 0.135) and
the logarithmic scale (slope of linear fit = 0.007) (Fig. 1H), which is
predicted by a nonlinear coding model of numerosity (27–29).
Thus, performance data for numerosity judgments is better de-
scribed by using a power function compressed or above all a log-
arithmically compressed scale, as opposed to a linear scale. The
data follow the Weber–Fechner law (S = k × log(I)), which states
that linear increments in sensation S are proportional to the logarithm
of stimulus magnitude I. This postulated logarithmic compression is
present in the data because the behavioral representations (i.e., the
performance curves) are better described by a symmetric Gaussian
distribution on a log scale.
We recorded from 499 randomly selected neurons from the

NCL (Fig. 2A) of two crows while they performed the numerosity

discrimination task. Of these neurons, 20% (98/499) modulated
their discharges as a function of the numerosity (from 1 to 5)
during sample presentation. This selectivity was found irrespective
of the exact appearance of the multiple-dot patterns (only cells
showing a significant numerosity effect), but no significant effect
of stimulus type (standard vs. control) or interaction were classi-
fied as “numerosity-selective neurons” according to a two-factor
ANOVA (P < 0.01).
Five such neurons that generalized across changes in the physical

appearance of the sample displays are shown in Fig. 2 B–F. The
example neuron shown in Fig. 2B was tuned to “one” and showed
remarkably similar activity to the standard versus linear stimuli.
Other neurons were tuned to “two” (Fig. 2C) or “five” (Fig. 2F),
respectively, and responded equally well to standard dots and
those that equated the total circumference, whereas example

Fig. 1. Task protocol, stimuli, and behavioral performance. (A) DMS task. The crow initiated a trial by keeping its head still in front of the monitor (au-
tomatically detected) to activate a go stimulus. After a 600-ms presample period, a sample stimulus was presented for 800 ms, followed by a 1,000-ms delay.
The crow had to peck the test1 display if it contained the same number of items as the sample and had to refrain from pecking if it did not (probability = 0.5).
All numerosities were used as nonmatch stimuli (probability = 0.125) for the respective sample numerosities. (B) A small subset of the stimulus displays are
shown as examples. The physical appearance of the displays varied widely for the same quantities (see details in Table 1). (C) Behavioral performance (percent
correct) for both crows in the DMS task over all recording sessions (chance level = 50%). (D) Average performance (error bars represent SEM) of both crows to
the standard and the control conditions during the recording sessions. (E and F) The behavioral performance functions (both crows and average) indicated
whether they judged the first test stimulus (after the delay) as containing the same number of items as the sample display (“% same as sample”). Colors
represent performance curves for a given sample numerosity. Behavioral performance functions are plotted on a linear (E) and logarithmic number scale (F);
the latter resulted in more symmetric functions. (G and H) Quantification of Gauss fits to the behavioral data. (G) Goodness-of-fit of Gauss functions fitted to
the performance curves plotted on different scales. The goodness-of-fit was significantly better for the three nonlinear scaling schemes (error bars ± SEM).
(H) The SD (sigma) of the Gauss fits for nonlinear scaling plotted against the center of the Gauss function (which is identical to the numerosity of the match
stimulus). Dotted lines indicate linear fits (error bars ± SEM). (The values of sigma are related to the specific compression scheme.)

Table 1. Stimulus protocols

Stimulus type protocol Spatial arrangement Surface area Circumference Density

Standard Randomized† Increasing with quantity Increasing with quantity Increasing with quantity
Equal area and equal density Randomized† Equal across quantity Increasing with quantity Equal across quantity‡

Equal circumference Randomized† Decreasing with quantity Equal across quantity Increasing with quantity
Linear One-dimensional, linear Increasing with quantity Increasing with quantity Increasing with quantity

