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SUMMARY

Our human-specific symbolic number skills that un-
derpin science and technology spring from nonsym-
bolic set size representations. Despite the signifi-
cance of numerical competence, its single-neuron
mechanisms in the human brain are unknown.
We therefore recorded from single neurons in the
medial temporal lobe of neurosurgical patients
that performed a calculation task. We found that
distinct groups of neurons represented either
nonsymbolic or symbolic number, but not both
number formats simultaneously. Numerical informa-
tion could be decoded robustly from the population
of neurons tuned to nonsymbolic number and with
lower accuracy also from the population of neurons
selective to number symbols. The tuning character-
istics of selective neurons may explain why set size
is represented only approximately in behavior,
whereas number symbols allow exact assessments
of numerical values. Our results suggest number
neurons as neuronal basis of human number repre-
sentations that ultimately give rise to number theory
and mathematics.

INTRODUCTION

Numbers are fundamental to science and technology. Despite

counting and arithmetic requiring years of training, the origins

of our symbolic number capabilities are deeply rooted in our

ancestry (Dehaene, 1997). Human adults without formal educa-

tion (Gordon, 2004; Pica et al., 2004), pre-linguistic human in-

fants (Wynn, 1992; Xu and Spelke, 2000), and nonhuman animals

(Brannon and Terrace, 1998; Scarf et al., 2011) can approxi-

mately estimate numerosity, the number of items in a set. These

intuitive nonsymbolic capabilities are harnessed and qualita-

tively transformed by children when they begin to learn symbolic

counting and mathematics in school (Halberda et al., 2008; Gil-

more et al., 2010; Starr et al., 2013). This intimate relationship be-

tween set size estimation and precise counting suggests that

symbolic arithmetic abilities build on nonsymbolic numerical

capacities.
Studies in humans (Piazza et al., 2007; Arsalidou and Taylor,

2011) and nonhuman primates (Nieder, 2016) indicated parts

of the parietal and prefrontal cortices as a core number system

that processes nonsymbolic and symbolic numerical magnitude.

However, the wider cortical number network also incorporates

areas of the medial temporal lobe (MTL) (Menon, 2016), such

as the hippocampus, parahippocampal cortex, entorhinal cor-

tex, and amygdala. The MTL comprises highly associative brain

areas that are directly and reciprocally connected with the frontal

number network (Goldman-Rakic et al., 1984), and human MTL

neurons are known for their selectivity to abstract categories

(Quiroga et al., 2005; Mormann et al., 2011). Functional imaging

studies in humans showed that the hippocampal system—

among many other functions outside of the number domain—is

also involved in learning to count and arithmetic skill acquisition,

specifically during childhood (De Smedt et al., 2011; Supekar

et al., 2013; Qin et al., 2014). Hippocampal-frontal circuit reorga-

nization plays an important role in children’s shift from effortful

counting to efficient memory-based solving of mathematical

problems (Menon, 2016).

As a neuronal correlate of numerosity representations, electro-

physiological recordings from the association cortex of monkeys

showed neurons that are tuned to a specific preferred numeros-

ity of visual and auditory items. Such number neurons have also

been postulated by neural network models (Dehaene and

Changeux, 1993; Verguts and Fias, 2004). In humans, number

neurons have been suggested based on blood flow changes in

functional imaging studies (Piazza et al., 2004; Jacob and

Nieder, 2009a), as well as the combined synaptic mass signals

from hundreds of neurons measured with electrocorticography

(ECoG) (Daitch et al., 2016). Despite the progress that has

been made using functional imaging and ECoG recordings, the

mechanism of how single neurons, the anatomical and functional

units of the brain, encode nonsymbolic or symbolic numerical in-

formation in humans remains unknown. We addressed this

question and recorded from single neurons in the MTL of neuro-

surgical patients that performed a calculation task and were im-

planted with intracranial electrodes (Fried et al., 1997; Kreiman

et al., 2000; Reber et al., 2017).

RESULTS

Participants performed simple sequential addition and sub-

traction tasks using a computer display (Figure 1A). Task

involvement ensured that numbers shown as operands were
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Figure 1. Behavioral Task and Example

Stimuli

(A) Experimental design of the calculation task.

After visual fixation on the screen, the first number

(operand 1) was followed by a brief delay, after

which the addition or subtraction rule was pre-

sented, followed in turn by a delay and then the

second number (operand 2). After another brief

delay, subjects were required to indicate the

calculated result (ranging from 0 to 9) on a number

panel.

(B) Example operand 1 stimuli for the nonsymbolic

and symbolic format for standard and control

protocols.

(C) Example stimuli for the different calculation

rules indicated by arithmetic symbols (‘‘+’’

and ‘‘�’’) and written words (‘‘und’’ [add] and

‘‘weniger’’ [subtract]), respectively.
consciously processed. Numerical values of the operands

ranged from 1 to 5. In half of the shuffled trials, the numerical

values were presented nonsymbolically as the number of

randomly placed dots in an array (numerosity). In the other

half, Arabic numerals were shown as symbolic number represen-

tations. Both nonsymbolic and symbolic numbers were shown

in standard and control displays in order to control for low-level

visual features (Figure 1B; see Supplemental Information).

Arithmetic symbols or words were applied for addition and sub-

traction instructions (Figure 1C). Average performance of all

participants was close to ceiling for all tested quantities and cal-

culations (performance range 90.3%–99.8%).

We recorded from 585 single neurons in the medial temporal

lobes (153 amygdala, 126 parahippocampal cortex, 107 entorhi-

nal cortex, and 199 hippocampus) of nine human subjects per-

forming the calculation tasks. In order to explore pure number

representations, and to avoid confounds with cognitive factors

later in the task, we focus on the presentation of the first operand

(operand 1) and the subsequent working memory phase

(delay 1); the remaining task phases are considered toward the

end of the results. Random presentation of either the nonsym-

bolic or symbolic format from trial to trial allowed us to investi-

gate an individual neuron’s responses to each of the formats

individually, but also to both formats, in an unbiased way.

