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Number detectors spontaneously emerge in a deep
neural network designed for visual object recognition
Khaled Nasr*, Pooja Viswanathan†, Andreas Nieder‡

Humans and animals have a “number sense,” an innate capability to intuitively assess the number of visual
items in a set, its numerosity. This capability implies that mechanisms to extract numerosity indwell the
brain’s visual system, which is primarily concerned with visual object recognition. Here, we show that
network units tuned to abstract numerosity, and therefore reminiscent of real number neurons, sponta-
neously emerge in a biologically inspired deep neural network that was merely trained on visual object
recognition. These numerosity-tuned units underlay the network’s number discrimination performance that
showed all the characteristics of human and animal number discriminations as predicted by the Weber-
Fechner law. These findings explain the spontaneous emergence of the number sense based on mecha-
nisms inherent to the visual system.
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INTRODUCTION
Humans and animals have a “number sense,” an innate capability
to intuitively assess the number of visual items in a set, its “numer-
osity” (1, 2). This capacity allows newborn human infants (3) and
animals (4) to assess the number of items in a visual scene. Human
psychophysics (5, 6), brain imaging studies in humans (7, 8), and
single-neuron recordings in animals support the direct and automatic
assessment of numerosity in the brain. In animals that had not been
trained to judge number, single neurons spontaneously responded
to numerosity and were tuned to preferred numerosities (9, 10).
These “number neurons” that also exist in the human brain (11)
are regarded as the neuronal foundation of numerical information
processing (12).

The innate presence of the number sense implies that mechanisms
to extract numerosity indwell the brain’s visual system, although it
is by nature primarily concerned with visual objects. In recent years,
biologically inspired deep neural networks have provided valuable
insights into the workings of the visual system. Generative neural
networks, a class of deep networks that learn to form an internal
model of the sensory input, have been shown to become sensitive
to numerosity but could not explain the emergence of real num-
ber neurons (13). Here, we use a hierarchical convolutional neural
network (HCNN), a class of biologically inspired models that have
recently achieved great success in computer vision applications
(14, 15) and in the modeling of the ventral visual stream (16, 17).
Like the brain, these models comprise several feedforward and reti-
notopically organized layers containing individual network units that
mimic different types of visual neurons. The training procedure auto-
nomously determines selectivity for individual features in each unit to
maximize the network’s performance on a given task. Here, we built
such a network and trained it on a visual object recognition task un-
related to numbers to explore whether and how sensitivity to numbers
would spontaneously emerge.
RESULTS
Numerosity selectivity spontaneously emerges in a deep
neural network trained for object classification
We trained a deep neural network to classify objects in natural images.
The network model was an instance of HCNNs (18), originally
inspired by the discovery of simple and complex cells in early visual
cortex (19). The network model (Fig. 1A and Table 1; see Materials
and Methods for details) can be conceptually divided into two parts:
a feature extraction network that learned to convert natural images
into a high-level representation suitable for object classification and a
classification network that produced object-class probabilities based
on this representation. The network consisted mainly of convolutional
layers and pooling layers. Network units in convolutional layers per-
formed local filtering operations analogous to simple cells in the visual
cortex, while the units in pooling layers aggregated responses in local
patches in their input, similar to complex cells. Network units that had
the same receptive fields in convolutional layers competed with each
other using a simple form of lateral inhibition (14).

We trained the network on object recognition using the ILSVRC2012
ImageNet dataset [(14); see Materials and Methods for details]. This
dataset contains around 1.2 million images that have been classified
into 1000 categories based on the most prominent object depicted in
each image. After training, the network was tested on object classi-
fication with 50,000 new images that the network had never seen
before. The network achieved a highly significant object classification
accuracy of 49.9% (chance level = 0.1%; P < 0.001, binomial test) on
this dataset. Figure 1B shows examples of the test images and the
predictions made by the network.

