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Cognitive control, the ability to orchestrate behavior in accord with our goals,
depends on the prefrontal cortex. These cognitive functions are heavily influ-
enced by the neuromodulator dopamine. We review here recent insights
exploring the influence of dopamine on neuronal response properties in pre-
frontal cortex (PFC) during ongoing behaviors in primates. This review suggests
three major computational roles of dopamine in cognitive control: (i) gating
sensory input, (ii) maintaining and manipulating working memory contents, and
(iii) relaying motor commands. For each of these roles, we propose a neuronal
microcircuit based on known mechanisms of action of dopamine in PFC, which
are corroborated by computational network models. This conceptual approach
accounts for the various roles of dopamine in prefrontal executive functioning.

Prefrontal Cortex, the Central Executive of the Brain
Humans and other animals can engage in flexible behaviors beyond simple stimulus–response
associations. The ability to flexibly adjust behavioral responses to produce goal-directed and
intelligent behaviors is commonly referred to as ‘cognitive control’ or executive control
functions (see Glossary). The PFC at the anterior pole of the endbrain is crucially involved
in functions that enable cognitive control, such as stimulus selection, working memory, rule
switching, decision making, and others [1]. As the central executive of the brain that operates at
the apex of the cortical hierarchy, the PFC receives highly synthesized and abstract sensory
information, processes it in the light of previous experiences and current demands, and issues
commands to motor-related output structures [2–7] (Figure 1A).

The simplified processing timecourse in the PFC can be illustrated with a ringing telephone.
The ringing sound first needs to be recognized as a relevant stimulus that we might act upon.
Against the backdrop of many sources of noise, such as other sounds, inadvertence, or a
lack of motivation, the sound needs to be ‘gated’ to allow further processing. In a second
step, we must decide what to do with the ringing sound. We ‘maintain’ the sound in working
memory and manipulate this information in the context of the situation. For example, when
the context is ‘at home’, we feel obliged to answer the telephone call. However, if the context
is ‘being guest’, we would refrain from responding. In these two conditions, different
stimulus–response associations need to be established in an instance. These conditional
associations, or rules, determine the logic of a goal-directed task to enable adaptive flexible
behavior. Once the rules of the game are clear, the final step is the selection of an
appropriate response by ‘relaying’ our decision to motor structures that issue an action,
such as picking up the telephone at home, as opposed to carrying on with our conversation
if we are guests. In summary, executive control relies on a successful sequence of gating a
behaviorally relevant stimulus, maintaining and integrating mnemonic and contextual infor-
mation during working memory, and relaying this information to premotor areas preparing a
behavioral response.
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Glossary
Dopamine: a neurotransmitter
released by the midbrain dopamine
system, a small set of midbrain
nuclei exerting widespread
neuromodulatory control over brain
function.
Executive control functions: a set
of cognitive functions enabling goal-
directed execution of behavior, such
as working memory, allocation of
attention, rule following,
categorization, and others.
Gain computation: changing the
sensitivity of a neuron by a
multiplicative factor in the firing rate
following an input.
Inhibitory interneuron: a class of
local interneurons of different
morphology and biochemistry that
inhibit other neurons by releasing the
neurotransmitter GABA.
Mesocortical dopamine pathway:
a projection pathway comprising
midbrain dopamine neurons that
project to cortical areas including the
prefrontal cortex.
Microiontophoresis: a method that
is often combined with
electrophysiology to apply small
amounts of drugs in the direct
vicinity of extracellularly recorded
neurons by applying small amounts
of current.
Neuronal attractor network: a
complex dynamical system of
neurons connected via synaptic
currents that show several stable, or
attractor, states. Typical neuronal
attractor network models show two
attractor states: a spontaneous, low-
firing state and an induced, high-
firing state, for example during
working memory.
Neuropil: dense network of
interwoven axons, dendrites, glia cell
processes, and a relatively low
number of cell bodies.
Oculomotor delayed response
(ODR) task: a classic behavioral
task to probe spatial working
memory, in which monkeys must
remember the spatial location of a
visual cue during a memory delay
period.
Pyramidal cell: principal excitatory
projection neuronal type in the
cerebral cortex.
Reward prediction error: the
difference between received and
predicted reward, a major
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Figure 1. Dopamine Modulation of Executive Control in Prefrontal Cortex (PFC). (A) PFC (red) receives input
from all higher sensory areas as well as from subcortical areas (orange), including neuromodulatory input from the
dopaminergic midbrain (green; top), and projects to several cortical and subcortical areas (purple; bottom) [1]. Black
lines indicate the approximate location of coronal sections in Figure 2A. (B) Conceptual framework for executive
functions in PFC. Behaviorally relevant sensory information and contextual information (orange) are gated in PFC (red
box), activating PFC neuron populations (circles) which maintain relevant information in working memory and relay
choice signals to downstream target areas preparing motor commands (purple). This model conceptualizes how
different context cues can bias the selection of stimulus–response associations towards a goal [8,9]. We review how
prefrontal dopamine (green) enables successful execution of all three computations. Abbreviations: as, arcuate
sulcus; ps, principal sulcus.
The working of the PFC has been conceptualized in an influential neuronal framework [8,9]. In
this framework (Figure 1B), distinct populations of PFC neurons represent the sensation and
memorization of sensory stimuli. This information is processed according to different contexts
as represented by populations of PFC neurons that encode rules or other goal-relevant
information. Because rule-coding neurons are connected to sensory and working-memory
neurons, both populations together can bias the selection of a particular action towards a goal
by activating appropriate motor responses. In simplified terms, the timecourse of processing in
the PFC can be grasped along a threefold processing trajectory: sensory input, memorization
and manipulation, and motor output.

