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Quantitative features of stimuli may be ordered along a magnitude continuum, or line.

Magnitude refers to parameters of different types of stimulus properties. For instance,

the frequency of a sound relates to sensory and continuous stimulus properties, whereas

the number of items in a set is an abstract and discrete property. In addition, within

a stimulus property, magnitudes need to be processed not only in one modality, but

across multiple modalities. In the sensory domain, for example, magnitude applies to

both to the frequency of auditory sounds and tactile vibrations. Similarly, both the number

of visual items and acoustic events constitute numerical quantity, or numerosity. To

support goal-directed behavior and executive functions across time, magnitudes need

to be held in working memory, the ability to briefly retain and manipulate information in

mind. How different types of magnitudes across multiple modalities are represented in

working memory by single neurons has only recently been explored in primates. These

studies show that neurons in the frontal lobe can encode the same magnitude type

across sensory modalities. However, while multimodal sensory magnitude in relative

comparison tasks is represented by monotonically increasing or decreasing response

functions (“summation code”), multimodal numerical quantity in absolute matching tasks

is encoded by neurons tuned to preferred numerosities (“labeled-line code”). These

findings indicate that most likely there is not a single type of cross-modal working-

memory code for magnitudes, but rather a flexible code that depends on the stimulus

dimension as well as on the task requirements.
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MULTISENSORY INNERVATION OF THE LATERAL PFC AND
PREMOTOR AREA PRE-SMA

Brain areas supporting multimodal cognitive control functions first and foremost need input from
all senses. The granular frontal lobe of the lateral prefrontal cortex (PFC) operating at the apex
of the cortical perception-action hierarchy (Fuster, 2000; Miller and Cohen, 2001), receives a
widespread array of converging visual and auditory afferents via two anatomically and functionally
largely segregated cortical streams: a ventral and a dorsal stream (Mishkin et al., 1983; Kravitz et al.,
2011), or “perception-action” pathways, respectively (Goodale and Milner, 1992).

In the visual system, the ventral occipito-temporal processing stream (via V4 and IT cortex)
mediates representation of visual objects, whereas the dorsal, occipito-parietal stream (viaMT/MST
to the inferior parietal lobule) conveys motion information and the spatial locations of objects
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(Mishkin et al., 1983). In agreement with the strong visual
input, the majority of PFC neurons readily show responses to
sensory parameters of visual stimuli, such as color (Fuster et al.,
2000), spatial location (Goldman-Rakic, 1995), motion direction
(Zaksas and Pasternak, 2006), faces (O’Scalaidhe et al., 1997), or
learned categories (Freedman et al., 2001).

Auditory information reaches the lateral PFC via the antero-
ventral stream and the postero-dorsal stream (Rauschecker
and Scott, 2009). The antero-ventral stream contains a direct
projection from the anterior auditory cortex regions to the
PFC (Romanski et al., 1999), and an indirect projection to
the lateral and medial PFC via temporal association cortices
(Medalla and Barbas, 2014). This stream shows a preference
for the coding of auditory identity. The postero-dorsal stream
shows a direct projection from the posterior auditory cortex
regions to the PFC, and an indirect connection via the posterior
parietal association cortex (Lewis and Van Essen, 2000), which in
turn is connected with the PFC. This stream primarily encodes
auditory space. Converging auditory input in the ventro-lateral
PFC (vlPFC) gives rise to neurons that respond to the spatial
and nonspatial attributes of complex auditory stimuli (Cohen
et al., 2004), and represent complex acoustic stimuli such as
species-specific vocalizations (Romanski and Goldman-Rakic,
2002; Averbeck and Romanski, 2006; Hage and Nieder, 2015) and
sound categories (Russ et al., 2007; Lee et al., 2009).

In the somatosensory system, connections exist between the
PFC with somatosensory cortical areas (Barbas and Mesulam,
1985), most notably SII (Carmichael and Price, 1995; Cipolloni
and Pandya, 1999). This explains why responses to the vibration
frequency of tactile stimuli are present in PFC (Romo et al., 1999;
Romo and Salinas, 2003).