To explore whether the network trained on object classification
with natural images could spontaneously assess the number of items
in dot displays (their numerosity), we investigated whether different
numerosities elicit different activations in the network units. To that
aim, we discarded the classification network and presented only the fea-
ture extraction network with newly generated images of dot patterns
depicting various numerosities ranging from 1 to 30, following (20)
for monkey experiments. Figure 2A shows examples of those images.
To control for the effect that the visual appearance of the dot displays
might have on unit activations, we used 21 images for each numerosity
across three different stimulus sets. The first stimulus set (standard set)
showed circular dots of random size and spacing. The second stimulus
set (control set 1) displayed dots of equal total dot area and dot density
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across numerosities. The third stimulus set (control set 2) consisted
of items of different geometric shapes with equal overall convex hull
across numerosities (see Materials and Methods for details).

We presented a total of 336 images to the network and recorded the
responses of the final layer. A two-way analysis of variance (ANOVA)
with numerosity and stimulus set as factors was performed to detect
network units selective to the number of items (P < 0.01) but without
significant effects for stimulus set or interaction. Of the 37,632 network
units in the final layer, 3601 (9.6%) were found to be numerosity-
selective network units. The responses of numerosity-selective units ex-
hibited a clear tuning pattern (Fig. 2B) that was virtually identical to
those of real neurons [Fig. 2C; real neurons from (20)]: Each network
unit responded maximally to a presented numerosity, its preferred nu-
merosity, and progressively decreased its response as the presented nu-
merosity deviated from the preferred numerosity. The distribution of
preferred numerosities covered the entire range (1 to 30) of presented
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
numerosities, with more network units preferring smaller than larger
numerosities (Fig. 2D), similar to the distribution observed in real neu-
rons (Fig. 2E) (20).

Tuning properties of numerosity-selective network units
If the numerosity-selective network units are analogous to numerosity-
selective neurons found in the brain, then they should exhibit the same
tuning properties. To investigate this, we averaged the responses from
numerosity-selective network units that have the same preferred nu-
merosity and normalized them to the 0 to 1 activation range to create
the pooled network tuning curves (Fig. 3). The pooled network units’
tuning curves revealed characteristics of real neurons (12): The shape
of the units’ tuning curves was asymmetric peak functions on a linear
number scale, with more sharply decaying slopes toward smaller than
larger numerosities. This pattern suggests that the network units’
tuning was better represented on a nonlinearly compressed, possibly
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Fig. 1. An HCNN for object recognition. (A) Simplified architecture of the HCNN. The feature extraction network consists of convolutional layers that compute
multiple feature maps. Each feature map represents the presence of a certain visual feature at all possible locations in the input and is computed by convolving
the input with a filter and then applying a nonlinear activation function. Max-pooling layers aggregate responses by computing the maximum response in small
nonoverlapping regions of their input. The classification network consists of a global average-pooling layer that computes the average response in each input feature
map, and a fully connected layer where the response of each unit represents the probability that a specific object class is present in the input image. (B) Successful
classification of a wolf spider by the network from other arthropods is shown as an example. Example images representative of those used in the test set and the top
5 predictions made by the network for each image ranked by confidence. Ground-truth labels are shown above each image. Images shown here are from the public
domain (Wikimedia Commons).
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logarithmic, scale, where large numerosities occur closer together
than small numerosities.

