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SUMMARY

Neurons in the primate parieto-frontal network repre-
sent the number of visual items in a collection, but it
is unknown whether this system encodes empty sets
as conveying null quantity. We recorded from the
ventral intraparietal area (VIP) and the prefrontal cor-
tex (PFC) of monkeys performing a matching task
including empty sets and countable numerosities
as stimuli. VIP neurons encoded empty sets predom-
inantly as a distinct category from numerosities. In
contrast, PFC neurons represented empty sets
more similarly to numerosity one than to larger nu-
merosities, exhibiting numerical distance and size ef-
fects. Moreover, prefrontal neurons represented
empty sets abstractly and irrespective of stimulus
variations. Compared to VIP, the activity of numeros-
ity neurons in PFC correlated better with the behav-
ioral outcome of empty-set trials. Our results suggest
a hierarchy in the processing from VIP to PFC, along
which empty sets are steadily detached from visual
properties and gradually positioned in a numerical
continuum. These findings elucidate how the brain
transforms the absence of countable items, nothing,
into an abstract quantitative category, zero.

INTRODUCTION

The number of elements in a set, its numerosity, is an abstract

property that can be quickly and directly assessed [1–4]. Human

mathematical abilities are thought to be, at least in part,

grounded in this sense of number [5, 6]. Several lines of evidence

suggest that this capacity is not unique to humans, but deeply

rooted in our ancestry [7, 8]. The neural system necessary to pro-

cess quantity information resides in a dedicated parieto-frontal

brain network [9–13]. Studies in nonhuman primates have iden-

tified neurons selectively tuned to the number of visual items

contained in a set in the ventral intraparietal area (VIP) of the in-

traparietal sulcus of the posterior parietal cortex and the lateral

prefrontal cortex (PFC) [14–17].

Over the past 15 years, the neuronal representation of numer-

osities in the parieto-frontal brain network has been intensively

investigated. Still, whether numerosity zero finds a place in

the neuronal number line has been barely explored, probably
Curre
because zero is a late achievement, both in history and individual

cognitive development [18, 19]. However, recent behavioral

studies have shown that young children can position empty

sets in the context of other small numerosities before they

comprehend the symbolic zero [20]. Even nonhuman primates

can recognize and assess empty sets as numerically significant

[21, 22]. In tasks involving the discrimination and ordering of

visually displayed sets of dots, rhesus monkeys spontaneously

treated empty sets as the void quantity they represent [23].

Such behavioral studies suggest that empty sets may be en-

coded in the primate parieto-frontal magnitude system as part

of the numerical continuum.

Previously, PFC neurons were shown to encode the perceived

presence or absence of a visual stimulus [24, 25]. In addition, re-

sults from one monkey suggested that VIP neurons signal the

lack of countable items in empty sets [26]. The present study

was specifically designed to explore whether single neurons

and neuronal populations in the parieto-frontal network repre-

sent empty sets as conveying a null quantitative value. If that is

the case, empty-set representations should reflect the cardinal

relationships between numbers and therefore exhibit a numeri-

cal distance effect (an improvement in discriminability of two

quantities as the numerical difference between them increases)

or a numerical size effect (a worsening in the discriminability of

two numbers as their magnitude increases) [10, 27, 28]. In addi-

tion, numerical representations are expected to be abstract (i.e.,

invariant to appearance and low-level stimulus properties) and,

when numerosity is behaviorally relevant, correlate with sub-

jects’ performance.

In the current study, we simultaneously recorded single-

neuron activity in VIP and PFC of two monkeys performing a nu-

merosity discrimination task. We describe the tuning of parietal

and prefrontal selective neurons to empty sets and test their

behavioral relevance. In addition to single-cell coding, we inves-

tigate neuronal dynamics at the population level and clarify the

respective contributions of VIP and PFC. Our results show that

prefrontal representations of empty sets better meet the criteria

of a primitive correlate of numerosity zero.
RESULTS

Behavior
Twomonkeys performed a delayedmatch-to-numerosity task to

discriminate visual numerosities from 0 (empty sets) to 4 (Fig-

ure 1A) in standard and control protocols controlling for low-level

visual features (Figure 1B) (see the Experimental Procedures for
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Figure 1. Delayed Match-to-Numerosity Task and Example Stimuli

(A) Fixating monkeys were presented with a sample numerosity ranging from

0 to 4 for 500 ms. The monkeys had to memorize the numerosity for a 1 s delay

period andmatch it to a subsequent test stimulus (either the first or the second

test stimulus was correct) by releasing a lever. For each sample numerosity, all

four possible non-match numerosities were shown.