Single Neurons Encode Nonsymbolic Number
When the participants calculated with numerosities (nonsym-

bolic format), a substantial proportion of the tested neurons

(16%; p << 0.001 in binomial test; pchance = 0.01; see also Sup-

plemental Information for verification with shuffled data) showed
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activity that varied exclusively with

the number of items during operand 1

presentation and the working memory

delay 1 that followed, irrespective of

the dot array layout (2-factor sliding-

window ANOVA, with factors ‘‘numerical

value’’ 3 ‘‘protocol’’; a = 0.01; Figure S1,

left). Four of such numerosity-selective

neurons are shown in Figure 2, left col-
umn. Each cell is tuned to numerosity; it shows peak activity

for one of the numerosities, its preferred numerosity, and a sys-

tematic decrease of activity the more the number of items devi-

ates from the preferred value. The highest fraction of such

numerosity-selective neurons in the MTL was found in the para-

hippocampal cortex (29%), followed by the hippocampus (18%;

Figure 3, upper columns). The selective neurons’ preference

covered the entire tested range of numerosities, albeit with

most neurons preferring numerosity ‘‘five’’ (Figure 4A, left). The

proportion of neurons selective to nonsymbolic number for

each subject is shown in Table S1. Firing rates were generally

low in the MTL, but the firing rates of numerosity-selective neu-

rons were significantly higher compared to the non-selective

neurons (p < 0.0001; Mann-Whitney U test; Figure S2, left).

Average tuning curves were calculated by averaging the

normalized activity for all numerosity-selective neurons that

preferred a given numerosity. Neural activity formed overlapping

tuning functions with progressively reduced activity as distance

from the preferred quantity increased (Figure 4B, left). To

compare the decay of activity from the preferred quantity across

all neurons tuned to preferred numerosities 1–5, we plotted the

normalized firing rates as a function of absolute numerical dis-

tance from the preferred numerosity. For example, the normal-

ized firing rate to numerosity 2 and 4 of a cell tuned to numerosity

3 (3 therefore is absolute numerical distance 0) were plotted at

absolute numerical distance 1. The pooled function for all selec-

tive neurons compared to a function from random tuning curves

is shown in Figure 4C, left. On average, activity dropped off pro-

gressively with numerical distance across all preferred numeros-

ities, an effect that is not observed for random tuning curves. This



Figure 2. Neural Responses of Number-Selective Neurons during

Presentation of Operand 1 and Delay 1

Responses of four example neurons to both nonsymbolic numerosities (left

column) and symbolic numerals (right column). The left panels depict a density

plot of the recorded action potentials (color darkness indicates number of

overlapping wave forms according to color scale at the bottom). Panels show

single-cell response rasters for many repetitions of the format (each dot rep-

resents an action potential) and averaged instantaneous firing rates below. The

first 500 ms represent the fixation period. Colors correspond to the five

different operand 1 values. Gray shaded areas represent significant number

discrimination periods according to the sliding-window ANOVA (color-coded

p values above each panel). Insets show the number tuning functions.

(A and B) Two parahippocampal neurons only responsive to nonsymbolic

number with preferred numerosity 1 (A) and 3 (B).

(C and D) Hippocampal neuron #1 (C) and neuron #2 (D) responding to both

nonsymbolic and symbolic number 5.

Figure 3. Neuronal Selectivity of MTL Single Units

Proportions of single units with significant main effects for ‘‘numerical value’’

(NUM: 1–5) or ‘‘protocol’’ (PROT: standard and control) and interactions

(NUM3 PROT) in a 2-factor ANOVA evaluated at a = 0.01, separately for each

format and MTL region (AMY, amygdala; EC, entorhinal cortex; HIPP, hippo-

campus; PHC, parahippocampal cortex). All analyses refer to exclusively

number-selective (NUM-ONLY) units, i.e., neurons with an effect for numerical

value but no concurrent effects for protocol or interaction. Numbers of sig-

nificant neurons were subjected to a Bonferroni-corrected (n = 4) binomial test;

asterisks indicate significance (*p < 0.05, **p < 0.01, and ***p < 0.001).
finding reflects a neuronal correlate of the well-known ‘‘numeri-

cal distance effect,’’ the behavioral observation that discrimina-

tion progressively enhances as numerical distance between two

quantities increases (Buckley and Gillman, 1974; Merten and

Nieder, 2009). A cross-validation analysis (see Supplemental In-

formation) yielded high reproducibility of preferred numerosity

for the population of numerosity-selective units (average correla-

tion coefficient r = 0.83; p < 0.0001), indicating that the preferred

numerosity of the neurons was reliable and robust.

Single-Cell Responses to Symbolic Number
When participants calculated with Arabic numerals (symbolic

format), a smaller but significant proportion of the recorded neu-

rons (3%; p < 0.001 in binomial test; pchance = 0.01) responded

selectively to numerals during operand 1 presentation and the

subsequent working memory delay 1 (2-factor sliding-window

ANOVA, with factors numerical value 3 protocol; a = 0.01; Fig-

ure S1, right). The highest fraction of such numeral-selective

neurons in theMTLwas again found in the parahippocampal cor-

tex (6%), followed by the amygdala (4%; Figure 3, lower col-

umns). Six numeral-selective neurons (1% of all neurons) were

also tuned to nonsymbolic number, which was more than
Neuron 100, 753–761, November 7, 2018 755



Figure 4. Tuning Properties of Number-Selective Neurons

(A) Frequency distribution of the preferred number of neurons tuned to nu-

merosity (left) and numerals (right).

(B) Average tuning curves of neurons tuned to the five numerosities (left) and

numerals (right).

(C) Averaged normalized activity across all preferred numerosities (left) and

numerals (right) as a function of absolute numerical distance (black line). As-

terisks above the graph represent significant differences between responses

to adjacent numerical distances; asterisks below the dashed line indicate

significant differences between recorded and random tuning curves (*p < 0.05

and ***p < 0.001). Error bars denote SEM.
expected by chance (p < 0.05 in binomial test; pchance = 0.16 3

0.03 = 0.005, or 0.5%). Of these, four neurons had identical

preferred numerical values for nonsymbolic and symbolic num-

ber. This correlation did not reach significance (Figure S3A),

possibly due to the small sample size. Next, we investigated

whether the preferred numbers of units tuned to nonsymbolic

numerosity might be correlated with their (non-significant) tuning

to symbolic numerals (Figure S3B) and vice versa (Figure S3C).