Directly connected to the PFC is the pre-supplementarymotor
area (pre-SMA) in the medial frontal lobe (Wang et al., 2005), a
highly integrative brain area that plays a major role in cognition
(Tanji, 2001; Hernández et al., 2002). Processedmultimodal input
reaches the pre-SMA via major connections from the granular
PFC, as well as parts of the multimodal posterior parietal lobe
(Mendoza and Merchant, 2014). As an agranular frontal lobe
region, the pre-SMA is typically regarded as “premotor” area.
However, unlike classical premotor areas of the frontal lobe, the
pre-SMA does not have direct connections with the primary
motor cortex (M1) and therefore is sometimes not considered
a proper premotor area (Dum and Strick, 2002), but a higher-
order area operating at a level between PFC and premotor areas
(Mendoza and Merchant, 2014).

UNIMODAL WORKING MEMORY IN PFC
AND PRE-SMA

Working memory, the ability to briefly retain and process stimuli
according to task demands, is a cardinal function of the PFC.
Persistent (or sustained) activity during the memory period of
a delayed response task is a well known physiological correlate
of working memory and particularly prominent and lasting in
the PFC (Fuster and Alexander, 1971; Kubota and Niki, 1971;
Goldman-Rakic, 1995) and the pre-SMA (Hernández et al., 2002;

de Lafuente and Romo, 2006; Vallentin et al., 2012; Merten and
Nieder, 2013; Eiselt and Nieder, 2016; Vergara et al., 2016). Delay
activity in response to the memorization of individual sensory
cues has been reported frequently for visual stimuli (Funahashi
et al., 1989; Miller et al., 1996; Rainer et al., 1999; Rainer and
Miller, 2000; Freedman et al., 2001; Merten and Nieder, 2012;
Sarma et al., 2016) and during acoustic mnemonic processing
(Bodner et al., 1996; Plakke et al., 2013; Plakke and Romanski,
2014). Temporally inactivating the ventrolateral PFC (vlPFC)
resulted in behavioral impairment in an auditory mismatch
task (Plakke et al., 2015), providing direct evidence for the
vlPFC’s involvement in auditory working memory. Romo et al.
championed the investigation of the neural correlates of tactile
working memory (Romo et al., 1999; Romo and Salinas, 2003; de
Lafuente and Romo, 2006). These authors have reported that the
activity of frontal lobe neurons in a working memory period is
correlated with the vibration frequency of the tactile stimulus.

NEURAL CORRELATES OF
MULTISENSORY WORKING MEMORY IN
PFC AND PRE-SMA

To process stimuli that belong together, sensory information
from individual objects or associated stimuli need to be
integrated across modality and time. Since the largely segregated
sensory pathways converge in the PFC and pre-SMA, they allow
for single neurons to represent a multisensory representation.
Indeed, PFC cells encoding working memory of cross-modal
(audio-visual) associations have been found in monkeys trained
to make associations between high/low frequency tones and
red/green colors in a delayed association task (Fuster et al.,
2000). Moreover, vlPFC neurons have been shown to respond
duringmemorization of combinations of particular monkey face-
voice combinations (Sugihara et al., 2006; Diehl and Romanski,
2014; Hwang and Romanski, 2015), with temporally inactivating
the vlPFC through cooling resulting in a significant behavioral
impairment (Plakke et al., 2015). Recently, Vergara et al. (2016)
demonstrated correlates of multisensory workingmemory also in
the pre-SMA.