†Three dots tend to be arranged as triangle, four dots as quadrangle, five dots as pentagon.
‡Density determined by calculating the average distance between all dots in a given display.
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neurons tuned to “three” (Fig. 2D) or “four” (Fig. 2E), respectively,
encoded standard dots and those equating both total area and

density across numerosities with comparable firing rates. Each
neuron showed peak activity for one of the visual quantities and a
systematic dropoff of activity as the number of sample items varied
from the preferred value. The quantities “one” and “five” were
preferred by the neurons, but neural preference was distributed
across all five numerosities (numerosity 1: 29%; 2: 13%; 3: 8%; 4:
19%; 5: 31%). Few cells (not included in the group of numerosity-
selective neurons) were responsive to both numerosity and stimulus
type (8% or 39/499; two-way ANOVA, effect of numerosity and
stimulus protocol or interaction between stimulus protocol and
numerosity, P < 0.01). Thus, the numerosity of sample items was the
dominant factor encoded by these neurons, and not the physical
appearance of the displays.
Neural activity in the NCL seemed to underlie a systematic,

orderly representation of numerosity; neurons showed peak ac-
tivity to a specific number of items and a progressive dropoff as
the numerosity progressively varied (e.g., Fig. 2 B–F). This ac-
tivity was evaluated across the population. Population neural
tuning functions were calculated by averaging the normalized
activity for all neurons that preferred a given quantity. Neural activity
formed band-pass filters with increasingly attenuated activity as dis-
tance from the preferred quantity increased (Fig. 3A). The neuronal
data mirrored the behavioral distance and magnitude effects by the
fact that the neural filters were also peak functions that became less
selective (wider) with increasing preferred numerosity.
Much like the behavioral data (Fig. 1E), the neural filter functions

were asymmetric when plotted on a linear scale (Fig. 3A), but more
symmetric when plotted on a logarithmic scale (Fig. 3B). We
applied the same goodness-of-fit tests that were applied to the
behavioral data. Once again, the four different scaling schemes
resulted in significantly different goodness-of-fit values across all
numerosity functions (P < 0.01, Friedman test, n = 98) (Fig. 3C).
The (nonlinear) power functions and logarithmic scale provided a

Fig. 2. Recording site and neuronal responses. (A, Top) Dorso-lateral
view of a carrion crow brain (ellipse indicates electrode penetration site).
(A, Bottom) Coronal section (indicated by dashed vertical line in Top)
through the brain of a carrion crow illustrating the borders of the NCL in
the caudal telencephalon based on immunohistochemistry for tyrosine-
hydroxylase. A, Arcopallium; Cb, Cerebellum; Hp, Hippocampal formation; LSt,
striatum laterale; NC, Nidopallium caudale; NCL, Nidopallium caudolaterale;
TeO, Tectum opticum; Tn, Nucleus taeniae amygdalae. (B–F ) Responses
of five example NCL neuron selective to numerosity 1 (B), 2 (C ), 3 (D), 4
(E ), and 5 (F ). Top shows dot-raster histograms (each dot represents an
action potential); Bottom depicts averaged spike density functions (ac-
tivity averaged and smoothed by a 150-ms Gauss kernel). Each colored
line shows the time course of activity for the five tested quantities. The
spike density functions represent the rate of action potentials, i.e., the
number of action potentials per time interval divided by the number of trials,
thus accounting for slightly different trial numbers. The first 500 ms represent
the presample period (baseline). Gray shading represents the analyzed sample
period (800 ms). Colors of dot histogram and spike density functions correspond
to the number of items in the sample displays. The tuning function insets in-
dicate the mean activity of the neurons to each of the two stimulus protocols
(error bars represent SEM) in the sample period. Fig. 3. Neuronal representation of numerosities in the NCL during the

sample period. (A and B) Normalized tuning functions averaged for neurons
preferring the same numerosity (indicated by same color) when plotted on a
linear number scale (A) or on a logarithmic number scale (B). (C) Goodness-
of-fit for the four different scaling schemes. (D) SD values for the scaling
schemes across preferred numerosities (error bars ± SEM).
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better fit to the data than the linear scale (P < 0.05, Wilcoxon test,
n = 98). The mean goodness-of-fit values for the linear scale, the
power function with exponent of 0.5, the power function with
exponent of 0.33, and the logarithmic scale were 0.75, 0.77, 0.78,
and 0.78. Also similar to the behavioral data, and as predicted
by a nonlinear coding model (27–29), the variance of neural
distributions was more or less constant with increasing preferred
numerosity when the data were plotted on a logarithmic scale
(slope of linear fit = −0.022), but increased with numerosity
when the data were plotted on a linear scale (slope = 0.068)
(Fig. 3D). In terms of the scaling scheme, the neural data mir-
rored the behavioral findings.
Further evidence that NCL neural activity was linked with