Dopamine in the PFC
Processing in the PFC, however, is by no means self-contained. If and how information is
passed on from one functional group of PFC neurons to the next is under the crucial influence of
the neuromodulatory messenger substance dopamine. The neuromodulator dopamine is
synthesized by dedicated neurons in the midbrain that send their axons to many brain regions
including the PFC [10,11]. When these neurons fire, dopamine is broadly released (from
varicosities and terminal endings) into the neural tissue to affect many PFC neurons. Thus,
in contrast to neurotransmitters that are responsible for direct synaptic transmission of
information from a presynaptic to a postsynaptic neuron, dopamine as a neuromodulator
enhances or suppresses this synaptic transmission indirectly by influencing synaptic informa-
tion transmission.
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component of reinforcement learning
theory.
Rule: conditional associations that
determine the logic of a goal-
directed task.
Subtraction computation:
changing the sensitivity of a neuron
by a subtractive or additive shift in
the firing rate following an input.
Synaptic triad: a synaptic structure
in which three neurons interact
closely with each other. In prefrontal
cortex, excitatory synapses form
synaptic structures together with
dopamine neuron fiber terminals.
Dopamine is essential for cognitive control functions of the PFC. It influences processes such
as working memory [12–15], attention [16,17], and flexible behavior [18–20] that depend on
the PFC [1]. Midbrain dopamine neurons in the ventral tegmental area (VTA) and the
substantia nigra (SN) project to PFC via the mesocortical dopamine pathway
(Figure 2A), which can be separated into two parallel systems [21]: the first and evolutionarily
older system originates from VTA to innervate the anterior cingulate cortex (Brodmann area
24) and medial frontal areas (areas 14 and 32). In addition, primates developed a distinct
mesoprefrontal dopamine system originating from dorsolateral and lateral substantia nigra
(SN) to project to the evolutionarily novel and granular dorsal and lateral areas of the PFC
(areas 12/47, 9/46, and 9) [21–23].

Once released, dopamine binds to five different dopamine receptors, D1–D5, which are G
protein-coupled receptors that modulate intracellular signaling cascades rather than producing
postsynaptic currents directly [24,25]. Based on structural and pharmacological similarities,
these receptors fall into two main receptor types, the dopamine D1 receptor family (D1R) with
subtypes D1 and D5, and the dopamine D2 receptor family (D2R) with subtypes D2, D3, and D4.
D1Rs are expressed in all cortical layers in primate PFC and are about 10-fold more abundant
than D2Rs [26]. D2Rs, by contrast, have low expression rates in most layers and show highest
expression rates in layer V [26–28]. D1Rs and D2Rs are expressed in both pyramidal cells and
inhibitory interneurons [28–32]. Different functional roles of dopamine are to be expected
that depend on receptor subtype, cell type, synaptic properties, and interactions with other
transmitters [24].
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Figure 2. Mesocortical Dopamine System. (A) Mesocortical dopaminergic projections are organized along a
mediolateral axis with more lateral dopaminergic neurons (bottom; light green) projecting to lateral and dorsolateral
prefrontal cortex (PFC) (top; light green) [21]. (B) Medial dopamine neurons in the midbrain show phasic bursts following
reward-predicting cues (S1, symbolized by the ‘sun’) and suppress activity following punishment-predictive cues (S2,
indicated by ‘rain’), thus signaling a reward prediction error (top). More lateral dopaminergic neurons, however, convey a
saliency signal to PFC [33,50]. Abbreviations: ACC, anterior cingulate cortex; dl, dorsolateral; IL, infralimbic cortex; PL,
prelimbic cortex; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; vl, ventrolateral; VTA, ventral
tegmental area.
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In addition, the origin of dopamine neurons in the midbrain seems to determine dopamine
functionality. Dopamine neurons in the VTA or ventromedial SN [33] are known to signal a
reward prediction error that enables reinforcement learning (Figure 2B, top) [34–42]. The
reward prediction error is based on a combination of findings. First, dopamine neurons respond
with short, phasic bursts of activity when animals are presented with appetitive stimuli, such as
food [43–45]. Second, once the animals have learned to associate a previously irrelevant
stimulus with a reward, dopamine neurons shift their phasic activation from the time of reward
delivery to the time of presentation of this predictive cue [46]. Third, unexpected omission of
reward leads to a suppression of dopamine neurons [47,48].

In contrast to signaling reward prediction error, many dopamine neurons signal the saliency of a
stimulus. Theyare rapidly activatedby primary reinforcers that areeither rewarding orpunishing,or
salient and novel stimuli [49–52] (Figure 2B, bottom). Behaviorally relevant stimuli that need to be
remembered during working-memory tasks specifically activate the dorsolateral dopamine neu-
rons in SN, and not those located in the ventromedial part of SN [33]. Importantly, dopamine
neurons from the dorsolateral SN specifically project to the PFC [21] (Figure 2A), and can therefore
modulate PFC networks mediating executive control. Rodent studies suggest that dopamine
transients in frontal cortex do not directly mediate reinforcement learning but instead support the
recognition of behaviorally relevant stimuli [53,54] necessary for executive control.

In the current review, we capitalize on the finding that dopamine signals in the PFC vary across
time [55–57]. In fact, dopamine needs to act at different timescales to influence processing in
consecutive stages of a complex delayed response task in which different populations of PFC
neuron signal a stimulus, maintain relevant information in working memory to enable memori-
zation and manipulation, and signal a goal-directed motor preparation (Figure 3A, Key Figure).
We review how prefrontal dopamine impacts on cognitive control processes at different
timescales – from fast and temporally precise gating to maintaining relevant information over
longer timescales and invigorating actions. In the subsequent sections we discuss the mecha-
nisms and neuronal microcircuitries for (i) gating, (ii) maintaining/manipulating, and (iii) relaying
information that are under the influence of dopamine (summarized in Figure 3B–D).