(B) Example stimuli for the different conditions. Numerosities 0 to 4 (factor

numerosity) were shown in standard and control protocols (factor protocol) on

a circular or square background (factor shape).

(C and D) Behavioral tuning curves derived from themonkeys’ performance (C,

monkey S; D, monkey X) when different stimuli were presented as samples

(empty sets [ES] and 1–4). The functions reflect the probability that a monkey

judged displays in the test period as containing the same number of items as

the sample numerosity (indicated in various colors). The peak data point of

each colored curve indicates the correct performance in match trials for the

different sample numerosities. Data points to the left and right of the peak

reflect performance in non-match trials (i.e., when the first test numerosity was

smaller or larger than the sample). Error bars indicate the SEM.
a detailed description of stimuli). A total of 49 behavioral ses-

sions for monkey X and 54 sessions for monkey Swere analyzed.

Behavioral tuning curves (Figures 1C and 1D) show how often

animals judged test stimuli as equal in quantity to each sample

numerosity. Curve peaks depict the percentage of correct match

trials, whereas non-peak values correspond to errors in non-

match trials. As previously observed for countable numbers

[9, 14, 27], performance declined as the difference between

sample and non-match numerosities decreased (numerical dis-
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tance effect). Even though the monkeys made few mistakes in

judging empty sets, a distance effect was evidenced by errors

made by monkeys when empty sets were presented as sample

stimuli (Figures 1C and 1D, red curves). Both monkeys mistak-

enly matched empty sets to numerosity 1 more frequently than

to numerosity 2 (monkey S: 12.5% ± 1.3% versus 1.3% ±

0.4%, p < 0.001; monkey X: 4.8% ± 1.3% versus 2.0% ±

0.7%, p = 0.001; Wilcoxon signed-rank test).

In addition, the behavioral tuning curves became wider (i.e.,

less selective) with increasing sample number (numerical size

effect), an effect a non-linearly compressed number line could

account for. We explored whether behavioral performance

curves could be better described on a linear or nonlinearly com-

pressed number line. For that purpose, we fitted the behavioral

curves per session with a standard symmetric peak function

(Gaussian function) when plotted on either a linear or a logarith-

mic (log2(n + 1)) numerical scale. The goodness-of-fit (r2) values

were taken as a measure of which scaling scheme describes

better the data. For each monkey, the fittings were significantly

better on a logarithmically compressed number line (both mon-

keys: r2 = 0.98) than on a linear scale (versus r2 = 0.94 in monkey

S and r2 = 0.95 in monkey X; p < 0.001 in both subjects; Wilcoxon

signed-rank test). Thus, as predicted by the Weber-Fechner

law, skewed behavioral curves became more symmetric when

plotted on a logarithmic scale.

Neuronal Numerosity Tuning in VIP and PFC
While the monkeys performed the task, we simultaneously re-

corded 861 neurons in VIP of the intraparietal sulcus (431 from

monkey X and 430 cells from monkey S) and 476 single neurons

in the dorsolateral PFC (279 neurons from monkey X and 197

cells from monkey S) (Figure 2A). Many neurons were strongly

modulated by sample numerosity and discharged as a function

of numerical distance between the stimuli. Figure 2 shows three

example neurons from VIP (Figures 2B–2D) and PFC (Figures

2E–2G). As with countable numerosities, many neurons dis-

charged maximally to empty sets (empty sets as preferred nu-

merosity) (Figures 2B and 2E) or responded least to them

(least-preferred numerosity) (Figures 2C, 2D, 2F, and 2G).

To verify neuronal activity differences during the sample

period, we tested all neurons with a three-way ANOVA (with

main factors of number, shape, and protocol; evaluated at

p < 0.01; see the Experimental Procedures). A considerable pro-

portion of VIP neurons (19%; 163/861) and PFC neurons (39%;

185/476) were selective for main factor number and encoded

the numerosity presented to the monkeys. Table S1 shows the

proportions of cells that were selective for the different main

factors and interactions between main factors. Neurons that

only showed a significant main effect for factor number and no

significance for any other main factor or factor interactions

were identified as exclusive number-selective neurons. In

the whole population, 8% (70/861) of VIP neurons and 16%

(78/476) of PFC neurons belonged to this most conservatively

determined subpopulation. Example neurons depicted in Fig-

ures 2B–2G are exclusively number-selective neurons.