behavior came from an examination of error trials. When crows
made judgment errors, neural activity for the preferred quantity
was significantly reduced, as can be seen for two numerosity-
selective example neurons (Fig. 4 A and B). This effect was
significant at the population level and resulted in a reduction
of discharge rate to 71% than observed on correct trials (100%)
(P < 0.05, Wilcoxon test, n = 81). As a result of this reduced
activity (and the orderly representation of numerosity), on error
trials the activity elicited by a sample of a given numerosity was
more similar to that elicited by adjacent numerosities on correct
trials (Fig. 4C). This decrease in activity may reflect the sample
being mistakenly encoded as an adjacent numerosity.

Discussion
These results indicate that neurons in the corvid NCL can par-
ticipate in high-level, abstract visual representations that are
contributive to judgments of numerical quantity. Our behavioral
and neuronal data show an impressive correspondence of neu-
ronal mechanisms found in the avian brain with those reported
earlier in the nonhuman and human primate brain: First, NCL
neurons were tuned to individual preferred numerosities char-
acteristic of a “labeled-line code,” enabling an unequivocal repre-
sentation of numerosity by a neuronal population. Complementary
findings have been made in the monkey prefrontal and posterior
parietal cortex; both in the highly trained (10–18) and in the

numerically naïve monkey (30), numerosity is encoded by a la-
beled-line code. Second, neuronal discharges of selective neu-
rons proved to be relevant for the crows’ correct performance; if
the neurons did not properly encode their preferred numerosity,
the crow was prone to make mistakes. Similar results have been
reported repeatedly for numerosity-selective neurons in monkeys
(10–18). Third, both the neuronal and the behavioral tuning func-
tions were best described on a logarithmic number line, arguing for
a nonlinearly compressed coding of numerical information. Because
logarithmic coding is postulated by the psychophysical Weber–
Fechner Law and has been established for human brain signals (8,
9) and primate neurons (28), this finding suggests that abstract
numerical and sensory representations share the same fundamental
mechanisms and neural coding schemes both in songbirds
and primates.
Because the labeled-line code is found not only in the primate

neocortex, but also in the avian endbrain, this code may be
computationally superior compared with alternative neuronal
representations such as summation coding in which numerosity
is encoded via monotonic response functions of neurons (27).
Neurophysiological constraints may therefore have favored a
labeled-line code for numerical information across vertebrate
species. Thus, this code has been implemented (at least) twice
during the course of evolution, irrespective of the precise origin
and anatomical structures found in intelligent vertebrate brains,
based on convergent evolution (31). Recently, information-pro-
cessing principles that define the canonical cortical microcircuit
in the mammalian neocortex have been described in the avian
auditory pallium (32). This finding could indicate that canonical
endbrain microcircuits evolved in a common ancestor of mam-
mals and birds. Perhaps this result might also provide a physio-
logical explanation for the evolution of neuronal computations
that give rise to numerical competence in both vertebrate groups.
More comparative approaches in neuroscience will therefore be
indispensable for deciphering these evolutionary stable neuronal
mechanisms (33).

Materials & Methods
Subjects. We used two hand-raised crows (Corvus corone corone), one male
and one female, in these experiments. The crows were trained on a delayed
match-to-sample (DMS) task with the number of items in dot displays as
discriminative stimuli. All crows were obtained from the institute’s breeding
facilities. The birds were housed in social groups in spacious indoor aviaries
(34). They were maintained on a controlled feeding protocol during the
sessions and earned food during and after the daily tests. All animal prep-
arations and procedures fully complied with the NIH Guide for Care and Use
of Laboratory Animals (35) and were approved by the local ethical com-
mittee and authorized by the national authority (Regierungspraesidium).

Apparatus. The crows were attached to a wooden perch by a leather jess and
placed in an operant conditioning chamber in front of a touchscreen monitor
(3M Microtouch; 15 inches’, 60 Hz refresh rate). All stimuli were displayed on
this monitor. Reward [birdseed pellets or mealworms (Tenebrio molitor
larvae)] was delivered by a custom-built automated feeder below the screen.
The CORTEX program (National Institute of Mental Health) was used for
experimental control and behavioral data acquisition. An infrared light
barrier, in combination with a reflector attached to the bird’s head, regis-
tered when the bird was positioned in front and facing the screen.