Neither correlation reached significance, indicating that numer-

osity and abstract numerals are encoded by two largely distinct

neuronal populations. Two neurons tuned to the same value in

both nonsymbolic and symbolic formats are depicted in Figures

2C and 2D. The neuron in Figure 2C as well as the neuron in Fig-

ure 2D showed maximum responses to quantity 5 in both the

nonsymbolic and symbolic format. In contrast, the two neurons

shown in Figures 2A and 2B were only significantly tuned to

dot numerosities, but not to numerals. Again, a cross-validation

analysis confirmed the reliability of the preferred numeral deter-

mination (average correlation coefficient r = 0.57; p < 0.05). The

proportion of neurons selective to symbolic number for each

subject is shown in Table S1. As for nonsymbolic number, the

firing rates of numeral-selective neurons were significantly
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higher compared to the non-selective neurons (p < 0.01;

Mann-Whitney U test; Figure S2, right).

Overall, the numeral-selective neurons’ preference covered

the entire range of numbers 1–5 (Figure 4A, right), and their

normalized activity for each preferred numeral formed overlap-

ping tuning functions (Figure 4B, right). The decline of activity

from the preferred to the nonpreferred numerals was brisk and

categorical, with only a mild progressive decrease with numeri-

cal distance, hardly showing a neuronal numerical distance ef-

fect (Figure 4C, right). At absolute numerical distance 1, the

normalized firing rates obtained for symbolic number (n = 16)

were significantly lower compared to nonsymbolic number (n =

92; p < 0.05; t test), indicating higher selectivity for (or sharper

tuning to) symbolic number. When comparing the neuronal la-

tencies to reach number-selectivity, neurons tuned to nonsym-

bolic (990 ms) and symbolic number (880 ms) did not differ

significantly (p = 0.23; Mann-Whitney U test).

Neuronal Population Coding
So far, our data suggest two main findings at the level of individ-

ual neurons. First, the representation of nonsymbolic number

was abundant and comparable to the core number network in

nonhuman primates (Nieder et al., 2002, 2006; Nieder and Miller,

2004), whereas the representation of symbolic numbers was

sparse in the MTL. Second, neurons responsive to nonsymbolic

or symbolic number formats are largely segregated in the MTL;

abstract neurons that encode the same numerical value in both

nonsymbolic and symbolic formats were rarely found.

We therefore explored how the two populations of numerosity-

selective and numeral-selective neurons encode numerical

values. To evaluate the neuronal populations’ information carried

about number, we first trained a multi-class support vector ma-

chine (SVM) classifier to discriminate numerical values based on

the spiking activity of selective MTL neurons (see Supplemental

Information). After training, the classifier was tested with novel

data from the same neuronal population to explore how well it

could predict number categories based on the information ex-

tracted from trials used for classifier training. Initially, we per-

formed a temporal cross-training classification to assess the

classifier’s accuracy in identifying the correct numerical values

when tested on the activity from a given time period after being

trained on other time periods of the trials. With a chance perfor-

mance of 20% (for five classes), the classifier accuracy was

significantly higher for both nonsymbolic and symbolic number

throughout the operand 1 and delay 1 phases, albeit with better

performance during the nonsymbolic-format trials (Figures 5A

and 5B).

Next, we trained and tested the classifier on the firing rates of

each neuron obtained by averaging across the time window that

had turned out significant in the cross-training classification. The

resulting confusion matrices show robust accuracy (65.6% ±

2.5%) for the five numerosities in the nonsymbolic format repre-

sented by the diagonal (Figure 5C, left). The probability of

misclassification of trials increased the closer two classes were

in the numerical space (‘‘distance effect’’; Figure 5D, left). Also

for number symbols, the numerical values could be classified

significantly above chance level but with lower accuracy

(38.8%± 2.9%; Figure 5C, right). Misclassifications hardly varied



Figure 5. Numerosity Decoding Using a SVM Classifier

(A) Classification accuracy for decoding numerosity information when training

a multi-class support vector machine (SVM) on instantaneous firing rates at a

given time point and testing on another one for numerosity-selective (left) and

numeral-selective (right) neurons.

(B) Accuracy for training and testing on identical time periods (main diagonal of

matrices in A). The dashed line represents chance level (20% for five classes).

Black bars above the data indicate significance (p < 0.01) when testing against

performance for SVMs trained on shuffled data in a permutation test. Shaded

areas indicate SEM.

(C) Confusion matrix derived when training an SVM on firing rates, averaged

across the significant time windows in the temporal cross-training classifica-

tion (B). Values on the main diagonal represent correct classification.

(D) Classification probability as a function of numerical distance. The dashed

line represents chance level; shaded areas indicate SEM; asterisks represent

significant differences between adjacent numerical distances ***p < 0.001).

Figure 6. Population Dynamics based on State-Space Analysis

(A) Average state-space trajectories, reduced to the three principal dimensions

for visualization, for the sub-populations of numerosity-selective (left) and

numeral-selective (right) units. Each trajectory depicts the temporal evolution

in the time window 0–1,850 ms. Circles indicate boundaries between experi-

mental periods (Cl.R., calculation rule; Del.1, delay 1; Fix., fixation; Op.1,

operand 1).

(B) Intertrajectory distances, averaged across pairs of trajectories with the

same numerical distance. Dashed lines represent the average distances for

trajectories obtained for label-shuffled data.
as a function of numerical distance for number symbols (Fig-

ure 5D, right). At absolute numerical distances 2, 3, and 4, clas-

sification probabilities obtained for the classifiers (n = 32) trained

on nonsymbolic and symbolic number neurons were almost

identical and significantly higher for symbolic than for nonsym-

bolic number (p < 0.01; t test). This indicates a sharper transition

from the preferred to all nonpreferred numbers and thus greater

selectivity in neurons tuned to symbolic number. When applied

to the entire set of single units regardless of numerosity selec-

tivity (585 units), this analysis yielded qualitatively similar results

(Figure S4).