To verify this, we first plotted the pooled network tuning curves
once on a linear scale and again on a logarithmic scale (Fig. 4A). The
network tuning curves became more symmetric and had a near-
constant tuning width across preferred numerosities on the loga-
rithmic scale. To quantify this effect, we fit Gaussian functions to
the network tuning curves plotted on a linear scale and on three dif-
ferent nonlinearly compressed scales, namely, two power scales and a
logarithmic scale [f(x) = x0.5, f(x) = x0.33, f(x) = log2(x)]. These scales
represent different levels of nonlinear compression such that the level
of compression progressively increases when going from the linear
scale to the logarithmic scale. The Gaussian function was chosen be-
cause it is a standard symmetric function. If a scale is suited to the
tuning curves, they should become symmetric around preferred nu-
merosities when plotted on that scale, and therefore, the goodness
of fit (r2 score) of the Gaussian function to the tuning curves should
be increased (21). We found that the Gaussian function proved a sig-
nificantly better fit for the data on any of the nonlinear scales than on
the linear scale (P < 0.05, paired t test) (Fig. 4B). The goodness of fit
was not significantly different between any of the nonlinear scales (P >
0.05). Furthermore, we plotted the SD of the Gaussian fit as a measure
of the tuning curve width for each of the tuning curves against the
preferred numerosity associated with each curve (Fig. 4C). The clear
and positive slope of the Gaussian widths on the linear scale (r = 0.96,
P = 2.1 × 10−9) indicated that tuning width systematically increased
with numerosity. In contrast, the slope had values close to zero for the
logarithmic scale (r = 0.20, P = 0.47), indicating that tuning widths
were invariant with lognormal tuning curves of increasing numerosity.
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
Previous network models of number coding postulated summation
units, units that monotonically increase or decrease responses with
increasing numbers, either as necessary precursors to tuned number
detectors (22, 23) or as actual output units (13). In our network, how-
ever, summation units were negligible in both respects. In the output
layer (layer 13), only 0.5% of all units were summation units, in stark
contrast to 9.6% tuned number units. The preceding intermediate
layers (layers 12 and 11) contained only 0.9 and 2.3% summation units,
respectively. Crucially, when we eliminated the responses of all sum-
mation units before testing the model, the proportions of tuned neu-
rons, their distribution, and average tuning curves were qualitatively
unchanged. Therefore, summation units were not necessary for the
network to develop number detectors.

Relevance of numerosity-selective network units
to performance
We then investigated whether numerosity-selective network units
would be sufficient to solve a matching task that required abstracting
the absolute numerosity from the low-level visual features of the
stimuli. For this purpose, we constructed a numerosity matching task
(see Materials and Methods for details) that was comparable to the
tasks developed for monkeys and humans (24). In each trial, the fea-
ture extraction network was presented with two images of dot
patterns, and for each image, the responses of the numerosity-selective
units in the final layer of the network were recorded. The responses of
the selective units were fed into a small two-layer neural network,
which was trained to identify whether the two images contained the
same number of dots. The feature extraction network was fixed during
training and was not allowed to adapt based on the labeled examples
Table 1. Description of the layers in the HCNN.
Role
 Layer
 Type
 Number of feature maps
 Spatial size
 Kernel size
Feature extraction
 0
 Input image
 3
 224 × 224
 –
1
 Convolutional
 32
 224 × 244
 9 × 9
2
 Max-pooling
 32
 224 × 244
 2 × 2
3
 Convolutional
 48
 112 × 112
 9 × 9
4
 Max-pooling
 48
 112 × 112
 2 × 2
5
 Convolutional
 96
 56 × 56
 7 × 7
6
 Max-pooling
 96
 56 × 56
 2 × 2
7
 Convolutional
 192
 28 × 28
 5 × 5
8
 Max-pooling
 192
 28 × 28
 2 × 2
9
 Convolutional
 384
 14 × 14
 5 × 5
10
 Max-pooling
 384
 14 × 14
 2 × 2
11
 Convolutional
 768
 7 × 7
 5 × 5
12
 Convolutional
 768
 7 × 7
 5 × 5
13
 Convolutional
 768
 7 × 7
 5 × 5
Classification
 14
 Average-pooling
 768
 1 × 1
 7 × 7
15
 Softmax classifier
 1000
 1 × 1
 1 × 1
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and therefore remained at the numerosity-naïve stage. After training,
we measured the accuracy of the network on pairs of dot images that
were not used during training and found it to be 81% (chance level
was 50%). The numerosity-selective network units allowed reliable nu-
merosity discrimination.
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
If tuning of the network units to their respective preferred numer-
osities were performance relevant, the tuning quality is expected to
suffer in cases where the network makes erroneous numerosity judg-
ments. That is, performance success would correlate with whether the
network units show maximal activity to their preferred numerosities;
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Fig. 2. Numerosity-tuned units emerging in the HCNN. (A) Examples of the stimuli used to assess numerosity encoding. Standard stimuli contain dots of the same
average radius. Dots in Area & Density stimuli have a constant total area and density across all numerosities. Dots in Shape & Convex hull stimuli have random shapes
and a uniform pentagon convex hull (for numerosities >4). (B) Tuning curves for individual numerosity-selective network units. Colored curves show the average
responses for each stimulus set. Black curves show the average responses over all stimulus set. Error bars indicate SE measure. PN, preferred numerosity. (C) Same
as (B), but for neurons in monkey prefrontal cortex (20). Only the average responses over all stimulus sets are shown. (D) Distribution of preferred numerosities of the
numerosity-selective network units. (E) Same as (D), but for real neurons recorded in monkey prefrontal cortex [data from (20)].
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if activation to the preferred numerosity is decreased, the network
would be error prone. We therefore compared the tuning of the
network numerosity units between correct and error trials. To that
aim, we plotted the normalized unit responses in correct and error
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
trials as a function of numerical distance from the preferred numer-
osity (Fig. 5A). We found that, in error trials, the average response to
the preferred numerosity significantly dropped to 91% of that in cor-
rect trials. The tuning of the units was significantly worse during error
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trials, causing the network to judge numerosity wrongly. The very
same effect has also been observed for tuning curves in monkeys
(Fig. 5B) (20).