NEURONS SIGNALING MAGNITUDES
CROSSMODALLY

Depite the general finding that frontal lobe neurons have
multimodal working memory properties, it remained an open
question if neurons would code parametric variations of
magnitude information across sensory modalities in working
memory. More importantly, different types of neuronal codes
may emerge based on whether relative or absolute magnitudes
are to be processes (Romo and Salinas, 2003; Mendez et al., 2011;
Nieder, 2016). Two recent studies combining psychophysics
and electrophysiology in behaving rhesus monkey now provide
insights about the cross-modal and cross-temporal code for
relative and absolute magnitudes. While one study deals with
relative sensory magnitude, i.e., the coding of vibrotactile
frequencies (Vergara et al., 2016), the other investigates the
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representation of absolute numerical quantity, i.e., the number of
events in a set (Nieder, 2012). Results show that neurons encode
the same magnitudes based on input signals originating from
different sensory cortices, but they also highlight discrepancies
in the code for magnitudes.

Vergara et al. (2016) examined how frontal lobe neurons
maintain the frequency of tactile and acoustic stimuli in working
memory by using a delayed discrimination task (Figure 1A).
Monkeys were trained to compare the stimulus frequency across
tactile and auditorymodalities. In the standard task layout (Romo
and Salinas, 2003), a sample stimulus vibrating at frequencies
between 8 and 32 Hz was presented to the monkey’s fingertip.
The monkey had to remember the sample frequency during the
following delay and judge whether a second test stimulus was
higher or lower in frequency than the first. In another fraction of
the trials, the monkey performed this task with acoustic-flutter
sample stimuli. Here, sound pulses separated by silence were
played, and the monkey had to judge the frequency of those
acoustic flutter stimuli (Lemus et al., 2010). For instance, five
sound pulses per 500 ms equaled an acoustic flutter frequency
of 10 Hz. In the crucial cross-modal stimulus trials, the monkeys
had to compare the frequency of a vibrotactile stimulus with the
frequency of an acoustic flutter stimulus over a delay, and vice
versa.

Next, the authors recorded from the pre-SMA. As described
previously for PFC neurons (Romo et al., 1999), many pre-SMA
neurons monotonically increased or decreased their firing rate
during the delay period as a function of the vibrotactile sample
stimulus frequency that had to be remembered (Figure 1B)
(Hernández et al., 2002). In addition, however, the same neurons
that encoded the frequency of tactile stimuli were also sensitive
to the frequency of the acoustic flutter stimuli. Such bimodal

neurons comprised almost 50% of task-selective pre-SMA
neurons. More importantly, the response patterns of almost 50%
of these neurons were congruent across modalities: bimodal
neurons had similar positively or negatively monotonically
increasing or decreasing responses as a function of the frequency
of both the vibrotactile and acoustic stimuli (Figure 1C). As
an indication that the responses of these neurons matter
for the monkeys’ behavior, the response strength was found
to be significantly decreased whenever the monkeys made
discrimination errors. This type of “summation code” seems to
be the neuronal code of working memory for cross-modal flutter
frequency during the higher-vs.-lower frequency discrimination
task (Romo et al., 1999).

While the frequency of a stimulus is a sensory and continuous
stimulus property, the number of items in a set (numerosity)
is an abstract and discrete feature (Merten and Nieder, 2009)
that needs to be encoded independent of sensory modality
(“supramodal”). Three light flashes or three calls are both
instances of “three.” To address the cross-modal working
memory code for numerosities, monkeys were trained on a cross-
modal delayed match-to-numerosity task (Figure 2A). They had
to match both the number of visual dots and auditory sounds
to the number of items in dot arrays within the same session
(Nieder, 2012).

The monkeys were first trained with visual numerosities.
One to four single dots appearing one-by-one in the
sample phase were shown to the monkey while carefully
controlling for temporal task factors (Nieder et al., 2006).
The monkeys had to memorize the sequential number
of dots during the delay period and respond if the same
numerosity was displayed in the test period. Eventually, the
sequential dots in the sample phase were replaced by sound