Neurons tuned to each of the sample numerosities were found

among the exclusive selective population, with empty-set-pre-

ferring neurons as the most-abundant class, both in VIP (Fig-

ure 3B) and PFC (Figure 3D). Figure S1 shows the individual



Figure 2. Recording Sites and Neuronal Responses to Numerosity

(A) Lateral view (right) of the right hemisphere of a monkey brain indicating the

topographical relationships of cortical landmarks and coronal section (left) at

the level of the dotted line in the lateral view reconstructed from a structural
tuning curves of empty-set-preferring neurons. We constructed

population tuning functions of exclusive selective neurons in

VIP (Figure 3A) and PFC (Figure 3C) by normalizing the firing

rates of individual neurons to the different sample stimuli

and then averaging according to their respective preferred

numerosity.

Next, we investigated which scaling scheme (linear of logarith-

mic) accounted better for the neuronal data. In VIP, a logarithmic

scaling did not result in better fittings of selective neurons’ tuning

functions (r2 = 0.79 for both scaling schemes; p = 0.83, Wilcoxon

signed-rank test; n = 70). In numerosity-selective PFC neurons,

however, the goodness-of-fit values were significantly higher in

a logarithmic scaling (r2 = 0.82) than in a linear scaling (r2 =

0.80) (p < 0.05, Wilcoxon signed-rank test; n = 78). This indicates

that, in agreement with the behavioral data, numerical magni-

tudes in PFC are best represented on a non-linearly compressed

scale.

VIP Neurons Discriminate Empty Sets More
Categorically than PFC Cells
The tuning curves of neurons preferring countable numerosities

in VIP (Figure 3A) and PFC (Figure 3C) showed a clear distance

effect, i.e., a progressive drop-off of activity with increasing nu-

merical distance from the preferred numerosity. However, a dis-

tance effect seemed to be absent in the average tuning curve of

parietal empty-set neurons (red curve in Figure 3A), whereas

PFC empty-set neurons exhibited a graded decline in firing rates

with increasing numerosity (Figure 3C).

To quantify the differences in the tuning to empty sets, we used

several parameters. First, we compared the responses of empty-

set neurons to numerosity 1 and 2. These numerosities elicited

similar levels of activity in VIP empty-set neurons (mean 0.32

for numerosity 1 versus 0.23 for numerosity 2; p = 0.12; n = 28;

Wilcoxon signed-rank test). In contrast, PFC empty-set neurons

responded more to numerosity 1 (mean 0.46) than to numerosity

2 (0.23) (p < 0.001; n = 24), thus coding empty sets as part of a nu-

merical continuum. Second, we linearly fitted the firing rates for

numerosity 1 to 4 and derived the slopes as a measure of firing

rate decline with numerical distance. The slopes of the fits in

VIP (mean –0.03)were not significantly different from0 (one-sam-

ple t test against 0, p = 0.07; n = 28), whereas the slopes of the fits

in PFC (mean –0.08) differed from 0 (p < 0.001; n = 24). More
MRI scan. The red region on the frontal lobe and blue region in the fundus of the

IPS mark the recording areas in PFC and VIP, respectively. ips, intraparietal

sulcus; ls, lateral sulcus; sts, superior temporal sulcus.

(B–D) Example numerosity-selective neurons in VIP. A VIP neuron showing

maximum responses to empty sets (zero) in the sample phase is shown in (B).

The example neurons in (C) and (D) exhibited maximum suppression to empty

sets. The top panel shows dot-raster histograms (each dot represents an

action potential); the bottom panel depicts averaged spike density functions

(activity averaged in a sliding 150 ms window). The first 500 ms represent the

fixation period, followed by the sample and delay periods. Colors of dot his-

togram and spike density functions correspond to the numerosity of the

sample stimulus. The inset in the spike density plot shows the neuron’s tuning

function (i.e., discharge rates as a function of the number of presented items)

during the gray-shaded sample period.

(E–G) Example numerosity-selective neurons in PFC, showing maximum

excitation (E) or strongest suppression by empty sets (F and G).

See also Table S1.
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Figure 3. Average Tuning Curves and Stim-

ulus Preference

(A and C) Population tuning curves obtained by

averaging the normalized tuning curves of VIP (A)

and PFC (C) neurons with the same preferred

stimulus. The average tuning curve of empty-set-

preferring neurons is shown in red. Error bars

indicate the SEM.

(B and D) Proportion of neurons in VIP (B) and PFC

(D) responding maximally to each of the stimulus

types.

See also Figure S1.
importantly, the slopes were more negative in PFC compared to

VIP (Mann-Whitney U test, p = 0.019). Third, we fitted the tuning

curves of empty-set neurons (linear scale) with a Gaussian and

derived the bell-curve width, sigma (s). The sigma (s) values for

VIP empty-set neurons were smaller (mean 0.86) compared to

PFC empty-set cells (0.94) (Mann-Whitney U test, p = 0.028).