Moreover, removing the summation units in the network hardly
affected the network’s number discrimination performance. After
removing the summation units from the last three layers (layers
11 to 13), accuracy in network performance dropped only mildly,
from 81 to 77%. Note that a mild reduction in accuracy was expected,
because the removed summation units in the final layer were also
classified as numerosity-selective units tuned to 1 and 30 and were
thus part of the input to the numerosity matching network. The main-
tenance of accurate matching performance without summation units
demonstrates that the network’s performance did not depend on the
summation units, even the ones in the output layers.

To further confirm the relevance of the tuned numerosity-selective
units for the network’s performance, we investigated whether the
matching by the network showed the same characteristics as the be-
havioral performance functions of humans and animals. The first im-
portant characteristic is the “numerical distance effect,” the observation
that behavioral discrimination is progressively enhanced as numerical
distance between two quantities increases (24, 25). This is reflected in
better performance in cases where the two numerosities presented are
remote from each other, giving rise to a bell-shaped performance
function. The network also made more errors when the numerical dis-
tance between the two presented numerosities was small than when the
distance was large, thus showing a numerical distance effect as reflected
by the bell-shaped performance functions in Fig. 6A.

The second important characteristic is the “numerical size effect,”
the finding that discrimination of numerosities with constant numer-
ical distance worsens as the numerical magnitude increases. As a con-
sequence, the behavioral performance functions widen with increasing
magnitude (24). In agreement with the numerical size effect, the
network had more difficulty comparing large numerosities of a given
numerical distance than small numerosities with the same distance
(Fig. 6A; see Materials and Methods for details). As a consequence,
the network’s performance functions got wider as numerosity in-
creased, thus mirroring the network units’ tuning curves (Fig. 4). The
performance functions also became symmetrical with a near-constant
width when plotted on a logarithmic scale (Fig. 6B). To quantify this,
we again fitted Gaussian functions to the network’s performance
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
functions and observed a significantly better fit on the nonlinear scales
as compared to the linear scale (P < 0.05, paired t test; Fig. 6C), a
significant positive slope when the SD of the Gaussian fits on the
linear scale was plotted against the preferred numerosities (r = 0.92,
P < 0.0001; Fig. 6D) and a flat slope when the logarithmic scale was
used (r = −0.36, P = 0.17; Fig. 6D). The stark similarity between the
results summarized in Figs. 4 and 6 indicates that, as observed in
animals (20, 21), the units’ tuning curves and the network’s
performance output were tightly linked.
DISCUSSION
Number sense mechanisms inherent to the visual system
Compared to other network models of number processing, the main
advance offered by the HCNN we implemented is that its architecture
and function closely mimic the visual system, such as hierarchical
layers in which network units with receptive fields and exhibiting lat-
eral inhibition form topographically organized maps of visual features.
Although our model was merely trained to classify natural images in a
task that was unrelated to numerosity, its spontaneously emergent
numerosity-tuned units allowed reliable categorization of the number of
items in dot displays. These findings suggest that the spontaneous
emergence of the number sense is based on mechanisms inherent
to the visual system. The workings of the visual system seem to be
sufficient to arrive at a visual sense of number. Numerosity selectivity
can emerge simply as a by-product of exposure to natural visual
stimuli, without requiring any explicit training for numerosity estima-
tion. The basic number sense may not depend on the development of
a certain specialized domain but seem to capitalize on already existing
cortical networks. This could explain why numerically naïve subjects,
such as newborns (3) and animals in the wild (26), are innately en-
dowed with numerical capabilities. Of course, this is not to say that
numerical competence, both nonsymbolic and particularly symbolic,
would not be enhanced and shaped by experience and task demands
later in life.