FIGURE 1 | Cross-modal representation of flutter frequency in pre-SMA. (A) Delayed flutter discrimination task. The monkey is required to compare the

frequency of two stimuli (first sample, then test) presented sequentially over a delay period between them. In the cross-modal condition, vibrotactile (top) or auditory

flutter sample frequencies (bottom) are compared to auditory flutter or vibrotactile frequencies (respectively). (B) Time course of a PFC neuron responding

monotonically to vibrotactile flutter frequencies during the sample and delay periods. Colors correspond to frequencies (Permission has been obtained from the

copyright holder for the reproduction of this image from Romo and Salinas, 2003). (C) Monotonically increasing (neuron #1) and decreasing (neuron #2) response

functions during the memory delay of two pre-SMA example neurons to both vibrotactile (blue) and auditory flutter frequencies (red). (from Vergara et al., 2016).
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FIGURE 2 | Cross-modal representation of numerosity in PFC. (A) Delayed match-to-numerosity task. In the sample phase, the monkey had to enumerate

either visual items (top) or sound pulses (bottom), and memorize the numerosity in a delay period. After the delay, the monkey had to respond if the test dot array

showed the same numerosity, and withhold response if it did not (probability 50%). In the visual trial condition, one to four dots were presented in the sample phase. In

the auditory condition, one to four sound pulses were played. (B) Example PFC neuron (tested with visual numerosities 1 to 30) that was tuned to numerosity 6 both

during sample presentation (gray) and memory delay (pink). Left: Spike density functions (only a selection of numbers shown for clarity). Colors correspond to specific

tested numbers. Right: Tuning functions of this neuron during the sample (bottom) and delay period (top). (from Nieder, 2016) (C) Average normalized numerosity

tuning functions of supramodal PFC neurons in the delay period. (from Nieder, 2012).

pulses in half of the trials. Crucially, the monkey was now
performing a cross-modal, cross-temporal numerosity matching
task.

Neurons in the PFC are known to respond to the number
of visual items (Nieder et al., 2002; Jacob and Nieder, 2014;
Ramirez-Cardenas et al., 2016). Such numerosity-selective
neurons are tuned to numerical quantity and respond with
maximum discharge rates to one of the shown numerosities
(the neuron’s preferred numerosity) while showing progressively
decreasing activity for more remote numerosities (Nieder and
Merten, 2007; Figure 2B). During presentation of both visual
and auditory items, individual numerosity-selective neurons in
PFC were tuned to the same preferred numerosity irrespective
of the modality used, i.e., supramodally. For instance, a
neuron tuned to “three” responded most strongly whenever
three dots or three sound in a sequence were presented.
Interestingly, supramodal tuning to each of the four tested
numerosities was only present in the PFC, but not yet in VIP
(Nieder, 2012).

As a correlate of working memory for numerosity, many
neurons were also responded to the number of items during
the delay period (Nieder, 2016). Crucially, a proportion (13%)
of all recorded PFC neurons was tuned to numerosity during
the delay for both the visual and auditory items (Figure 2C).
Whenever the monkeys made errors in judging the numerosity,
the activity of the neurons to their respective preferred
numerosities was significantly reduced during the delay. This
suggests that the “labeled-line” delay activity of supramodal

numerosity-selective cells was directly related to the monkeys’
performance.

DIFFERENT MAGNITUDE CODES

While crossmodal working memory for sensory and abstract
magnitudes is represented by persistent delay activity of frontal
lobe neurons, the codes surprisingly seem to differ. The purely
monotonic response profiles characteristic for summation units
that encode spectral magnitude (Vergara et al., 2016) contrast
with the labeled-line code found in numerical magnitude
detectors (Nieder, 2012). What factors could account for this
discrepancy?

Training effects are unlikely to have caused the observed
differences because the monkeys were highly trained in
both the crossmodal frequency and numerosity discrimination
tasks. Moreover, training does not induce a labeled-line code
because tuned numerosity-selective neurons are even found in
numerically-naive monkeys (Viswanathan and Nieder, 2013).
Training for numerosity discrimination does increase selectivity
in the PFC, but it does not change the code (Viswanathan and
Nieder, 2015). Differences in the recording sites (pre-SMA vs.
PFC) are also unlikely factors, given that monotonic coding of
vibrotactile frequency and numerosity tuning have both been
reported in the vlPFC (Romo et al., 1999; Nieder et al., 2002).