Finally, an exponential function was fitted to the empty-set

tuning curves to measure the firing rate decay via the constant

tau (t). VIP empty-set neurons showed smaller tau (t) values

(mean 0.73) compared to PFC cells (mean 1.14) (Mann-Whitney

U test, p = 0.039), indicating that the firing rate decays more

steeply with number in VIP empty-set neurons. Collectively,

these results confirm that parietal neurons implement a more bi-

nary (nothing versus something) representation of the different

sample stimuli.

Behavioral Relevance of Empty-Set and
Numerosity-Selective Neurons
To investigate the behavioral relevance of exclusive numerosity-

selective neurons in either VIP or PFC, we analyzed sample ac-

tivity in error trials and compared it to responses in correct trials.

First, we explored whether the firing rate of empty-set tuned neu-

rons correlated with successful completion of the task. If the re-

sponses of these neurons to empty sets (their preferred stimulus,

i.e., eliciting maximal responses) were relevant for trial out-

comes, lower firing rates would be expected in failed empty-

set trials. Indeed, the responses of VIP (Figure 4A) and PFC (Fig-

ure 4B) empty-set neuronswere reduced in erroneous empty-set

trials (VIP: 6.33 ± 1.26 Hz versus 5.03 ± 0.10 Hz, n = 15, p < 0.05;

PFC: 13.04 ± 3.94 Hz versus 7.58 ± 2.34 Hz, p < 0.05; n = 10;

Wilcoxon signed-rank test; note that only cells with a sufficient

number of error trials were considered for analysis). This result

suggests that the activity of empty-set neurons in both VIP and

PFC is relevant for the outcome of trials in which an empty set

was presented as sample.

Does the activity of empty-set neurons also correlate with the

performance in countable numerosity trials? In correct trials,

countable numerosities were encoded with low firing rates by

empty-set neurons. If this low activity were relevant for perfor-

mance, higher firing rates to the non-preferred numerosities of

empty-set neurons might lead to errors. We compared the firing

rates of empty-set neurons to their least-preferred stimulus (a

countable numerosity) in correct and error trials. Empty-set neu-
1288 Current Biology 26, 1285–1294, May 23, 2016
rons in VIP (Figure 4A) and PFC (Figure 4B) exhibited higher firing

rates to their least-preferred numerosity in error compared to

correct trials (VIP: 2.61 ± 0.63 Hz versus 3.01 ± 0.63 Hz, for cor-

rect and error trials, p < 0.05, n = 24, Wilcoxon signed-rank test;

PFC: 6.54 ± 2.5 Hz versus 7.67 ± 2.74 Hz, for correct and error

trials, p < 0.05, n = 23, Wilcoxon signed-rank test). Thus, the

activity of empty-set neurons in both cortical areas was also

correlated with the outcome of trials in which countable numer-

osities were presented as sample.

Finally, is the activity of countable-numerosity neurons, in turn,

correlated with performance in empty-set trials? In this case, we

analyzed the error-trial activity of countable-numerosity neurons

which fired the least for empty sets in correct trials. The activity of

countable-numerosity neurons in VIP (Figure 3C) did not differ in

error and correct empty-set trials (4.51 ± 1.60 versus 4.73 ± 1.7,

p = 0.86; n = 14). In countable-numerosity PFC neurons (Fig-

ure 3D), however, the activity during the sample period increased

in erroneous empty-set trials (4.33 ± 0.80 versus 8.49 ± 2.35,

p = 0.04; n = 9; Wilcoxon signed-rank test). So, only the activity

of PFC countable-numerosity neurons during the sample period

is correlated with the outcome of empty-set trials.

Neuronal Population Dynamics in VIP and PFC
Next, we explored how VIP and PFC neuronal populations, irre-

spective of selectivity status or stimulus preference [29, 30],

encoded empty sets. We analyzed the coding capacity and dy-

namics of population responses as a whole by performing a

multidimensional state space analysis (Gaussian-process factor

analysis, GPFA) [31] on similarly sized pseudo-populations of

neurons in VIP and PFC (377 and 364 neurons, respectively).

This approach extracts trajectories from the spiking activity of

a neuronal population in individual trials. Such trajectories reflect

the instantaneous firing rate of the respective neuronal popula-

tion as they evolve over time. Figures 5A and 5B depict average

population trajectories for the different sample stimuli in a space

defined by the top-three most-meaningful dimensions.

To evaluate the population numerical tuning, we measured

Euclidian distances between trial trajectories corresponding to

different samples. In VIP, parietal population dynamics did not

exhibit a distance effect for empty sets (Figure 5C). The inter-tra-

jectory distancesbetweenempty sets anddifferent countable nu-

merosities (0–1, 0–2, 0–3,and0–4)werecomparable for all numer-

ical distances (time-defined Kolmogorov-Smirnov permutation



Figure 5. Population Dynamics in VIP and PFC

(A and B) Average whole-population state-space trajectories in VIP (A) and

PFC (B) in trials with different sample stimuli.