Beyond providing an explanation of the neuroscience of the num-
ber sense, our approach also highlights how artificial neural networks
give rise to unexpected feature selectivity that helps to understand
emergent properties of the brain. Our results show that artificial neu-
ral networks seem to extract many more higher-order features from
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natural images than previously believed. Of particular interest is the
level of abstraction and the generalization these network units display.
These aspects of neural networks can be exploited to better under-
stand their ability to generalize across different tasks.

Our approach with a biologically inspired deep neural network
lends insights into the putative cellular mechanisms that give rise to
a number sense. Unlike previous models for visual number coding
that relied on either hard-coded connection strengths (22, 23) or
training on non-naturalistic dot pattern stimuli (13), our model was
merely trained to classify natural images in a task that was unrelated to
numerosity. In addition, while previous models (13, 22) only controlled
for the most obvious non-numerical stimulus parameter, namely, the
total area of the objects, we verify the abstract nature of numerosity
coding by using an extensive set of controls that address not only the
total area of the objects to be enumerated but also their density, individ-
ual shapes, and overall convex hull.

Comparison with the neurophysiological number code
Despite these controls, a significant portion of network units in the
topmost layers of our model spontaneously developed numerosity
encoding that was virtually identical to the encoding observed in real
neurons. Just like neurons in the brains of numerically naïve animals,
about 10% of the network units exhibited numerosity selectivity (9, 10).
Moreover, and in agreement with real number neurons, the network
units were tuned to preferred numerosities, exhibited approximate
tuning that decreased in precision with increasing numbers, and
were best described on a logarithmically compressed number line.
The activity of the network’s numerosity-selective units obeyed the
Weber-Fechner law known to be followed by neurons in the human
(11), monkey (12, 21), and crow (27, 28) brain. A logarithmically
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
compressed number line has also been retraced indirectly in the hu-
man cerebral cortex using blood oxygen level–dependent activity in
human functional imaging studies (29, 30).

Previous network models of number coding postulated the exis-
tence of “summation units” that monotonically increase or decrease
responses with increasing numbers. These summation units were either
implemented as necessary precursors to tuned number detectors (22, 23)
or emerged as actual output units (13). However, summation units
were irrelevant with respect to both functions in our deep network.
Neither the output layer nor the preceding intermediate layers con-
tained a meaningful proportion of summation units. In all relevant
network layers, tuned number neurons dominated by far. To evalu-
ate whether even a small proportion of summation units might have
played meaningful role in our network’s functionality and the emer-
gence of tuned number neurons, we eliminated the responses of all
summation units before testing the model. However, the proportions
of tuned neurons, their distribution, and average tuning curves were
unaffected. We therefore conclude that summation units are not nec-
essary for the network to develop number detectors. These compu-
tational results are in agreement with findings in extensive single-cell
recordings in humans (11), monkeys (12, 20, 21, 31), and crows (27, 28),
in both numerically trained and numerically naïve animals (9, 10), in
which exclusively tuned number neurons were reported. Our network
results therefore indicate that summation units are not relevant for
the number sense.