In addition, we analyzed the coding capacity and dynamics of

the population of number-selective neurons by performing a

multi-dimensional state-space analysis (see Supplemental Infor-

mation) for nonsymbolic and symbolic numbers separately. At

each point in time, the activity of n recorded neurons is defined

by a point in n-dimensional space, with each dimension repre-

senting the activity of a single neuron. This results in trajectories

that are traversed for different neuronal states, i.e., the five

different numerical values in the nonsymbolic (Figure 6A, left)

and symbolic format (Figure 6A, right). These trajectories reflect

the instantaneous firing rates of the respective neuronal popula-

tion as they evolve over time. To evaluate the temporal evolution

of population numerical tuning in each format, we measured

Euclidian distances between trial trajectories in the whole
Neuron 100, 753–761, November 7, 2018 757



population space corresponding to the activity to the five numer-

ical values. In the nonsymbolic format, the trajectory distances

systematically increasedwith numerical distance (p < 0.001; per-

mutation test for all trajectories; see Supplemental Information),

starting shortly after onset of operand 1 until the end of themem-

ory delay 1. The distances between the population trajectories

confirm the findings based on single selective neurons: the

closer two numerosities were in the numerical continuum, the

more similar were the corresponding patterns of population ac-

tivity and vice versa (Figure 6B, left). This argues for a numerical

distance effect in the population data. In the symbolic format, the

trajectory distances were much less pronounced but likewise

tended to increase with numerical distance (p < 0.001 for 1

versus 4 in a permutation test), reflecting the remnants of a dis-

tance effect (Figure 6B, right). A comparison of the trajectory dis-

tances also suggests thatMTL neurons responded longer lasting

to the nonsymbolic format and throughout the working memory

period (i.e., delay 1). In contrast, the responses to the symbolic

format were more confined to the sample phase of operand 1.

Again, this analysis yielded similar results when performed for

the whole population of single units (Figure S5).

Encoding of Number in Later Task Phases
After analysis of the responses to the operand 1, we also exam-

ined selectivity to the numerical value of operand 2 separately

for nonsymbolic and symbolic number format. For the nonsym-

bolic format, 7.7% (45/585) of the tested neurons showed ac-

tivity that varied exclusively with the number of operand 2 items

during operand 2 presentation, irrespective of the dot array

layout (5-factor sliding-window ANOVA with the factors numer-

ical value of operand 1 [1–5], numerical value of operand 2

[0–5], protocol [standard and control], ‘‘mathematical rule’’

[addition and subtraction], and ‘‘rule cue’’ [word and symbol];

a = 0.01). Twenty-two of the units selective to nonsymbolic

operand 1 (n = 92) were also tuned to nonsymbolic operand

2; of those, 9 cells had the same preferred number. Given

that 20% of the selective units are expected to share the

preferred number by chance (5 number values), this proportion

of 9 cells was significantly higher (p < 0.05 in binomial test).

The finding that cells that responded both to operand 1 and

operand 2 tended to show the same preferred numerosity

was also confirmed by a correlation analysis (Pearson’s r =

0.64; p = 0.0013; Figure S6). For the symbolic format, only a

chance proportion of 1.5% (9/585) responded exclusively to

the numerical value of the operand 2 during the presentation

of the operand 2.

The responses of a single neuron throughout thewhole trial are

shown in Figure S7. This neuron was significantly tuned to nu-

merosity 5 of operand 1 during the operand 1 phase and of

operand 2 during the operand 2 phase (Figure S7, upper histo-

grams). This neuron also showed strong responses to the nu-

merical values of the operand 2 during the symbolic format (Fig-

ure S7, lower histograms); however, it was also selective to the

numeral protocol and thus not counted as an exclusively nu-

meral-selective cell. Overall, the highest proportion of neurons

selective to the nonsymbolic numerical value of operand 2 in

the MTL was found in the parahippocampal cortex (20%), fol-

lowed by the hippocampus (6%; Figure S8).
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Next, we analyzed selectivity to number in the delay 2 phase,

again separately for nonsymbolic and symbolic number format.

In the delay 2 phase, all the information necessary to solve the

calculation is available to the subjects. The delay 2 phase may

therefore be regarded as the calculation result phase. For statis-

tical analysis, we applied a sliding-window 6-factor ANOVA (with

the same factors as above, plus main factor numerical value cor-

responding to the result of the calculation [0–9]; a = 0.01). Neither

for the nonsymbolic nor for the symbolic format was the propor-

tion of neurons selective to the calculation result higher than

expected by chance (Figure S8).

Representation of Calculation Rules
Finally, we explored whether MTL neurons also encoded the

calculation rules (addition and subtraction) in an abstract

manner, independent from the rule notation (word or calculation

symbol as rule cues). Cells selective to nonsymbolic numerical

rules have been found inmonkey cortex (Vallentin et al., 2012; Ei-

selt and Nieder, 2013). We determined calculation rule-selective

units by applying a sliding-window 4-factor ANOVA (with the fac-

tors mathematical rule [addition and subtraction], rule cue [word

and symbol], numerical value of operand 1 [1–5], and format

[symbolic and nonsymbolic]; a = 0.01) during the calculation

rule phase and the rule delay phase. Figure S9 displays two

rule-selective neurons. The neuron in Figure S9A showed a

selective increase whenever an addition was required (reddish

discharges), whereas the neuron in Figure S9B selectively

enhanced discharges whenever a subtraction was cued (blueish

colors). These rule-selective response increases were abstract

and independent from the notation of the rule cue (word or sym-

bol). In total, we found only a small proportion of 2% of abstract

calculation rule cells, but this fraction was significantly larger

than expected by chance (Figure S10). In addition, a significant

fraction of 3% of the cells encoded the rule cue (calculation

word or symbol) during the calculation rule phase (Figure S10).

DISCUSSION

Using single-cell recordings in subjects performing a calculation

task, we have shown that single neurons in the MTL of humans

are tuned to numerical values in nonsymbolic dot displays and

symbolic numerals. The data about nonsymbolic number coding

from humans can now be compared to those of nonhuman pri-

mates. In addition, our MTL recordings show how the capacity

to represent symbolic number is represented in this part of our

brain. This capacity to link number to visual signs has precursors

in nonhuman primates (Diester and Nieder, 2010; Livingstone

et al., 2014), but ultimately the symbolic number system is

uniquely human (Nieder, 2009).