(C and D) Average distances between trials with different sample numerosities

in the whole population of VIP neurons (C) and PFC neurons (D).

(E and F) Statistical comparison of pairs of inter-trajectory distances that

define a distance effect for empty sets in the whole population of VIP neurons

(E) and PFC neurons (F). The distributions of trial inter-trajectory distances

were comparedwith a Kolmogorov-Smirnov permutation test per time bin. The

significance threshold for each comparison, evaluated at an alpha level of

0.05, is marked with a dotted line and a lateral colored arrow.

See also Figures S2 and S3.

Figure 4. Error Trial Analysis

(A and B) Behavioral relevance of empty-set neurons in empty-set trials

(preferred stimulus) (A) and countable numerosity trials (least-preferred stim-

ulus) (B). The neuronal firing rates in the sample period are compared between

correct and error trials.

(C) Firing rates of VIP and PFC countable numerosity neurons in correct and

erroneous empty-set trials.

Error bars indicate the SEM.
test comparing the distributions of inter-trial distances for the

differentpairsof stimulus,1,000 randompermutations, alpha level

0.05; Figure 5E).

In contrast, in the ordered layout formed by prefrontal trajec-

tories (Figure 5B), a population distance effect could be identi-

fied. The closer two numerosities were in the numerical contin-

uum, the more similar were their patterns of population activity,

and vice versa. This held true for empty sets. The distance be-

tween population trajectories in empty-set trials and other trials

increased with the sample magnitude of the latter (Figure 5D,

inset). Indeed, all inter-trajectory distance comparisons that

defined a distance effect for empty sets surpassed their signifi-

cant threshold in PFC (Figure 5F) during the sample period. As

expected, both areas segregated the two classes when average

trajectories were calculated for empty sets versus all countable

numerosities (Figures S2A–S2D). Finally, the whole analysis

was performed with the exclusive selective population of neu-

rons (Figures S3A–S3F). Results exhibited the same patterns: a

distance effect was not significant in VIP exclusive number-se-

lective neurons but was clearly present in PFC exclusive num-

ber-selective neurons.

Population Decoding
We trained a support vector machine (SVM) classifier to discrim-

inate numerosity on the spiking activity of either VIP or PFC

neurons [32] (see the Experimental Procedures). Preference-

balanced pseudo-populations of 200 neurons were assembled

per cortical area. Figures 6A and 6B show the temporal cross-

training performance of the VIP and PFC classifiers, i.e., their

accuracy to identify the correct numerosity when tested on the

activity from a certain trial time period after being trained on other

time bin. With a chance performance of 20% (for five classes),

the classifier accuracy was higher in prefrontal than in parietal

neurons throughout the sample phase (VIP: 50.1% ± 7.7%;
PFC: 67.8% ± 7.1%; mean ± SD over resamples; training and

testing in the same time bin). In addition, classification perfor-

mance reflected the effects described in behavior: accuracy

decreased along the diagonal of the confusion matrix with

increasing numerosities (size effect), and the probability of

misclassification of trials increased the closer two classes are

in the numerical space (distance effect) (Figures 6C and 6D).

The confusion matrix in Figure 6C shows a robust accuracy for

empty sets and numerosity 1 but weaker accuracy for other nu-

merosities in VIP neurons (see also the resulting flat performance

curves derived from the confusion matrix in the top panel of Fig-

ure 6C). In contrast, classification performancewith PFCneurons

was robust for all stimulus classes (Figure 6D), whichwas also re-

flected by sharp performance curves (Figure 6D, top panel).

Next, we assessed the ability of the classifier to discriminate

each class (sample stimulus) from all others (Figures 7A and
Current Biology 26, 1285–1294, May 23, 2016 1289



Figure 6. Decoding Numerosity from VIP

and PFC Population Activity with a SVM

Classifier

(A and B) Temporal cross-training classification

accuracy in VIP (A) and PFC (B) populations.

(C and D) Confusion matrices for VIP neurons (C)

and PFC neurons (D) derived from the sample

period when training and testing were performed

on activity from the same time bin. Performance

curves for each true class are shown at the top of

the confusion matrix. Each curve represents the

frequency with which the activity elicited by a

certain stimulus class was assigned different la-

bels by the classifier.