Numerical discrimination performance
The network’s numerosity-selective units were sufficient to explain
numerical discrimination performance seen in humans and animals.
They underlay the performance of the network on a task requiring
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abstraction of absolute numerosity from the low-level features of visu-
al stimuli. The network’s performance reflected characteristics that are
well known from the psychophysical literature, such as the numerical
distance effect, the numerical size effect, and logarithmic scaling. The
network’s performance thus obeyed the Weber-Fechner law known to
exist for human and animal number discriminations (24).

We used the responses of numerosity-selective units that sponta-
neously emerged in the numerosity-naïve object recognition network
to train a small two-layer neural network to judge whether two images
contained the same number of dots. In generalization tests, viewing
novel pairs of dot images, this network matched the number of dots
with a significant accuracy of 81% correct responses (with 50% as chance
level). This accuracy was quantitatively similar to the performance of
monkeys and even humans in an analogous delayed matching-to-
numerosity task, particularly with large numerosities (24). Because
adjacent numerical values in dot displays are difficult to discriminate
for humans and monkeys due to the numerical distance effect (12, 32),
the network is not expected to reach perfect discrimination. Only with
ample training, the performance of monkeys slightly increased over
time (24), and also in agreement with this behavioral enhancement,
more andmore selective prefrontal cortex neurons represented numer-
osity (33).We therefore suspect that the accuracy of our network would
increase with an implementation of reinforcement learning that allows
the numerosity-selective units to adapt while performing the numeros-
ity matching task.

Outlook
Our network was designed to process objects shown simultaneously
on displays. Such a simultaneous assessment of the number of items
is themost common presentation format to investigate the nonsymbolic
number sense in humans (5, 6, 24, 25, 29) and animals (24, 34, 35), and
our deepnetwork spontaneously derived the number of items from these
multi-dot patterns. It would be interesting to knowwhether andhowour
network could be extended to also deal with quantities of items that are
presented sequentially. Sequential enumeration requires an assessment
of number across time, rather than across space as for dot displays, and
the neuronal mechanisms between these two processes differ (36, 37).
True counting is a sequential process. Children arrive at this symbolic
counting stage once they understand numeral lists based on the suc-
cessor principle, i.e., the idea that each number is generated by adding
one to its predecessor (38, 39). How this key concept paves the way
toward exact symbolic numbers represented in the brain is currently
unknown and needs to be explored in further experimental and com-
putational studies.
MATERIALS AND METHODS
Neural network model
We used an HCNN (18) that consisted of a feedforward hierarchy
of layers, in which visual input was received by network units in the
first layer and propagated through multiple layers along the hierarchy.
The architecture of the model is shown in Fig. 1A and detailed in
Table 1. Two main types of layers were used in the model: convolu-
tional layers and pooling layers. In total, our network comprised
13 layers: 8 convolutional layers and 5 pooling layers. Network units
in a convolutional layer computed a weighted sum of their inputs,
normalized it to a standard range, and passed it through a nonlinear
activation function. Network units in pooling layers aggregated re-
sponses by computing an average or a maximum over local non-
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
overlapping patches in their input. This process provided a degree
of translational invariance and reduced the spatial size of the input.
Network units in each layer were organized topographically into
multiple feature maps, and network units in each feature map detected
the presence of a certain visual feature at all possible locations in the
input. Units in the same feature map shared weights. Therefore, each
feature map can be seen as collectively computing a convolution be-
tween its inputs and a weight kernel. The weight kernels were adapted
for a specific task by optimizing an objective function that measured
the performance of the model on that task. The network architecture
and hyperparameters (i.e., number of layers, number of kernels in each
layer, and kernel sizes) were chosen to provide a reasonable accuracy
on the object recognition task while remaining similar to the networks
used as models for V4 and IT (16, 17) and to ensure that neurons in
the final layer of the feature extraction stage have receptive fields that
cover the entire input image. However, the findings reported in this
work were not sensitive to the exact choice of hyperparameters.