The differences in the empirical properties of the magnitudes
may play a role. The number of items in a set is a discrete
and highly abstract category devoid of sensory particularities
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(Nieder, 2016), whereas flutter frequency is a continuous
and fundamentally sensory attribute of tactile and auditory
stimuli (Romo et al., 1999). However, inconsistent with this
interpretation is the finding that PFC neurons are also tuned to
the visual spatial frequency in monkeys performing a delayed
match-to-sample task (Eiselt and Nieder, 2016).

The most likely factor causing the diverging codes might
therefore be the different types of neuronal magnitude
representations imposed by the specific task requirements.
In the flutter frequency discrimination tasks, magnitude is
encoded as a relative value in relation to a reference stimulus,
i.e., higher or lower than the sample frequency (Vergara et al.,
2016). This relational representation might favor a summation
code. This code for relative vibrotactile discrimination has been
shown to rely on spike rate or a “count code” that may allow an
observer to simply judge whether there are more accumulated
pulses in one stimulus period than there are in the other (Luna
et al., 2005).

In the numerosity studies, however, monkeys are required
to encode the number of items as absolute values at a precise
position on a magnitude scale, i.e., exactly 3, not more or less.
Such a categorical representation favors tuned neurons, not only
in the mammalian neocortex, but even in the independently
and distinctly evolved avian endbrain (Ditz and Nieder, 2015,
2016). Interestingly, also tuning to absolute time intervals,
another type of supramodal magnitude, was observed in pre-
SMA neurons. Merchant et al. (2013) reported interval-tuned
neurons that showed similar preferred intervals across modality
in monkeys that performed rhythmic button pushes with variable
interval durations. Such a categorical representation might favor
tuned neurons, possibly by transforming a monotonous code
to a labeled-line code (Verguts and Fias, 2004; Salinas, 2006).
Support for this hypothesis also comes from network simulations
that propose that a comparison task (larger than/smaller than)
may favor summation units, whereas the match-to-sample task
(same/different) may give rise to a labeled-line code (Verguts,
2007).

This assumption put forward predicts that tuned neurons
would be observed in monkeys trained to judge the absolute
vibrotactile frequencies in a match-to-sample task (Eiselt and
Nieder, 2016). Conversely, it monkeys were to be trained on a

relative numerical judgment task to indicate whether one display
contains more or less items than the other, a summation code
would be expected. These different codes may even alternate in
individual neurons, or activate different neuronal populations,
in monkeys trained to switch between an absolute magnitude
match-to-sample task and a relative magnitude comparison task.

Neurons that are tuned to abstract magnitude categories
might provide a computational advantage during learning of
magnitude symbols in humans: they could easily be linked
to arbitrary signs, such as visual shapes or auditory sounds.
This is a prerequisite to establish symbolic representations of
numbers through association of numerical values with numerals
and number words. Indeed, neurons in the PFC of monkeys
that were trained to associate the number of dots with visual
shapes (for example, ••• with 3) responded equally well to the
cardinal values in both displays (Diester and Nieder, 2007). Since

the visual shapes of numerals show no systematic resemblance
that can be ordered along a scale, the mapping of numerical
values onto shapes would be hampered with a summation code.
In a labeled-line code, however, neurons are already tuned to
specific magnitudes and therefore could be easily associated with
arbitrary shapes and sounds that would turn into numerical signs
(Nieder, 2009).

Taken together, these contrasting findings indicate that most
likely there is not a single type of working-memory code for
cross-modal magnitudes. The manner in which neurons encode
cross-modal magnitude information may heavily depend on the
precise task at hand as well as on the stimulus dimension. This
hypothesis has yet to be tested empirically with monkeys trained
on both a delayed discrimination task and a delayed match-to-
sample task with identical magnitude types.
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