Dopamine Gates Sensory Signals in PFC
Dopamine Transients Show Characteristics of a Gating Signal
The first component of successful cognitive control is representing relevant sensory stimuli from
the environment (Figure 3A). PFC neurons represent basic sensory signals and are tuned, for
instance, to motion direction, motion speed, and the luminance of visual stimuli [58–60]. In
contrast to neurons in early sensory areas that encode veridical information of the physical
stimulus features, the behavioral relevance of stimuli is reflected in PFC neuronal responses
[58,61–63]. For example, in visual detection tasks that require a monkey to make a binary
decision about the absence or presence of a stimulus, PFC neurons signal the stimulus-present
or stimulus-absent percept of the subject rather than the properties of the physical stimulus
[3,5,64,65]. The PFC seems to filter, or gate, relevant sensory information for working memory
and executive control [7,66–68], albeit by an unknown mechanism.

Salient and behaviorally relevant stimuli activate PFC-projecting dopamine neurons with phasic,
short latency responses that quickly release dopamine in PFC. This signal is ideally suited to prompt
higher-order areas for the processing of incoming sensory signals [69,70]. Recordings from
midbrain dopamine neurons during stimulus detection revealed that dopamine activity reflects
perceived stimulus intensity, rather than physical stimulus intensity, because dopamine neurons
were only active when the animals successfully detected a stimulus [70]. Remarkably, the latency of
216 Trends in Cognitive Sciences, March 2019, Vol. 23, No. 3



Key Figure

Dopamine Circuit Mechanisms in Prefrontal Executive Control
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(Figure legend continued on the bottom of the next page.)

(A) Temporal sequence of a delayed response task. (Top row) A typical decision-making task requiring cognitive
control comprises a stimulus (orange; left), a subsequent memory delay period (center), and a motor response period (go
cue, purple; right). (Middle row) The activity of different populations of prefrontal cortex (PFC) neurons represent all three
key variables in the task, such as stimulus-encoding neurons (orange), working memory-encoding neurons (red), and
neurons encoding of choice or motor command (purple). Note that encoding schemes might be mixed at the level of single
neurons. (Bottom row) Hypothetical dopamine neuron activity and dopamine release in PFC. Midbrain dopamine neurons
fire in response to salient stimuli (solid green traces), globally increasing dopamine levels in PFC. During delay periods,
dopamine levels in PFC can be prolonged or controlled by local synaptic mechanisms (dashed trace). (B) Proposed
dopamine gating circuit. Information about sensory stimuli is routed to PFC via glutamatergic afferents (orange), which form
synaptic triads with dopamine fibers (green) in cortical layer II [89]. Dopamine acts on D1Rs (green) at dendritic spines
(predominantly D1) and shafts (predominantly D5) [90]. Dopamine could gate incoming information through synaptic
modulation of glutamate transmission and control of synaptic input via dendrite-targeting, SOM interneurons (black). Gain
modulation of sensory signals might be mediated by soma-targeting, PV-interneurons (black) via D2Rs (blue). (C)
Proposed dopamine maintaining circuit. In a prevalent circuit model for working memory, pyramidal cells (likely in layer
II [189,190]) form functional clusters with strong recurrent excitatory connections (grey). Interneurons (black) receive
excitatory drive from pyramidal cells and inhibit other pyramidal cells, shaping tuning via lateral inhibition and maintaining an
excitation/inhibition balance [143,145,181]. This network exhibits two stable states: a low-firing, spontaneous state and a
high-firing, sustained activity state (cf Figure 8A–B). Dopamine controls sustained responses and enhances working-
memory stability via D1Rs, which increase recurrent excitation (NMDA receptors) and inhibitory GABA currents in
pyramidal cells (green) [142,145]. D2Rs, on the other hand, decrease GABA currents in pyramidal cells and control
interneuron excitability (blue), which also leads to an increase in sustained responses [99]. PFC networks could switch
between a D1R-dominated state, in which PFC representations are stable and form deep attractor basins (green, inset),
and a D2R-dominated state, in which PFC representations are unstable and fluctuate between attractors (blue) [152,185].
Note, it remains to be resolved if the observed enhancement of sustained activity after D2R stimulation [99] is congruent
with a role for D2R in destabilizing prefrontal representations. (D) Proposed dopamine relaying circuit. D2Rs are abundant
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dopamineneuron responses that reflected the choice of the animalmatched the latency ofneuronal
choice signals in frontal cortex, which were delayed relative to visual signals in sensory cortex [71].
This led to the suggestion that dopamine transients in PFC provide a gating signal that allows input
to become updated and stored in working memory [72–74]. In support of this hypothesis, human
functional imaging activity of midbrain dopaminergic nuclei predicted the responses of context-
dependent signals in PFC as well as the behavioral performance of subjects required to make
context-dependent decisions (Figure 4A–D) [75]. Results such as this link phasic dopamine signals
in the midbrain to PFC signals known to be involved in executive control.

Dopamine Modulates Visual Signals in Cortex
Dopamine directly modulates visual signals represented by PFC neurons. In monkeys trained to
detect faint visual stimuli, local application of dopamine in PFC altered the phasic stimulus-evoked
responses of single neurons [76]. In one group of neurons, characterized by low-latency and
phasic visual responses, dopamine reduced thebackgroundactivity of theneuronswhile retaining
visual responses. This effect increased the signal-to-noise ratio of the neurons (Figure 5). Such a
response modulation may improve the ability of cortical networks to detect sensory events [77],
causing an adaptive rescaling of its input so as to maximize information transmission [78,79]. In
agreementwith this idea, visual response latenciesofPFCneuronsare around150ms,and closely
follow the typically observed 100–150 ms latencies of phasic dopamine signals [71,80,81].
Moreover, experimental application of dopamine quickly induced changes in the signal-to-noise
ratio (within one trial, the temporal resolution of dopamine application). In addition, experimental
D1R stimulation but not D2R stimulation improved encoding of visual items shortly after their
presentation [82]. In a recent study, photostimulation of VTA neurons projecting to frontal cortex
increased the signal-to-noise ratio of phasic frontal cortex neurons responses to aversive stimuli in
mice [83]. Together, these findings suggest that dopamine directly modulates sensory input to
PFC and gates behaviorally relevant information to be stored in prefrontal networks.