Behavioral Protocol. In the DMS task (Fig. 1A), the crows initiated a trial by
moving their head into the light barrier when a go stimulus (“O”; 3 × 4 mm)
was shown on the screen. The crows had to keep their head still throughout
the trial; if they moved their head before the response period (as detected
by the light barrier), the trial was aborted. As soon as the crow kept its head
at the defined location, the go stimulus turned off, followed by a 600-ms
presample with a gray background circle on the screen. The sample stimulus
was presented in the center of the screen for 800 ms and was pseudo-
randomly chosen from a set of 80 different images (16 different dot images
for each of the numerosities from 1 to 5). For each daily session, all images
were generated anew with random dot layouts by using Matlab routines
and exchanged every day. The screen showed a gray background circle during

Fig. 4. Behavioral relevance of selective neurons. (A) Responses of a
“three”-neuron (same as in Fig. 2D) to its preferred numerosity during cor-
rect and error trials. Top shows dot-raster histograms; Bottom depicts av-
eraged spike density functions. (B) Responses of a “four”-neuron (same as in
Fig. 2E) to its preferred numerosity during correct and error trials. Layout as
in A. (C) Normalized average tuning function across all preferred numer-
osities and selective neurons. Functions for correct (solid lines) and error
trials (dotted lines) are shown. Error bars indicate SEs across cells.
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the subsequent 1,000-ms delay, in which the bird had to remember the sample
numerosity to solve the task. All analyses focus on these sample periods.

After the delay, a test1 stimulus appeared (800 ms). In 50% of the cases,
the test1 was a match, i.e., it showed the same number of dots (but always
in a different layout than the sample numerosity). The birds indicated a
match by pecking the dot display. If their choice was correct, the automated
feeder delivered feedback via light, and a reward sound was played. In the
other 50% of the trials, test1 displayed a nonmatch, i.e., more or less dots
than the sample display; in this case, the crow was not allowed to peck but
had to wait until a second, test2 stimulus was shown. The test2 stimulus was
always a match and had to be pecked to receive a reward.

The crows were rewardedwith food for each correct trial. If the birds chose
incorrectly, the trial was aborted and a short timeout (3 s) was presented
before the start of the next trial. If no response occurred within 1,600 ms, the
trial was dismissed. All relevant task parameters (match/nonmatch, numer-
osity, standard vs. controls) were balanced.

Stimuli. Numerosity stimuli consisting of multiple-dot patterns were gener-
ated by using a custom-written MatLab software. These routines enabled the
generation of new stimuli sets for each training session. Moreover, this
software provided for the control of parameters of the dot patterns. Small
black filled dots (diameter of 2.8°–0.4° visual angle) appeared on a gray
background of a large circular area with a diameter of 10° visual angle. Each
stimulus contained a defined set of dots that appeared at randomized lo-
cations within the gray background circle. The diameter of each dot was
randomly varied within the given range.

To prevent the crows from memorizing the visual patterns of the displays,
each quantity was tested with many different images per session that were
newly generated for each session. The sample and test displays that appeared
on each trial were never identical. The standard stimuli consisted of dots of
pseudorandom size that were pseudorandomly located on the background
circle to form shape-like arrangements (triangle, quadrangle, pentagon). To
ensure that the numerosity-discrimination task was solved by judging the
discrete quantity, low-level visual features were excluded by using control
stimuli in addition to standard stimuli (Table 1). Three sets of control stimuli
were alternatingly used in each session (Fig. 1B): area and density control
(total area of all items and mean density of dot patterns in a display equated
for all stimuli in a trial), circumference control (total circumference of all
items equated for all stimuli in a trial), and linear control (two or more dots
formed a line).

Surgery and Recordings.All surgeries were performed under sterile conditions
while the animals were under general anesthesia. Crows were anesthetized
with a ketamine/rompun mixture (50 mg ketamine, 5 mg/kg xylazine initially
and supplemented by hourly 17 mg of ketamine, 1.7 mg/kg xylazine i.m.).
After the surgery, the crows received analgesics [Butorphanol (Morphasol),
1 mg/kg i.m.]. The head was placed in the stereotaxic holder that was cus-
tomized for crows with the anterior fixation point (i.e., beak bar position) 45°
below the horizontal axis of the instrument (36). Using stereotaxic coordi-
nates (center of craniotomy: anterior-posterior 5 mm; medial-lateral 13 mm),
we chronically implanted two to four microdrives with four electrodes each, a
connector for the headstage, and a small headpost to hold the reflector for
the light barrier.