See also Figures S4 and S5.
7B; evaluated with AUROC [area under the receiver operating

characteristic curve], chance level 0.5). If magnitude classes

were ordered along a numerical continuum, we would expect a

graded decrease of discriminability with increasing numerical

magnitude as a signature of the numerical size effect. In VIP,

the average AUROC values during the sample period were

0.94 ± 0.04 for empty sets, 0.81 ± 0.09 for numerosity 1, and

0.68 ± 0.07 for larger numerosities (mean ± SD over resamples).

Note that the classifier’s capacity to discriminate numerosity 1

was similar to the discriminability of larger numerosities (Fig-

ure 7A). This indicates only a mild size effect in VIP neurons for

countable numerosities. In contrast, the classifier’s discrimina-

bility function for empty sets showed higher values compared

to the discriminability of all countable numerosities. This decod-

ing pattern again suggests that empty sets in VIP are treated

more as a category different from other stimuli.

In PFC, however, a gradation of discriminability values from

empty sets to higher numerosities was present (Figure 7B).

Numerosity 1 was discriminated much better than other count-

able classes and slightly worse than empty sets (empty

sets: 1.0 ± 0.01; numerosity 1: 0.95 ± 0.04; other numerosities:

0.80 ± 0.06; mean ± SD over resamples). Note the graded decre-

ment in thediscriminability of empty sets, numerosity 1, and larger

numerosities in PFC (Figure 7B). This pattern evidences a numer-

ical size effect at the population level and provides further evi-

dence that prefrontal neurons integrate empty sets as part of

the numerosity continuum. As expected from previous results,
1290 Current Biology 26, 1285–1294, May 23, 2016
both classifiers did well in the binary

discrimination of empty sets versus all

other countable numerosities (Figure S4).

A population of only tuned PFC neurons

encoded numerosity better compared

to a population of PFC and VIP cells

(Figure S5).

Level of Abstraction of Empty-Set
Representations
To directly address the level of abstrac-

tion of empty-set representations at the

whole-population level, we tested the ef-

fects of protocol and background shape

with a decoding approach. We trained

the SVM classifier on circle-background
trials and tested it on square-background trials, and vice versa

(shape generalization). We also tested generalization across pro-

tocols, with different background gray levels. Interestingly, the

discriminability of empty sets by VIP neurons (0.94 ± 0.04,

mean ± SD over resamples) dropped by 19.7% (0.85 ± 0.04)

when training and testing were implemented in trials with

different protocols. Similarly, discriminability decreased by

22% (0.84 ± 0.05) in shape generalization (Figure 7C). Parietal

representations of empty sets are thus influenced to some de-

gree by visual stimulus features.

Classification performance based on PFC neurons, however,

fully generalized across sample appearance (Figure 7D). The

classifier’s ability to discriminate empty sets (1.0 ± 0.01) was

not affected by training and testing on trials from different

conditions. Discriminability decreased by only 0.2% in protocol

generalization and by 0.8% in shape generalization. Thus, PFC

representation of empty sets is invariant to background shape

and gray level. This result points to a more abstract representa-

tion of empty sets in PFC, detached from stimulus appearance

and low-level properties.

DISCUSSION

Monkeys Treat Empty Sets as Conveying a Null
Numerical Value
The performance of both monkeys suggested that empty sets

were positioned closer to numerosity 1 than to numerosity 2 on



Figure 7. Numerosity Discriminability and Generalization Perfor-

mance in VIP and PFC

(A andB) Discriminability of each sample numerosity versus others by themulti-

class SVM classifier, evaluated with AUROC values. Numerosity was decoded

from the firing activity of parietal (A) and prefrontal (B) general populations.

(C and D) Generalization performance of the SVM classifiers for VIP neurons

(C) and PFC neurons (D) across different conditions. The discriminability of

empty sets is depicted in solid lines, whereas dotted lines represent the dis-

criminability of countable numerosities. Performancewhen training and testing

were implemented in trials from different protocols (standard and control) is

depicted in blue. Yellow represents generalization performance across

different background shapes (circle and squares). The bars in the insets show

the average discriminability of empty sets by the classifier during the sample

period, when the stimulus is visually available to the subject. The performance

achieved across different conditions is compared to the base performance

(black lines and bars), when both training and testing were performed onmixed

datasets, including trials from all conditions.
the monkeys’ mental number line. This finding, a behavioral dis-

tance effect, signals a representational continuity between

empty sets and countable numerosities and corroborates the

conclusions of previous studies in primates [21–23]. Interest-

ingly, behavioral findings in monkeys are reminiscent of the

way pre-school children treat empty sets [20]. Moreover, a dis-

tance effect for empty sets has also been shown in adult

numerate humans [20]. Humans and non-human primates treat-

ing empty sets similarly points to a common primitive and non-

symbolic representation of null quantity.