Dopamine is also known to affect the sensitivity, or gain, of sensory PFC neurons. Gain
modulation in cortical networks can increase single-neuron signal detection performance
[76,77]. In a distinct group of PFC neurons that were characterized by visual responses of
long latency and duration, dopamine increased overall activity by gain computation [76,84].
Moreover, dopamine reduced the variability of neuronal responses [76]. Both effects are
reminiscent of attentional modulation [85,86]. The same group of neurons showed a greater
distinction between the absence and presence of a visual stimulus during detection, possibly
preparing goal-directed evaluation of sensory signals. These findings suggest that, even at the
stage of visual processing, dopamine operates in two modes: on the one hand, it gates short-
latency visual signals in PFC by increasing their signal-to-noise ratio; on the other, it boosts
long-latency visual signals by increasing gain and reducing their variability.

Dopamine not only influences the representation of visual signals within PFC but also in
upstream visual areas that receive top-down signal from PFC. For example, on blocking
D1Rs in the frontal eye field of monkey PFC, visual signals in V4 show higher amplitude,
reduced variability, and increased between-neuron correlation [87,88] – all characteristics of a
in layer V neurons [26] which receive cortical input from superficial layers and project to downstream target areas [163].
D2Rs potentially increase the activity of deep-layer cortical neurons that relay motor signals. It is unclear if dopamine
innervates these circuits directly or if volume transmission in the neuropil activates dopamine receptors. Abbreviations: L,
layer; PV, parvalbumin; SOM, somatostatin.
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top-down attentional signal provided by frontal cortex [85,86]. This attentional selection of
visual information in upstream visual areas in turn boosts visual input to PFC ‘tagged’ by
dopamine. Prefrontal dopamine therefore modulates both local processing of visuals signals as
well as visual signals in upstream areas.

Dopamine Physiology Allows Fast Modulation of Cortical Circuits
Dopamine modulates the sensory responses of PFC neurons via the two types of dopamine
receptor families. How could the dopamine receptor families impact on neuronal processing at
the level of neuronal microcircuits (Figure 3B)? Dopamine afferents in PFC form synaptic
triads with putative excitatory (glutamatergic) synapses in layer II of the neocortex [89] that
likely provide input from other cortical areas, including higher sensory areas [1]. D1Rs are found
on postsynaptic structures such as dendritic spines and shafts [90] that could enable fast
modulation of excitatory cortical input via D1Rs. D1Rs are known to decrease glutamate-
induced excitatory postsynaptic currents in vitro [91–93], possibly decreasing the output firing
of these neurons by a constant amount (subtraction computation), which in turn increases
the relative strength of signals arriving in PFC compared to background noise (signal-to-noise
ratio). In visual cortex, subtractive shifts of neuronal responses are mediated by somatostatin-
expressing, dendrite-targeting interneurons [94], which might provide a second mechanism by
which dopamine controls the flow of sensory input [95].

After the initial and rapid modulation by D1Rs, subsequent gain modulation of sensory signals
might be mediated by D2Rs, which show excitatory effects in vivo [96,97]. In visual cortex, gain
modulation is mediated by parvalbumin (PV)-expressing, soma-targeting interneurons [94].
D2Rs are particularly strongly expressed in PV-positive interneurons [32], and could mediate
gain modulation by increasing interneuron excitability and thereby disinhibiting pyramidal cell
firing [98]. Consistently, local activation of D2Rs in vivo increases the activity of many neurons in
PFC [82,96,97,99].

Conclusion
Together, several lines of evidence point towards a mechanism by which dopamine provides a fast,
phasic gating signal allowing sensory and contextual information to enter PFC circuits (Figure 3B).
This gating mechanism likely first involves D1Rs that increase the neuronal signal-to-noise ratio by
inhibitory mechanisms. A secondary gain computation that enhances sensory coding by excitatory
mechanisms could be mediated by D2Rs. The main argument against a gating hypothesis is the
reported slow and long-lasting dopamine levels in PFC [55]. However, provided that the onset of
phasic dopamine signals is temporally precise, as evidenced from dopamine neuron activity [71,80],
temporal precision for gating could be mediated by excitatory input [55].

Dopamine Influences the Maintenance and Manipulation of Information in
Working Memory
Dopamine Modulation of Information Maintenance in Working Memory
After relevant sensory signals have passed the initial input gate, they need to be maintained
‘online’ in brain networks (Figure 3A). As a fundamental ability for any complex behavior, the
concept of working memory encompasses the capacity to retain immediately past information,
to process this information contextually, and to use it to guide goal-directed behavior. A wealth
of behavioral studies have established that prefrontal dopamine alters working-memory per-
formance in humans and animals (e.g., [14,16,24] for review).

How do neurons maintain and manipulate information in working memory during a delay
period? It is thought that neurons use sustained activity to actively buffer and process
220 Trends in Cognitive Sciences, March 2019, Vol. 23, No. 3



information so as to bridge the temporal gap until an adaptive output response is selected
[100–103]. Such persistent activity in the absence of external input is enabled by the recurrent
connections within the active population of PFC neurons, such that excitation repeatedly re-
enters neuronal circuits via recurrent loops, thereby keeping excitation alive (Figure 3C).

In primates, the impact of dopamine on spatial working memory has primarily been studied
using the oculomotor delayed response (ODR) task (Figure 6A). In the ODR task, monkeys
are required to make a saccade to a remembered spatial location after a memory delay period.
At the behavioral level, systemically blocking D1Rs impairs spatial working memory in the ODR
task [104,105], whereas stimulating D1Rs improves working memory performance in dopa-
mine-depleted animals, but not in controls [106]. The effects of D1R activation is dose
dependent and follows an inverted-U response curve, such that sub- or supraoptimal D1R
activation is detrimental for working memory performance [14,107].