Functional imaging studies in humans found that areas of the

MTL—among many other functions outside of the number

domain—participate in learning arithmetic (De Smedt et al.,

2011; Supekar et al., 2013; Qin et al., 2014; Menon, 2016). Using

single-cell recordings in human subjects, we show thatMTL neu-

rons encode the numerical values in both nonsymbolic and sym-

bolic number. With 29% and 6% of all neurons being selective to

nonsymbolic and symbolic number, respectively, the parahippo-

campal cortex (PHC) shows the highest proportions of number



neurons among the four tested MTL areas. The PHC is part of a

large network that connects regions of the temporal, parietal,

and frontal cortices and has been associated with many cogni-

tive processes (Aminoff et al., 2013), such as selectivity to pic-

tures (Kreiman et al., 2000), responses guided by familiarity (Ru-

tishauser et al., 2006), responses to spatial factors (Jacobs et al.,

2013), and responses to mirror actions (Mukamel et al., 2010).

Most likely, representations about numerical quantity do not

originate within the PHC (or other areas of the MTL) but are pro-

vided via direct anatomical connections to the parieto-frontal

core number system (Goldman-Rakic et al., 1984). Interestingly,

the PHC has prominent connections with polymodal association

areas, including the parietal lobule (Suzuki, 2009). This connec-

tion with the parietal lobule, an integral part of the core number

network (Piazza et al., 2004, 2007; Arsalidou and Taylor, 2011)

in which numerosity, but not number symbols, aremapped topo-

graphically (Harvey et al., 2013) is likely to provide the PHC with

semantic information about numerical magnitude.

We have discovered two largely segregated populations of

tuned number neurons in the human MTL that process either

nonsymbolic or symbolic numerical quantity. The representation

of nonsymbolic and symbolic number information by two distinct

populations of tuned number neurons may either be inherited

from the core number system or a special feature of the human

MTL. Neurons in the prefrontal cortex of monkeys have been

shown to respond abstractly by integrating visual and auditory

numerosity (Nieder, 2012). Of course, number neurons in

nonhuman primates operate strictly within the nonsymbolic

format, but in monkeys trained to associate visual shapes with

varying numbers of items, the responses of prefrontal neurons

to the visual shapes reflected the associated numerical value

in a behaviorally relevant way (Diester and Nieder, 2007).

Irrespective of its neurophysiological realization, format de-

pendency does not pose a conceptual problem to number cod-

ing. In the human functional imaging literature, it is debated to

what extent neural representations of number even in the human

intraparietal sulcus (IPS) are format independent (Piazza et al.,

2007; Eger et al., 2009; Jacob and Nieder, 2009b; Damarla

et al., 2016) or format dependent (Cohen Kadosh et al., 2007;

Holloway et al., 2010). There is not even consensus with regard

to the degree of abstractness of numerical representations (re-

viewed in Cohen Kadosh and Walsh, 2009). Of course, these

findings derived from blood-oxygen-level-dependent signals

might also be explained by functionally segregated circuits that

overlap at the macroscopic voxel scale. Future single-cell re-

cordings in human subjects, in particular in the parietal and fron-

tal association cortices, may help to resolve the question of

abstract or segregated number neurons. They could also provide

insights into the coding of larger numbers, the empty set, and the

special number zero (Merten and Nieder, 2012; Ramirez-Carde-

nas et al., 2016).

Our study also helps to answer the question of the neuronal

code for number. Two competing hypotheses have been pro-

posed. Numbers could either be encoded by a ‘‘summation

code,’’ as evidenced by monotonic discharges as a function of

quantity (Roitman et al., 2007), or by a ‘‘labeled-line code’’ as wit-

nessed by numerosity-selective neurons tuned to preferred nu-

merosities. In agreement with influential computational models
of number processing (Dehaene and Changeux, 1993; Verguts

and Fias, 2004), the number neurons we found in the human

MTL were tuned to their individual preferred numerical value. A

general concern of data from patients with a history of epileptic

seizures is of course that the functional properties of MTL

neurons may have affected during the course of the disease.

Moreover, eye movement that was not measured during human

recordings might have influenced the neurons’ response proper-

ties. However, such factors are unlikely responsible for our re-

sults, because the same code that we observed in MTL neurons

has been foundmultiple times in single-cell recordings of fixating

monkeys, both in trained (Nieder et al., 2002, 2006; Sawamura

et al., 2002; Nieder and Miller, 2004; Nieder, 2012) and numeri-

cally naive subjects (Viswanathan and Nieder, 2013) and even

in corvid birds (Ditz and Nieder, 2015). This coding similarity sug-

gests that our findings in the MTL are representative also for the

healthy human brain. In addition, it indicates that number coding

in humans and other animals is best captured by a labeled-line

code. Of course, because number neurons only represent a

very restricted part of the number line, only populations of num-

ber neurons, each tuned to different values, can represent the

entire ‘‘mental number line.’’

In order to link number neurons to numerical behavior,

neuronal responses need to explain number judgments (Nieder

and Miller, 2003; Pinel et al., 2004). The direct comparison of re-

sponses in error trials versus correct trials, an analysis regularly

done in nonhuman primates, would have been informative, but

the human subjects hardly made any error and thus precluded

the evaluation of error trials. However, as a basic requirement

supporting the link between neurons and behavior, we show

that nonsymbolic and symbolic numerical values can be reliably

decoded from MTL neurons (Ramirez-Cardenas et al., 2016).

This holds true for the populations of selective number neurons

but also for the entire population of recorded neurons and irre-

spective of response selectivity. In addition, the neuronal activity

can also explain the numerical distance effect, the finding that

numerically distant numbers can be better discriminated. Behav-

ioral studies and neural modeling show that the distance effect is

substantial for the comparison of nonsymbolic numerosities but

minute for judgments of exact number symbols (Buckley and

Gillman, 1974; Verguts and Fias, 2004). In agreement with this,

the accuracy of number discrimination based on the neuronal

discharges exhibited large distance effects for the populations

of broadly tuned numerosity-selective neurons but small dis-

tance effects for sharply tuned numeral-selective neurons. This

finding provides further evidence for these neurons as the phys-

iological correlate of number representations.