Neuronal Representations of Numerosity Zero in VIP
In addition to neurons tuned to countable numerosities [3, 9,

14–17],we identifieda relativelyhighproportionofneurons that re-

sponded maximally to empty sets. Recently, Okuyama et al. [26]

reportedVIP neurons thatwere tuned to the absence of countable

stimuli in onemonkey. This monkey was trained to assess the nu-

merosity of a target display (that could show no items) and add or
subtract items in a second display tomatch the target numerosity.

These authors classified neurons that responded maximally to

empty sets into two distinct groups: exclusive/discrete types

that showed no modulation to numerosities 1 to 4 (based on an

ANOVA) and continuous types that exhibited a significant

response to numerosity 1. Two-thirds of the empty-set neurons

that they recorded in VIP were classified as a discrete type and

the rest as a continuous type. No further statistical tests were

applied to explore whether these cells belonged to two distinct

classes. In our recordings from two monkeys, we found an even

higherproportionof 93%VIPselectiveempty-set neurons thatbe-

longed to the discrete type class according to the definition of

Okuyama et al. [26]. However, the values of tau (t) derived from

exponential decay functions fitted to empty-set tuning functions

did not result in bimodal distributions (p = 0.81, Hartigan dip

test; n = 28). Thus, we found no evidence for two strict classes

of empty-set neurons in VIP, but rather a continuum of more-

discrete to more-continuous empty-set detectors. Task differ-

ences could account for this discrepancy, even though in both

studies the neuronal recordings were derived from an initial target

phase, when the numerosity the monkey had to match at the end

of the trial was displayed. At this initial point of the trial, the task

demands seem comparable. Rather, differences in stimulus pro-

tocols and data processing might account for the observed dis-

crepancies. In particular, we controlled for the effect of visual

stimulus features on neuronal numerosity responses. As discus-

sed below, we found that VIP neurons represent empty sets pri-

marily as separate category distinct from countable numerosities.

Differential Encoding of Empty Sets in VIP and PFC
A differential tuning for empty sets emerged between parietal

and frontal lobes. Empty-set neurons in VIP barely discriminated

countable numerosities and failed to exhibit a strong neuronal

distance effect. Empty sets seem to be encoded as a separate

category, different fromall other numerosity stimuli. The resulting

binary-like tuning profile can be better described as signaling the

presence or absence of countable items. Population analyses

showed that this type of tuning is present in VIP neurons, irre-

spective of their selectivity and stimulus preference.

In contrast, empty-set neurons in PFC showed a gradual drop-

off of activity with increasing numerosity.Moreover, at thewhole-

population level, the positioning of empty sets with respect to

other numerosities was evidenced by a significant distance

effect in the state space analysis. Complementing these findings,

a size effect emerged in the discriminability of different samples

by the classifier in PFC. These results suggest that PFC does

integrate numerosity zero as the lower end of the numerical

continuum.

The analysis of error trials also points to a differential integra-

tion of empty sets in VIP and PFC. Although the activity of empty-

set neurons in both cortices was behaviorally relevant, only

the activity of prefrontal countable-numerosity neurons during

empty-set presentation affected trial outcomes. This finding

suggests that prefrontal neurons integrate empty sets into the

range of numerosities. In addition, as for behavioral performance

functions, a logarithmic number line accounted better for the tun-

ing curves of numerosity-selective neurons in PFC, but not in

VIP. Thus, neuronal activity in PFC shows a stronger correlation

with behavior than parietal activity.
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Level of Invariance of Empty-Set Representations to
Stimulus Features
Some degree of abstraction is required from any neural correlate

of numerosity. Therefore, we would expect a neural representa-

tion of empty sets to be invariant to image-like and low-level fea-

tures of the stimuli. In our task, we varied background shape and

controlled for luminance. Neurons sensitive to these non-numer-

ical parameters were excluded from single-neuron analyses.

Moreover, at the population level, a decoding approach allowed

us to explore the invariance of empty-set representations in VIP

and PFC. We found that the discrimination of empty sets by pa-

rietal neurons was reduced across stimulus features. This finding

could be explained by a mixture of visual and numerical selec-

tivity in VIP. In contrast, PFC represented empty sets abstractly,

as evidenced by high decoding performance across stimulus

properties.

Previously, the idea of abstract number representations was

deemed premature based on some behavioral and human

functional imaging studies [33]. In recent years, however, neu-

rons indiscriminant to spatiotemporal and cross-modal number

variations have been found, particularly in PFC [3, 9, 14–16].