In agreement with these behavioral findings, dopamine influences the sustained activity of
spatially tuned neurons during working memory, and the dose-dependency found in behavior is
mirrored in the responses of PFC neurons. When locally stimulating D1Rs of PFC neurons
during an ODR task (using a method called microiontophoresis), the spatial tuning of the
neurons is enhanced at an optimal dose (Figure 6B,C), following an inverted-U response curve,
with little stimulation having no effect and large stimulation having detrimental effects on tuning
[108]. Blocking prefrontal D1Rs impairs spatial tuning [109], but has been also reported to
improve spatial tuning of PFC neurons [110], presumably depending on the baseline tuning
strength.
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direction (right) of the neuron. D1R stimulation (stim.) inhibited the neuron, particularly for non-preferred target locations
(bottom). Adapted, with permission, from [108].
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In monkeys required to perform a feature-based working-memory task by remembering the
numerosity of a sample stimulus [111,112], namely the number of items in a visual display, the
direction of D1R modulation during working memory depends on the cell type: in putative
excitatory pyramidal cells, blocking D1Rs improved the encoding of numerosities, whereas
stimulating D1Rs impaired it [113]. In putative inhibitory interneurons, however, the opposite
pattern was observed. In this study, the stability of working-memory representations was
tested by brief presentations of distracting, irrelevant stimuli during the delay period. This finding
demonstrates that D1Rs potentially safeguard task-relevant prefrontal representations during
working memory. Seemingly contradictory results of D1R effects in earlier studies [108–110]
could be due to the differential impact of D1Rs on different cell types in addition to differences in
dopamine baseline levels. This highlights the need to consider cortical cell types, which are
known to play distinct roles in working memory and executive control [114–116], when
assessing dopamine function in PFC.

The role of D2Rs in working memory has been less clear. At the behavioral level, D2R stimulation
influences working-memory performance in humans and monkeys by increasing or decreasing
performance [117–120]; these effects are dependent on the baseline performance of the subject
[16] and do not follow a simple inverted-U relationship [121]. Blocking D2Rs often produced no
effectson working-memoryperformance in theODRtask [105], but has also been shown to impair
working-memory performance in humans [16,122] and monkeys [119]. It is therefore puzzling that
early electrophysiological studies failed to find any effects on spatial mnemonic activity during the
delay period in ODR tasks after stimulating or blocking D2Rs in PFC [97,110].

More recently, however, a prominent enhancement of sustained activity in the working-memory
period induced by D2R stimulation was reported for PFC neurons in monkeys that performed a
feature-based working-memory task requiring them to remember and match numerical quan-
tity [99] (Figure 7A,B). These disparate findings in ODR tasks versus delayed number-matching
tasks might relate to anatomically distinct PFC neuron populations that have been described for
spatial and feature-based working memory [123], even though many single neurons represent
both spatial and visual information [124]. In addition, the delay in the ODR task might reflect
mainly motor preparation signals or allocation of spatial attention rather than maintenance of
signals in working memory [4,125,126]. This is because the monkeys know from the onset of
the sample location where they must make a saccade to in the subsequent test phase. Thus,
the ODR task might entail specific cortical subcircuits capturing spatial processing signatures,
which could be differentially modulated by dopamine receptors. Given that D2Rs did not
modulate spatial working memory sustained activity [97], spatial information or motor prepa-
ration during the delay period might not be modulated by D2Rs.

Dopamine Modulation of Rules
Simply maintaining information ‘online’ is not sufficient. To guide goal-directed decisions, the
content of working memory must be evaluated and manipulated according to behavioral
principles, or rules. In humans, D1R availability in PFC is positively correlated with flexibly
shifting between rules during a Wisconsin card-sorting test (WCST), a task probing the ability of
a subject to flexibly shift between strategies [127,128]. Blocking D2Rs impairs shifting between
response strategies in a variation of the WCST in which subjects were required to learn new
visual discriminations based on different stimulus dimensions [129]. Stimulating D2Rs improves
performance of subjects in a WCST [130], and increases functional imaging signals in frontal
cortex during rule switching [131]. These findings lead to the conclusion that the contribution of
dopamine to cognitive flexibility is mainly mediated by D2Rs [18], or by cooperative actions of
D1Rs and D2Rs with complex dose–response functions [121].
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Figure 7. Dopamine Enables Maintenance of Objects and Rules in Working Memory. (A) In a rule-switching
task, monkeys needed to remember the number of dots in visual display to successfully report if the sample numerosity
was greater or less than the number of dots in a test display. During the memory delay period, the rule in effect was signaled
by a visual cue (red ring, ‘greater than’; blue ring, ‘less than’). (B) D2R stimulation enhanced working memory of the visual
item. The grey shaded area indicates sample presentation. Interm., intermediate; Pref., preferred. (C) D1R stimulation
enhanced neuronal rule coding by slightly inhibiting background activity and boosting sustained activity. The grey shaded
area indicates rule cue presentation. (D) D2R stimulation enhanced rule representation by increasing overall activity and
decreasing relative activity to non-preferred items or rules. Adapted, with permission, from [99] and [82].
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Animal studies assessing behavioral flexibility confirm the contributions of both D1Rs and D2Rs
to behavioral flexibility. After rats learn to enter a specific arm in a maze based on either a spatial
rule (e.g., ‘turn right’) or on a visual rule (e.g., ‘select arm with visual cue’), blocking prefrontal
D1Rs impairs flexibly switching between the different response strategies or rules [19,132]. An
even stronger influence was reported by blocking prefrontal D2Rs, which leads to an impaired
performance by increasing perseverative errors, in other words rats maintain the same
response strategy and need more trials to shift their strategy [19,133]. In monkeys that learned
associations between arbitrary visual items and saccade directions separated by a delay
period, blocking D1Rs in PFC impairs the ability of the animal to learn new associations,
whereas the selection of familiar associations is not strongly affected [134]. Blocking D2Rs also
impairs learning new associations, whereas stimulating D2R promotes perseverative errors
[135]. Further, blocking either D1Rs or D2Rs reduces neural signatures of associations
encoding the upcoming response in PFC [134,135].