We trained the HCNNmodel to classify color images into objects.
The network can be conceptually divided into two parts: a feature ex-
traction network and a classification network (Fig. 1A). The input to the
feature extraction network was a color image of size 224 × 224 pixels.
The feature extraction network consisted of convolutional and max-
pooling layers. Inputs to a convolutional layer were padded with zeros
along the edges so that its input and output had the same size. The ac-
tivation function used in convolutional layers was the rectified linear
function f(x) = max(x, 0). Before applying the activation function, the
outputs of the convolution operation were normalized to have zero
mean and unit SD [batch normalization; (40)]. In a convolutional layer,
network units that received the same input (i.e., network units at
the same spatial location in different feature maps) inhibited each
other using the local response normalization function introduced
by Krizhevsky et al. (14)

bix;y ¼ aix;y

,
kþ a ∑

minðN�1;iþn=2Þ

maxð0;i�n=2Þ
ða jx;yÞ2

0
@

1
A

where aix;y is the unnormalized response for the network unit at lo-
cation x, y in the ith feature map, N is the total number of feature
maps in the layer, bix;y is the normalized response, and the rest of
the variables are constants set to the values k = 2, a = 10−4, b = 0.75,
and n = 15, which were based on the values used in (14). This normal-
ized the activity of each network unit by dividing by a measure of the
total activity of n network units at the same spatial location in adjacent
feature maps. Normalizing the local responses enforced competition
among these network units, thereby mimicking the effects of lateral in-
hibition. Max-pooling layers aggregated responses in nonoverlapping
regions of 2 × 2 network units. The classification network consisted
of a global average pooling layer (41) that computed the average re-
sponse over all spatial locations in each of the final feature maps
produced by the feature extraction network and an output layer that
performed the classification and contained 1000 network units, one
network unit per object category. The response of each network unit
in this layer represented the probability that the corresponding object
category was present in the image. To ensure that the responses in the
final layer represented a valid probability distribution, the Softmax ac-

tivation function f ðxiÞ ¼ exi
∑je

xj was applied, where xi is the response

of the ith network unit in the layer. The weights of the model were
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initialized randomly [Xavier initialization; (42)] and then optimized
by minimizing the cross-entropy between the predicted object
category probabilities and the ground-truth labels. The minimiza-
tion was performed using mini-batch gradient descent (43) with a
batch size of 256 images, a learning rate of 0.1, and a momentum
of 0.9. The model was trained for 10 epochs (complete presentations
of the training data). The model was implemented in Python using the
PyTorch framework (44). Training was performed on twoNVIDIAK80
graphics processing units.

Stimulus datasets
The neural network model was trained to perform object classification
on the ILSVRC2012 ImageNet dataset (45), which contains around
1.2 million images. Each image was labeled with the category of the
most prominent object depicted in the image. The dataset contains
images of objects belonging to 1000 categories. The object classifica-
tion accuracy of the model was evaluated on 50,000 images that were
not seen by the model during training.

To examine its response to different numbers of items (i.e., numer-
osities), the network was presented with randomly generated images
containing n = 1, 2, 4, 6, …30 dots. The network was tested under
three different stimulus sets: a standard set and two control sets that
controlled for non-numerical visual stimulus cues. In the standard
condition, all the dots had about the same radius (standard set, r =
7 ± 0.7D pixels, where D was randomly drawn for a standard normal
distribution separately for each dot). In the first control condition
(control set 1), the total area of the dots and the average distance
between pairs of dots were kept constant at 1200 pixels and 90 to
100 pixels, respectively. In the second control condition (control set 2),
the convex hull of the dots was the same (a pentagon of constant cir-
cumference) regardless of numerosity (for numerosities larger than 4),
and the shapes of the individual dots varied (possible shapes: circle,
rectangle, ellipse, and triangle). The network’s responses were evaluated
over n = 336 different images with an equal number of images (n = 7)
for each numerosity and stimulus set combination. The sample sizes of
total images and images of the same numerosity were adjusted to those
applied in electrophysiological monkey experiments (20). For the nu-
merosity matching task, the matching model was trained on a similarly
generated but larger dataset of 4800 images and tested on a separate
dataset of the same size.