We recorded from 8 to 16 chronically implanted microelectrodes on two to
four custom-built microdrives. We used glass-coated tungsten microelec-
trodes with 2 MΩ impedance (Alpha Omega LTD). The electrodes targeted
the NCL. Tracing electrode tracks of an identically implanted crow used for a
different study (25, 26) confirmed that recording locations were within NCL.
Cryostat sections were immunohistochemically stained for tyrosine-hydroxy-
lase to identify dopaminergic cells, which characterize the NCL (25). Both crows
used in this study are still alive and are participating in related experiments.

At the start of each recording session, the electrodes were advanced
manually until a good neuronal signal was detected on at least one of the
channels of each microdrive. Neurons were not preselected for involvement
in the task. Each microdrive had a range of ∼6 mm, which was exploited to
record from the NCL across different depths over a period of several weeks.
Signal amplification, filtering, and digitizing of spike waveforms was ac-
complished by using the Plexon system.

For each recording session, the birds were placed in the recording setup,
and a headstage containing an amplifier was plugged into the connector
implanted on the bird’s head and connected to a second amplifier/filter and
the Plexon MAP box outside the setup by a cable above and behind the
bird’s head (all components by Plexon). Spike sorting into single-unit wave-
forms was performed manually offline by using the Plexon system. The anal-
ysis includes all neurons which were recorded for at least four repetitions of
each sample numerosity per protocol type (average repetition number was 33)
and had a firing rate of at least 0.5 Hz during all periods. Each recording
session lasted between 361 and 720 correct trials in ∼2 h.

Data Analysis. Neuronal activity during the task was analyzed in the sample
period. Neuronal response rates were measured in a 800-ms window, shifted
by 100 ms from sample onset to account for the visual latency of most
neurons. To determine numerosity selectivity of the neurons, a two-factorial
analysis of variance (ANOVA) was performed with numerosity (1–5) and
stimulation condition (standard or control) as factors. For each recording
session, we used the highly variable standard protocol and one of the con-
trol protocols, which was alternated on a daily basis. Applying only two
stimulus protocols was necessary to gain a viable number of repetitions of
one and the same trial condition for proper statistical analysis before the
crow was satisfied and stopped working. Irrespective of the control pro-
tocols, only few neurons responded to nonnumerical visual features of the
stimulus displays, confirming that sensory parameters cannot account for
the prominent numerosity effects. Only cells showing a significant main
effect for numerosity (P < 0.01), but no significant main effect for stimulus
type (standard vs. control) or interaction, were classified as “numerosity
selective,” and the numerosity eliciting the largest spike rate was defined as
“preferred numerosity” of a given cell.

To create neural filter functions, activity rates were normalized by setting
the maximum activity to the most preferred numerosity as 100% and the
activity to the least preferred quantity as 0%. The normalized individual
tuning curves were then averaged across all neurons that had the same
preferred numerosity. Gauss functions were fit to the daily performance
functions of each crow and to the neural filter functions of each numerosity-
selective neuron. The Gaussian was chosen because it represents the standard
symmetric distribution and, thus, provided a means to compare the behav-
ioral functions. Data were plotted along four scales: a linear scale, a power
function with exponent of 0.5, a power functionwith exponent of 0.33, and a
logarithmic scale. The scales become increasingly nonlinearly compressed
along this sequence. The more symmetrical the filter functions on a particular
scale, the better the goodness-of-fit (r2), and, therefore, the better that scale
describes the data. These nonlinearly compressed scaling schemes were
chosen because Stevens’ power law (S = k × In) postulates that sensation
S is a power function of the stimulus magnitude I, whereas Fechner’s Law
(S = k × log(I)) proposes a logarithmic relationship.

To evaluate the behavioral significance of numerosity-selective neurons,
discharges in correct and error trials were compared. Of all purely numerosity-
selective neurons (n = 98), neurons with at least three error trials for their
preferred numerosity (n = 81) were included in analyses of error trials. Dis-
charge rates of single neurons to the preferred numerosity were compared
in correct versus error trials (Wilcoxon test).
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