As a neuronal correlate of rule switching, PFC neurons are known to flexibly group information
according to overarching behavioral principles [136]. Such rule-selective neurons respond with
an increase in discharge rate whenever their preferred rule has been cued during a delay phase
[137–139]. The differential involvement of dopamine receptor families in rule switching was
recently demonstrated in a study in which dopamine receptor-targeting drugs were micro-
iontophoretically applied while recording single neurons in the PFC of behaving monkeys
[82,140]. The task of the monkey was to switch between the two quantitative rules, ‘greater
than’ and ‘less than’, while comparing the numerosity (number of dots) of two different visual
displays separated by a delay period (Figure 7A). For any given trial, the rule in effect was
signaled by a brief cue within the delay period, which allowed quantification on sustained
neuronal rule coding responses during the delay. Rule-selective neurons differentiated between
the two rules and responded to their preferred rule by firing rate increases. Both stimulation of
D1Rs and D2Rs increased neuronal rule coding, albeit by different mechanisms: D1R stimula-
tion decreased overall activity and enhanced activity to the preferred rule, thereby boosting the
signal-to-noise ratio and improving rule encoding (Figure 7C). D2R stimulation, on the other
hand, increased overall activity while relatively suppressing non-rule-related responses, thereby
also increasing the signal-to-noise ratio (Figure 7D). This modulation was observed during a 1 s
delay period, showing that both dopamine receptor families distinctly contribute to sustained
neuronal rule coding of prefrontal neurons.

In monkeys employing a spatial rule, that is switching between pro- and anti-saccades based
on a rule cue presented about 1 s before a go cue, D1R stimulation impaired sustained rule
coding during the delay period [141]. However, D2R stimulation did not have any effect on rule
coding. It is striking how these results parallel the contrasting findings for saccade-based
spatial working memory and feature-based working memory [97,99,110]. Many factors might
explain the disparate findings between studies using spatial and feature-based tasks, such as
differences in baseline dopamine levels, diverse recording locations, and varying drug amounts.
However, given the consistent findings for spatial and feature-based tasks, it seems more likely
that dopamine has a distinct impact on prefrontal circuits involved in the two tasks.

Computational Models and the Roles of D1Rs and D2Rs
How can the effects of the two dopamine receptor families in working memory be accounted for
mechanistically? Using biologically plausible computational models of neuronal attractor
networks (Box 1 and Figure 8A,B; cf Figure 3C), a model was proposed in which D1R controls
the stability of PFC representations [142,143]. In this model, D1R activation increases neuronal
sustained responses to preferred stimuli as a neuronal correlate of working memory. At the
224 Trends in Cognitive Sciences, March 2019, Vol. 23, No. 3



Box 1. Computational Models of Dopamine Action in PFC

Prefrontal working-memory processes can be implemented by biologically plausible computational models of neuronal
networks [143,145,181]. The network architecture (cf Figure 3C, 8 A,B) relies on excitatory recurrent connections
mediated by a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)
receptors. NMDA receptors have long postsynaptic currents, which allow integration of activity over longer timescales.
Inhibitory connections from g-aminobutyric acid (GABA)-ergic interneurons to pyramidal cells balance the excitatory
drive, shaping selective responses of pyramidal cells by inhibition, in agreement with electrophysiological studies
[114,182]. These attractor networks show two stable states: a spontaneous, low-activity state dominated by inhibitory
currents, and a persistent, high-activity state of subsets of pyramidal cells with strong recurrent excitatory connections
dominated by NMDA currents [145,183] – a prediction confirmed in vivo [148,184]. The persistent activity state is stable
even without external stimulation. Importantly, these networks allow investigation of the potential mechanisms of
dopamine action by changing synaptic conductances [142,145].

Dopamine mechanisms of action can be investigated by systematically changing different synaptic conductances in the
model (based on in vitro studies) and evaluating changes in spontaneous or sustained activity (based on in vivo studies).
Using this approach, dopamine has been proposed to balance the stability and flexibility of prefrontal networks [24,149].
In this framework, PFC networks are either in a D1R-dominated state, in which an increase in recurrent excitation by
increasing excitatory NMDA currents and a decrease in spontaneous activity by increasing inhibitory GABA currents
stabilizes representations in working memory [142,144] (Figure 8C). Conversely, a D2R-dominated state with opposite
mechanisms reduces inhibition in the network, allowing spontaneous transition between high- and low-activity states,
thereby producing unstable representations and thus enabling switching between different representations. These
states might be controlled by time: dopamine could first support dynamic updating of prefrontal representations via a
D2R-dominated state, and subsequently stabilize a limited amount of representations via a D1R-dominated state,
shutting down irrelevant representations and safeguarding representations from distractors [24,149]. Note that recent
electrophysiological evidence rejects a D2R mechanism of action which is simply opposite of D1R [99], and instead
supports a mechanisms by which D2Rs increase both spontaneous and sustained activity by increasing interneuron
excitability (Figure 8D).

This dual-state theory of prefrontal dopamine function has been linked to clinical symptoms of schizophrenia, forming
the attractor hypothesis of schizophrenia [185]. In this model, excessive D2R activation produces unstable representa-
tions in PFC that lead to positive symptoms such as hallucinations and intrusion of thought [186]. Accordingly, blocking
D2Rs is the common mechanism of all antipsychotic drugs used to treat the positive symptoms of schizophrenia [187].
The attractor hypothesis of schizophrenia parallels a suggestion that the positive symptoms in schizophrenic patients
are caused by dopamine assigning aberrant salience to sensory stimuli [188]. Mechanistically, dopamine could attribute
aberrant salience to sensory or mnemonic events by gating these events to PFC or by altering the properties of PFC
networks to allow switching between representations (see main text).
same time, spontaneous activity (in the absence of a memorized item) is decreased. Both
effects increase neuronal selectivity during working memory. These effects were mediated by
two mechanisms in the model. First, the spontaneous activity of pyramidal cell was decreased
by an increase of inhibitory GABA currents. Second, sustained high-activity states were
enhanced by increasing excitatory (glutamatergic NMDA) currents (Box 1 and Figure 8C)
[144,145]. D1R-induced inhibition might be mediated by amplifying inhibitory postsynaptic
currents in pyramidal cells [146], or by weakening non-NMDA glutamatergic responses [92]. At
the same time, D1R stimulation shows a specific excitatory effect in vitro by potentiating only
NMDA-evoked responses [92,147], which boosts NMDA-dependent sustained activity [148].
This model recapitulates major findings from in vivo studies [82,99,108–110,141].