Analysis of network units
After being trained for object classification, the network was presented
with images depicting different numbers of items (numerosities 1, 2, 4,
6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30), and the units’ re-
sponses in the final layer of the feature extraction network (see Table 1)
were analyzed. Analogous to the approach used to detect numerosity-
selective neurons in monkeys and humans (11, 20, 31), a two-way
ANOVA with numerosity (16 numerosities) and stimulus sets (three
numerosity sets: one standard and two control) as factors was applied
to find network units that exhibited a significant effect for numerosity
(P < 0.01), but no significant effect for stimulus set or interaction.
These network units with a main effect for numerosity, but no main
effect for stimulus set or any interaction, were labeled as “numerosity-
selective network units.” Tuning curves for selective network units
were calculated by averaging the responses of each unit for all presen-
tations of the same numerosity. For each network unit, the numerosity
that induced the largest average response was defined as the preferred
numerosity. To summarize the responses of the numerosity-selective
Nasr et al., Sci. Adv. 2019;5 : eaav7903 8 May 2019
network units, tuning curves for neurons that had the same preferred
numerosity were pooled by averaging and normalized to the 0 to 1 range.
Gaussian functions were fit to the pooled network tuning curves plotted
on four different scales: f(x) = x, f(x) = x0.5, f(x) = x0.33, and f(x) = log2(x).
Given the symmetry of the Gaussian function, the scale on which it
best fits the tuning curves is expected to be the one that best describes
the data (21). The SD of the Gaussian fits was taken as a measure of
the width of the tuning curves.

Summation (ormonotonic) units were defined as those numerosity-
selective units that had a preferred numerosity of 1 or 30 and whose
tuning curves could be fit with a straight line with a coefficient of de-
termination larger than 0.5. To test the performance relevance of sum-
mation units, summation units were eliminated by setting their
responses to zero; the model was then tested again with all analyses
as described before.

Numerosity matching task for the network
To test the relevance of the numerosity-selective network units on the
network’s performance, a simple model was trained to use their activity
to solve a numerosity matching task. In each trial, the network was
presented with two images of dot patterns, a sample image and a test
image, and the responses of the numerosity-selective network units to
each imagewere recorded. Thematchingmodelwas trained to use these
responses to discriminate between trials showing matching numeros-
ities as opposed to nonmatching numerosities. Similar to the approach
used by (20) for monkey experiments, the sample numerosities covered
the entire 1 to 30 range, and the test numerosities were randomly cho-
sen to be 0.4, 0.7, 1, 1.3, or 1.6 times the sample numerosity.

The matching model consisted of a small feedforward neural
network with an output layer that contains two network units (indi-
cating either a numerosity match or nonmatch) and an intermediate
layer that contained 16 network units. The output layer used the Softmax
activation function, while the intermediate layer used the rectified
linear activation function. The model was trained in a manner similar
to the original network. The dropout procedure (46) was used in the
input layer to prevent overfitting (75% of input units were randomly
silenced each training iteration). Themodel was tested on new images,
and the matching accuracy was computed. Then, we averaged the re-
sponses of each network unit toward the sample numerosities across
correct trials and normalized each network unit’s responses to have a
maximum of 1. We created a population tuning curve by centering
each network unit on its preferred numerosity such that the responses
to the other numerosities could be expressed as the numerical distance
from its preferred numerosity. Using the same preferred numerosity
for each network unit, we also computed this curve whenever the
network erroneously classified numerosity, i.e., during error trials.
Performance tuning curves were constructed by computing, for each
possible pair of sample and test numerosities, the percentage of trials
in which the network judged the two numerosities to be the same. Sim-
ilar to the tuning curves of real neurons (21), Gaussian functionswere fit
to the behavioral tuning curves plotted on four different scales, and the
SD of the Gaussian functions was taken as ameasure of the width of the
network’s performance tuning curves.
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