The distance effect for number symbols is thought to be in-

herited from more basic nonsymbolic number representations

(Moyer and Landauer, 1967; Buckley and Gillman, 1974; Piazza

et al., 2007). Its presence in human number neurons therefore

supports the hypothesis that high-level human numerical abili-

ties are rooted in biologically determined mechanisms. It sug-

gests that number symbols acquire their numerical meaning by

becoming linked to evolutionarily conserved set size representa-

tions during cognitive development (Halberda et al., 2008; Szku-

dlarek and Brannon, 2017). Symbolic number cognition thus ap-

pears to be grounded in neuronal circuits devoted to deriving
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precise numerical values from approximate numerosity repre-

sentations (Dehaene and Cohen, 2007).
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Cheetah software Neuralynx Inc. https://neuralynx.com/software/cheetah

Combinato spike sorting software Niediek et al. (2016) https://github.com/jniediek/combinato

MATLAB R2017a MathWorks https://de.mathworks.com/

Psychtoolbox http://psychtoolbox.org/

LIBSVM Chang and Lin (2011) https://www.csie.ntu.edu.tw/�cjlin/libsvm/

DataHigh Yu et al. (2009) https://users.ece.cmu.edu/�byronyu/software/

DataHigh/datahigh.html

Other

Behnke-Fried depth electrodes AD-TECH Medical Instrument Corp. https://adtechmedical.com/depth-electrodes

ATLAS neurophysiology system Neuralynx Inc. https://neuralynx.com/news/techtips/atlas-

neurophysiology-system-for-cogneuro-applications
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by Florian Mormann (florian.mormann@

ukbonn.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nine human subjects (4male, all right-handed,mean age 43.3 years) undergoing treatment for pharmacologically intractable epilepsy

participated in the study. Informed written consent was obtained from each patient. All studies conformed to the guidelines of the

Medical Institutional Review Board at the University of Bonn, Germany. On the level of single neurons no sex- or gender-specific dif-

ferences are to be expected; thus, the influence of sex and gender identity was not analyzed further.

METHOD DETAILS

Neurophysiological Recording
All subjects were implanted bilaterally with chronic intracerebral depth electrodes in the medial temporal lobe (MTL) to localize the

epileptic focus for possible clinical resection. The exact electrode numbers and locations varied across subjects and were based

exclusively on clinical criteria. Neuronal signals were recorded using 9–10 clinical Behnke-Fried depth electrodes (AD-TECHMedical

Instrument Corp., Racine, WI). Each electrode contained a bundle of nine platinum-iridium micro-electrodes protruding from its tip;

eight high-impedance active recording channels, and one low-impedance reference electrode. Differential neuronal signals

(recording range ± 3200 mV) were filtered (bandwidth 0.1–9,000 Hz), amplified and digitized (sampling rate 32.7 kHz) using a 256-

channel ATLAS neurophysiology system (Neuralynx Inc., Bozeman, MT). Behavioral data were synchronized with the recorded

spikes via 8-bit timestamps using the Cheetah software (Neuralynx Inc., Bozeman, MT).

After band-pass filtering the signals (bandwidth 300–3,000 Hz), spikes were detected and pre-sorted automatically using the Com-

binato software (Niediek et al., 2016). Manual verification and classification as artifact, multi or single unit was based on spike shape

and its variance, inter-spike interval distribution per cluster and the presence of a plausible refractory period. Only units that re-

sponded with an average firing rate of > 1 Hz during operand 1 and delay 1 phase for either format were included in the analyses.

Across 16 recording sessions from all nine patients, a total of 836 units (585 single and 251multi units) were identified in the amygdala

(AMY; 153 single and 63 multi units), parahippocampal cortex (PHC; 126 single and 61 multi units), entorhinal cortex (EC; 107 single

and 54 multi units) and hippocampus (HIPP; 199 single and 73 multi units) according to these criteria (see Table S1); 333 units with

firing rates < 1 Hz were excluded. Only single units were subjected to further analyses.

Stimuli
All stimuli were presented within a filled gray circle (diameter 6� of visual angle) on a black background. During fixation and delay

phases, a white fixation spot was presented in the center of the gray area. It disappeared during stimulus presentation to avoid
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confusion with nonsymbolic stimuli and to distinguish it clearly from the nonsymbolic zero-stimulus that was included for control

purposes as a potential operand 2-stimulus (see Experimental Task).

Number stimuli of operand 1 ranged from 1 to 5, and were either black ‘symbolic’ Arabic digits at a randomized location (‘nu-

merals’), or ‘nonsymbolic’ arrays of black dots of pseudo-randomly varied sizes and at randomized locations where the number

of dots corresponded to the respective numerical value (‘numerosities’). Number stimuli of operand 2 ranged from 0 to 5, and

were the same as for operand 1. For the nonsymbolic ‘zero’-stimulus the empty gray circle without fixation spot was presented.

Both nonsymbolic and symbolic number formats were shown in standard and control displays, or ‘protocols’ (Figure 1B). This was

done in order to control for low-level visual features. The standard nonsymbolic numerosity displays consisted of randomly placed

dots of varying sizes (diameter 0.3� to 0.8� of visual angle), whereas in the control displays the overall surface area and density of the

dots across numerosities was equated. For the Arabic numerals, different font types were used as standard (Helvetica, 34 pt) and

control (DS-Digital, 34 pt) displays. A session consisted of 50%nonsymbolic and 50%symbolic number formats.Within each format,

standard and control protocols were shown with equal probability of 50%.

Two different mathematical rules, i.e., addition and subtraction, were applied (Figure 1C). To dissociate neuronal activity related

purely to physical properties of the operator from the rule that it signifies, two distinct cues, i.e., the mathematical sign (+ or –) or

a verbal analog (‘und’ [add] and ‘weniger’ [subtract]), were used for each rule (all Helvetica, 34 pt, and presented in the center).

Experimental Task
During experimental sessions, subjects sat in bed and performed the task on a touch-screen laptop (display diagonal 11.7 in; res-

olution 1366x768 px) on which stimuli were presented at a distance of approximately 50 cm. To exclude any bias, the subjects

were not informed about the purpose or hypotheses of the experiment.

Subjects performed two calculation tasks that required them to calculate the result of a simple arithmetic problem (Figure 1A). Each

trial started with a 500ms fixation phase. Then, stimuli were presented successively in the order operand 1 – operator – operand 2 for

500ms each, followed each by 800ms delay phases. Afterward, a number pad showing the Arabic numerals 0 to 9 was presented on

the screen and subjects were instructed to touch the number matching the result of the calculation in a self-paced manner. After a

500 ms feedback display (‘richtig’ [correct] or ‘falsch’ [false]) the next trial was started automatically.