Recently, the same model architecture has been used to implement D2R modulation of
prefrontal networks [99]. By extrapolating results found during in vitro recordings in brain slices
[98,146,149], it was suggested that D2R stimulation decreases inhibitory currents in pyramidal
cells while at the same time increasing interneuron excitability, thereby maintaining an excita-
tion/inhibition balance [99] (Figure 8D). This model recapitulates major results from in vivo
studies, namely a D2R-induced increase in spontaneous activity as well as an enhancement of
rule and working-memory coding [82,99]. The model therefore provides a possible circuit
mechanism for how D2Rs modulate PFC networks underlying executive control.
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Complementary Dopamine Receptor Roles in Adapting Prefrontal Networks
Cognitive control relies on a fine balance between stability and flexibility: behaviors that are
adaptive need to be maintained by stable brain states, whereas changes in the environment or
internal states of an organism require switching between response options and their underlying
brain states to avoid maladaptive behaviors. The modulatory dopamine system is known to be
involved in dynamically regulating these computational tradeoffs [150], thereby motivating the
cognitive cost of executive control [151]. This is realized in attractor network models that
propose that dopamine balances between the two states – stability and flexibility – of prefrontal
networks [24,149] (Box 1). In a D1R-dominated state, dopamine stabilizes prefrontal repre-
sentations by increasing sustained responses during working memory [142,144]. By contrast,
a D2R-dominated state renders prefrontal representations unstable, thus enabling switching
between representations via a D2R mechanism opposite of D1R [152].

However, this dual-state model does not account for recent evidence suggesting a D2R
mechanism that is not strictly opposite of D1R (as suggested in [152]), but instead entails
distinct physiological mechanisms that also lead to enhanced sustained responses [99]. These
findings do not necessarily reject the dual-state theory because elevated firing rates during
sustained neuronal responses might be more susceptible to interference and thereby render
prefrontal attractor states less stable. Indeed D2R stimulation increases the dynamic properties
of neuronal populations in PFC and boosts the rate of change between different activity
patterns [99]. D2R-induced increase of the responsiveness of PFC neurons was apparent
at the beginning of delay periods, and promoted updating of task-relevant information, possibly
by fast and transient recruitment of inhibitory interneurons [55]. It remains to be resolved if a
biophysical model implementing proposed D2R mechanisms would capture both the dynamic
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properties of prefrontal neurons and the enhancement of sustained responses during delay
periods.

Dopamine Physiology Timescales Underlying Flexibility and Stability
Action potentials in dopamine neurons are assumed to be the principal trigger for dopamine
release at the axon terminals (more precisely, via varicosities or synapses). The phasic discharges
lead to a sudden and brief release of dopamine that is ideally suited to explain the gating
mechanism discussed in the previous section. However, during the delay, for instance between
a conditioned stimulus and reward delivery, dopamine neurons are not active [153,154]. If
dopamine neurons are silent during delays, how can the concentration of dopamine in PFC
change to influence working-memory processes seconds after perceiving a stimulus? Part of the
answer is that dopamine levels in PFC are often long-lasting, in the order of seconds and minutes
[50,55,56]. Even more important is the finding that release of dopamine is not only caused by the
dischargesofdopamine neuronsbutcan alsobe influencedby local interactionsat the presynaptic
terminal endings of dopamine neurons. Neurotransmitters acting on terminals can cause local
release of dopamine, irrespective of the activity of such dopamine neurons [155]. For example,
activation of cholinergic interneurons triggers dopamine release via the activation of nicotinic
receptors on dopamine axons [156]. It is tempting to speculate that this local mechanism acts at a
much slower timescale [43,155], and potentially at timepoints during a trial in which dopamine
neurons are not phasically activated, such as during delay periods of a task.

Moreover, differential receptor affinities and distributions could allow fast as well as long-lasting
dopamine effects in PFC [55,56]. Dopamine is broadly distributed because varicosities from
dopamine neuron fibers are found in all cortical layers [157]. In addition, many D1R and D2R
receptors are located remotely from synapses (extrasynaptically) on PFC neurons [31,158] and
become activated by dopamine diffusion in the neuropil [159]. It is therefore conceivable that a
temporally precise and D1R-mediated gating signal first entrains synaptic triads (see above).
This effect could be followed by a D2R-dominated state that activates high-affinity, extra-
synaptic D2Rs [24,160]; the latter process would allow prefrontal dynamical networks to
update working-memory content based on task demand. Finally, a D1R-dominated state
activating low-affinity extrasynaptic D1Rs could stabilize sustained prefrontal representations,
thereby safeguarding PFC activity from interference [24,113,161].

Conclusion
The evidence reviewed here points to a complementary role of D1R and D2R in cognitive control
(Figure 3C). Both receptors modulate sustained working memory and rule-related responses, albeit
by distinct mechanisms. These mechanisms entail modulation of synaptic currents, giving rise to
sustained neuronal responses as well as interneuron-to-pyramidal signaling. Dopamine thus differ-
entially modulates the different cell types and circuits required for executive control. This mechanism
is likely linkedtotheroleofdopaminerole ingating:gaincomputationsofsensorysignalsduringgating
could be a part of a D2R-driven dynamic updating system, corroborated by the similar timecourses
observed for gain computations and D2R-mediated dynamic population responses in PFC [76,99].

Dopamine Controls Cortical Premotor Signals
D2Rs Modulate Motor Signals
Once the incoming sensory information has been evaluated according to the rule of the game,
an appropriate motor plan must be generated and executed. In the telephone example used in
the introduction, this amounts to actually picking up the telephone if it is ringing at our home.
Dopamine has been found to also influence this third function in the temporal sequence of a
cognitive delay task – the relaying of motor commands to motor structures.
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In PFC, microinfusion of D1R antagonists or D2R agonist in the frontal eye field (FEF) biases the
selection of a target towards the response field of the infused FEF patch [87]. Interestingly, visual
responses in higher visual areas (V4) were affected by D1R but not D2R manipulation. This finding
corroborated a model in which D2Rs are abundant in layer V neurons [26] and project to superior
colliculus to drive biased saccadic target selection (Figure 3D) [88,162]. Because the majority of
layer V neurons are subcortical-projecting neurons, including corticotectal neurons which do not
project to cortical targets [163–165], D2R manipulation would not directly modulate cortical
signals. D1Rs, on the other hand, are prominently present in all cortical layers [26] and could
directly modulate corticocortical projections to V4.

These reports parallel findings that D2Rs modulate motor preparation signals in PFC. During
spatial working memory probed by the ODR task, D2R manipulation selectively altered
neuronal responses before and after saccade onset, while leaving sustained activity during
spatial working memory unaffected [97]. In monkeys trained to switch based on preceding rule
cues between pro- and anti-saccades towards or away from a target at random spatial
locations (Figure 9A), D2R stimulation did not influence spatial rule signals during the delay
period, but it did enhance pre- and post-saccadic activity [141]. In addition, D2R stimulation
Time from
saccade onset (s)

Time from
saccade onset (s)

0

N = 46

0.4 0 0.40.2

0.6

N
or

m
al

ize
d 

re
sp

on
se

(A)

(B)

Contra-saccades
Ipsi-saccades

Delay
Rule

Fix

Choice

0.5 s 0.1 s 0.8–1.3 s  

D2R
s�mula�on
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Outstanding Questions
Given our account of the threefold role
of dopamine in executive control –

when and how are dopamine neurons
recruited during different aspects of
executive control?

How do dopamine and dopamine
receptors modulate the activity of dif-
ferent cortical cell types during
behavior?

How do dopamine and dopamine
receptors impact on cortical subcir-
cuits subserving different aspects of
cognitive control? What is the influence
of dopamine receptors in different
behavioral tasks segregating cognitive
functions?

Can we reconcile reinforcement learn-
ing theory with theories of prefrontal
functions? Alternatively, does dopa-
mine assume distinct roles in learning
and motivation, as well as in cognitive
control?
increased the reaction times of the monkey for saccades and lever releases [82,141]. This effect
was stronger when monkeys made pro-saccades towards their contralateral field of view
(Figure 9B). These results suggest that D2R-modulated neurons participate in saccadic target
selection and motor initiation in primates by relaying premotor signals to downstream target
areas.

Conclusion
D2Rs modulate motor signals, suggesting a specific role in relaying motor commands to
downstream areas preparing behavioral responses. Interestingly, dopamine gates actions and
action sequences through projection to the striatum [166,167], an area strongly innervated by
layer V prefrontal neurons. Possible interactions between mesocortical and mesostriatal
dopamine systems are unknown.

Concluding Remarks
We have outlined how prefrontal dopamine enables successful cognitive control in three
domains. First, dopamine gates sensory input via fast modulation of excitatory glutamatergic
afferents. Second, dopamine allows updating of prefrontal representations as well as subse-
quent stabilization through complementary dopamine receptor mechanisms. Finally, dopamine
controls the flow of information to downstream target areas preparing motor commands. This
account has various implications for future studies addressing the impact of dopamine on
prefrontal circuits (see Outstanding Questions).

First, it underscores the importance for task diversification when studying the functional role of
dopamine. Because different tasks require distinct aspects of executive control, they likely
recruit different prefrontal microcircuits that are distinctly modulated by dopamine. Different
tasks would disentangle the role of dopamine in these three domains which are separable by
their timescales and task demand. For example, it remains to be determined how D2Rs enable
flexible switching between working-memory content at the level of single neurons or popu-
lations. Using working-memory tasks with distracters or tasks that require switching between
rules or contexts at precise moments while measuring neuronal activity and manipulating
dopamine receptors could directly test how D1Rs and D2Rs mediate stability and flexibility
during executive control. Furthermore, many tasks use a single or only a few motor behaviors,
such as eye movements, to record the choice of an animal. It remains thus unclear if and how
dopamine is involved in relaying different types of motor commands in prefrontal cortex. Using
tasks with diverse motor behaviors could test if prefrontal dopamine has a generalized role in
relaying motor commands that is not unique to specific motor commands such as eye
movements.

Second, understanding the role of dopamine in PFC requires knowledge about cell types,
circuit recruitment, and neuronal computations. For example, emerging evidence shows that
dopamine differentially impacts on cortical cell types involved in different aspects of executive
control. The contribution of different cell types to cognitive control, as well as the impact of
dopamine on different cell types, can be studied with emerging optical tools in primates
[38,168]. In addition, making use of rodent or corvid models of executive control and
cross-species comparisons of executive functions [169,170] could accelerate our understand-
ing of prefrontal dopamine.

Finally, it is necessary to study the midbrain dopamine signal during executive control. Although
much is known about how reward expectation and saliency drive dopaminergic neurons,
precise recruitment of dopamine neurons and dopamine release in PFC during executive
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control is largely unclear. Moreover, dopamine neurons are not uniform and show different
response profiles according to their anatomical location and projection target [171–175].
Studying the response profiles of different dopamine neurons could help to reconcile the
seemingly distinct roles of dopamine in learning, motivation, and cognitive control depending
on the target area [151,176,177,178]. For example, prefrontal neurons engaged in cognitive
control are modulated by reward size [179,180]. Understanding the likely role of dopamine in
the interaction between reward signals and cognitive control signals could help to bridge the
gap between learning and motivating cognition and action. Disentangling the diverse compu-
tational roles of dopamine in goal-directed behavior might help in understanding the vulnera-
bility of the dopamine system underlying complex psychiatric diseases.
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