We varied five factors in this task: Format (symbolic/ nonsymbolic), numerical value (1–5), and protocol (standard/ control) for the

operand 1-stimulus, resulting in 20 different ‘number’ conditions, as well as mathematical rule (addition/ subtraction) and rule cue

(symbol/ word), resulting in four ‘operator’ conditions. Operand 2 was always of the same format and protocol as operand 1, but

with random numerical value 0–5, albeit guaranteeing calculation results between 0 and 9.

Each session comprised a total of 320 trials, plus 10 rehearsal trials at the beginning to familiarize subjects with the task that were

excluded from further analysis. A session was divided into four blocks of 80 trials each, comprising each of the 80 different conditions

in pseudo-random order, to allow for short self-paced breaks in between. Thus, every number condition (i.e., combination of number,

format and protocol) was presented 16 times, while every operator condition (i.e., combination of rule and rule cue) occurred

80 times.

QUANTIFICATION AND STATISTICAL ANALYSIS

Only single units (n = 585) were included in the following analyses. We focused on the operand 1 and delay 1 phases because these

were the only periods during which pure number information was being processed. Given that the rule to be applied was not yet

known, interference of calculation processes or motor response preparation could be excluded. Thus, all analyses were conducted

for the time window 0–1850ms (fixation onset to delay 1 offset). All subjects performed the task with high proficiency (98.5% ± 0.6%,

range 90.3%–99.8%). Therefore, we did not exclude the negligible number of error trials from the analyses.

Sliding-Window 2-Factor Analysis of Variance (ANOVA)
Due to the incomparability of the protocol conditions for the different formats, the following procedure was carried out separately for

trials of each format. For each unit, spike trains were smoothed trial-wise (Gaussian kernel, s = 150ms) within the analysis window. At

every 10-ms-step, a 2-factor ANOVA was performed on the instantaneous firing rates for the factors ‘numerical value’ (1–5) and ‘pro-

tocol’ (standard/ control) resulting in a temporal sequence of F-values for main and interaction effects. To control for multiple com-

parisons, a cluster permutation test (Maris and Oostenveld, 2007) was performed to identify temporal clusters that encoded number

information significantly. Briefly, all F-values within a cluster, i.e., an interval with only significant p-values (pclus < 0.01) for the respec-

tive effect, were summed up. Calculating multiple 2-factor ANOVAs and summing up significant F-values was repeated with

randomly shuffled trial labels (nperm = 100). A temporal cluster of the true data was then considered significant only if the percentile

rank of the summed F-values of the true data was significant across the distribution of summed F-values obtained for the shuffled

data (prank < 1%, corresponding to a nominal size of the statistical test of a = 0.01). In the following, we refer to such a significant

cluster as NUM-interval. A unit was counted as exclusively number-selective (‘number-unit’) if a significant cluster was observed be-

tween 500–1600 ms (operand 1 onset to 200 ms before delay 1 offset) for the factor ‘numerical value’ and there were no overlapping

significant clusters for the factor ‘protocol’ or the interaction (see Figure S1). As a control, we determined the proportion of significant

NUM-intervals for the shuffled data (585 single units x 100 permutations, resulting in 58,500 tests; same procedure as for the true
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data) in order to estimate the probability of false positives, i.e., the probability that a unit was classified as number-selective by

chance. For both formats, we found that 1% of these tests (nonsymbolic 493/58,500, symbolic 513/58,500) resulted in a statistically

significant result, or false positive, confirming the empirical size of the statistical test to also be at a z0.01. The probability that

neuronal selectivity occurs by chance was therefore 1%. Using a binomial test with pchance = a = 0.01, we can thus confirm that

the observed proportion of number-selective neurons cannot be explained by chance occurrences both for nonsymbolic (92/585;

pbinomial = 1.18e-77) and symbolic (16/585; pbinomial = 3.58e-4) number-selective neurons.

To compare the general response behavior of number-units and non-selective cells, we determined the maximum firing rate per

number condition for each format and cell by averaging the spike rates within the significant NUM-interval for the number-units or

across the entire operand 1 and delay 1 phase (500–1800 ms) for the non-selective units (nonsymbolic format: 92 numerosity-cells,

493 non-selective cells; symbolic format: 16 numeral-cells, 569 non-selective cells). Distributions were then compared using aMann-

Whitney-U-test (see Figure S2). The correlation between nonsymbolic and symbolic number-representations was evaluated for the

sub-populations of numerosity-selective neurons (n = 92), numeral-selective neurons (n = 16) and neurons responsive to both formats

(n = 6). For each unit of a sub-population, we calculated the preferred number for the significant format by averaging the spike rates

during the respective NUM-interval, and the preferred number for the non-significant format by averaging the spike rates across the

entire operand 1 and delay 1 phase (500–1800 ms). We then quantified the relationship by calculating Pearson’s linear correlation

coefficient (see Figure S3).

The sub-populations of nonsymbolic and symbolic number-units obtained with the sliding-window 2-factor ANOVA showed little

(although significant) overlap. Therefore, the following population analyses were performed separately for the sub-population of

nonsymbolic number-units (92 units) considering nonsymbolic trials only, and the sub-population of neurons preferring symbolic

stimuli (16 units) using symbolic trials only. For control purposes, population analyses were also performed for the whole population

of single units (585 units; see Figures S4 and S5).

Tuning Properties
For each number-unit, individual tuning curves were obtained by averaging the responses to different numerical values across trials,

during the time window of significant number-clusters (NUM-intervals). In cases where we identified multiple NUM-intervals within

the same unit, tuning curves were calculated separately for each of these intervals (3/5 nonsymbolic number-cells with multiple

NUM-intervals preferred different numerosities). They were then normalized by setting the maximum response to 100% and the min-

imum response to 0%. The preferred numerical value was determined as the number which elicited the strongest average response.

A cross-validation analysis was performed to estimate the robustness and reliability of the preferred number assessment (Nieder and

Merten, 2007). We split the data into two halves by randomly assigning the trials to either of the two sets and calculated the preferred

number for each dataset. This was done for the entire population of number-units and the relationship between preferred numbers

quantified by calculating Pearson’s linear correlation coefficient. If both datasets resulted in identical preferred numbers, the corre-

lation coefficient was 1. The correlation analysis was performed 100 times for different random partitions of the data, and the average

correlation coefficient was calculated.

Population neural filter functions were then calculated by averaging across the sub-populations of units preferring the same nu-

merical value. The activity of each number-unit was considered as a function of distance from its preferred number. Differences

between all pairs of adjacent numerical distances were separately quantified using Wilcoxon signed-rank tests. Moreover, for

each numerical distance we tested whether the obtained response differed significantly from a response pattern to be expected

in case of random tuning (obtained by repeating the analysis with shuffled labels) using a permutation test (nperm = 1000).

Multi-Class Support Vector Machine (SVM) Classification
For each unit, spike trains were trial-wise smoothed (Gaussian kernel,s = 50ms, window size 300ms) within the analysis window. For

temporal cross-training classification, amulti-class SVMclassifier (Chang and Lin, 2011) was trained on the instantaneous firing rates

at a certain time point, and then tested on firing rates at different time points (sampling interval 10 ms). We used a linear SVM-kernel

with default parameter settings and applied ‘one-versus-one’ classification to distinguish our five classes. For the 32 trials per num-

ber and format (symbolic versus nonsymbolic), we used leave-one-out cross-validation and normalized all firing rates by z-scoring

(mean and standard deviation obtained from training data only) within each cross-validation repetition. For each classifier (n = 32),

accuracy was assessed by counting the instances that a certain activity pattern was labeled correctly. To evaluate whether accuracy

differed significantly from chance level (20% for five classes) when trained and tested at the same time points, we repeated the anal-

ysis with randomly shuffled trial labels (nperm = 1000) and applied a cluster permutation test (pclus = 0.01, prank = 1%; see Sliding-

Window 2-Factor ANOVA). Finally, a multi-class SVM (with the same settings as above) was trained and tested on the firing rates

obtained by averaging across the time window that was significant in the cross-training classification, i.e., window 780–1800 ms

for the nonsymbolic number-units and 810–1370 ms for the symbolic number-cells (in cases where we obtained multiple significant

windows, we used the onset of the first cluster and the offset of the last cluster as window boundaries). In addition to the overall ac-

curacy, we assembled a confusion matrix which counted the frequency at which a trial of a certain stimulus class was assigned

different labels by the classifier (main diagonal indicating correct labeling), and calculated the classification probabilities per numer-

ical distance by averaging over the main andminor diagonals of the confusion matrix for each classifier (n = 32). Differences between

adjacent classification probabilities were evaluated using Wilcoxon signed-rank tests (n = 32).
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Population State-Space Analysis
For each unit, spike trains were averaged across conditions, normalized by z-scoring and smoothed (Gaussian kernel, s = 50 ms,

window size 300 ms). The temporal evolution of the neural activity of a population of n neurons can be represented as a trajectory

in an n-dimensional space where each axis represents the instantaneous firing rate of one neuron. In our case, we analyzed the tra-

jectories of the five different number conditions in a 92-dimensional space for the sub-population of nonsymbolic number-units, and

in a 16-dimensional space for the symbolic number-units, respectively. To evaluate population tuning in terms of numerical dis-

tances, we calculated the Euclidean distances between each pair of trajectories, and averaged across those with the same numerical

distance. This analysis was repeatedwith shuffled trial labels (nperm= 1000) to obtain intertrajectory distances that would be expected

for random numerical tuning, and evaluated using a cluster permutation test (pclus = 0.01, prank = 1%; see Sliding-Window 2-Factor

ANOVA). Solely for visualization purposes, trajectories were reduced to the top 3 (in terms of covariance they explain) orthonormal-

ized dimensions using a Gaussian-process factor analysis (Yu et al., 2009).

Other Task Phases
Number-selectivity to operand 2 was assessed by performing a sliding-window 5-factor ANOVA with the factors ‘numerical value’ of

operand 1 (1–5), ‘numerical value’ of operand 2 (0–5), ‘protocol’ (standard/ control), ‘mathematical rule’ (addition/ subtraction) and

‘rule cue’ (word/ symbol) for the operand 2 phase (analysis window 3050–3650 ms), separately for each format. We used the same

parameters and procedures as for the operand 1 phases (see Sliding-Window 2-Factor ANOVA). A unit was counted as exclusively

number-selective during the operand 2 phase if a significant cluster was observed between 3100–3400 ms (operand 2 onset to

200 ms before operand 2 offset) for the factor ‘numerical value’ of operand 2 and there were no overlapping significant clusters

for any other factor. For the population of nonsymbolic number-units responsive to both operand 1 and 2 (n = 22) we calculated

the preferred number per operand during the respective significant NUM-interval and quantified the relationship by calculating Pear-

son’s linear correlation coefficient (see Figure S6). In addition, the significance of the proportion of units preferring the same number

(k = 9) was evaluated using a binomial test (pchance = 0.2 for five numbers).

Analogously, number-selectivity to the calculation result was determined for the delay 2 phase (analysis window 3550–4450 ms;

we excluded the actual response phase in order to avoid confounds with motor responses) using a 6-factor ANOVA with the same

factors as above, plus ‘numerical value’ of calculation result (0–9). Again, we used the same parameters and procedures as for the

operand 1 phases (see Sliding-Window 2-Factor ANOVA) and counted a unit as exclusively number-selective if a significant cluster

was observed between 3600–4200 ms (delay 2 onset to 200 ms before delay 2 offset) for the factor ‘numerical value’ of calculation

result and there were no overlapping significant clusters for any other factor.

Furthermore, we determined rule-selective units by calculating a sliding-window 4-factor ANOVA with the factors ‘mathematical

rule’ (addition/ subtraction), ‘rule cue’ (word/ symbol), ‘numerical value’ of operand 1 (1–5) and ‘format’ (symbolic/ nonsymbolic),

thereby pooling over the factor ‘protocol’ (given its irrelevance for the processing of the rule cues), for the calculation rule and rule

delay phases (analysis window 1750–3150 ms). The same parameters and procedures as for the operand 1 phases (see Sliding-

Window 2-Factor ANOVA) were used. A unit was counted as exclusively rule-selective if a significant cluster was observed for the

factor ‘mathematical rule’ between 1800–2900 ms (calculation rule onset to 200 ms before rule delay offset) and there were no over-

lapping significant clusters for any other factor. Exclusive cue-selectivity was defined analogously.

DATA AND SOFTWARE AVAILABILITY

Data and analysis software for this paper are available from the lead contact upon reasonable request.
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