Recent human imaging studies also report that the extraction

of numerosity is only minimally influenced by the processing

of physical stimulus features [4, 34]. These findings suggest

that at least some neurons in association cortices represent

numerosities abstractly. Of course, abstract number informa-

tion could also be extracted from population activity [35], as

evidenced by the analyses presented in the current study.

Whether PFC neurons encode empty sets in different formats

(across modalities and spatiotemporal presentation) requires

further investigation.

Hierarchical Processing of Empty Sets from VIP to PFC
In the context of previous studies, our results suggest a pro-

gressive transformation of empty-set representations from VIP

to PFC. Empty sets become detached from visual properties

and gradually positioned in a numerical continuum. Supporting

this interpretation, simultaneous recordings have repeatedly re-

ported that parietal neurons respond earlier to number than PFC

cells [3, 9]. Moreover, PFC is known to host higher-level repre-

sentations of magnitude. For example, it has been shown that

PFC neurons, but not VIP neurons, respond supramodally to

numerosity [16]. In addition, PFC neurons signify symbol-numer-

osity associations, whereas IPS neurons do not [36]. Finally,

PFC sorts relevant from distracting information [37, 38] and pro-

cesses magnitudes according to quantitative rules [39–42].

Numerosity Zero in a Labeled-Line Code for Number
Several computational models of numerosity detection operate

with intermediate-stage summation units that show monotoni-

cally increasing or decreasing discharges as a function of num-

ber (also found in area LIP [43]) before giving rise to peak-tuned

numerosity detectors at the output stage [44, 45]. Due to the

truncation of the number line, empty-set cells show decreasing

rate functions reminiscent of decreasing summation units. On

average, however, their tuning curves were too selective (i.e.,

narrow) to render them suitable graded summation units over a

range of numerosities. This suggests that empty-set-preferring

neurons are better considered as detectors tuned to numerical
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value 0. Conversely, the class of frequent neurons tuned to nu-

merosity 4 may mirror increasing summation units. However,

this class could include neurons preferring higher numerosities

whose tuning curves has not been completely sampled. When

broader ranges of numerosities (1 to 30) are tested, numerosity

tuning preference becomes evenly distributed [46], supporting

the notion that numerosity-selective cells in VIP and PFC are

essentially tuned to specific numerical values (see also [26]).

Numerosity Zero in a Non-linearly Compressed
Number Line
We have previously reported that behavioral and neuronal repre-

sentations of numerosity in monkeys [27, 28, 46] and crows [47,

48] are best described on a non-linearly compressed, logarith-

mic number scale. This finding is confirmed in the current study

with a new set of data. The logarithmic scheme accounts for the

decrease in the discrimination of two stimuli when their magni-

tude increases (as predicted by Weber-Fechner psychophysical

law). A non-linearly compressed scaling of numerosity has the

advantage of providing scale-invariance and preference-inde-

pendent neuronal variability. Even though the logarithm of 0 is

not defined, the differences between numerical values can still

be represented on a log scale. Note that the Weber-Fechner

law is concerned with the perception of differences, rather

than absolute magnitudes. Starting with the interval between nu-

merosity 0 (n) and numerosity 1 (n + 1), all differences between

higher numbers can be represented on a log scale. Representa-

tions of cardinality 0 would therefore not dispute the notion of a

nonlinearly compressed scaling.

From Nothing to Zero
Sense organs have evolved to encode the intensity of a stimulus.

Then, how can the absence of stimulation be detected? In order

to make use of this information, the nervous system needs to

encode it actively. Indeed, it has been shown that neurons in

the frontal lobe increase their discharge rate to the categorical

absence of a stimulus [24, 25]. Zero is an example of information

conveyed by the lack of a signal. In this case, the brain generates

a quantitative representation (zero) from the absence of a behav-

iorally relevant sensory signal (nothing), a process that would

require a high level of cognitive control. In this context, it may

not be surprising that neurons in PFC are particularly engaged

in the representation of null quantity.

It has been argued that the conceptual demands imposed by

representing nothing as a numerical category may explain the

delayed discovery of zero in human history [49]. Zero first ap-

peared as a placeholder symbol in notational systems. Only

later, Indians used zero also as a numeral signifying null quantity

in mathematics [50]. This cultural delay is mirrored in ontogeny:

children seem to master the cardinal and ordinal properties of

small numbers before they can deal with zero [18]. Still, it has

been suggested that pre-school children understand the numer-

ical value of numerosity 0 and position empty sets in the context

of other small numerosities before they have developed a

concept of symbolic zero [20]. These results suggest that the

representation of empty sets as non-symbolic carriers of null

quantity can be grasped by children and some animals. Our re-

sults suggest that a humble precursor of the non-symbolic zero

can be identified in the primate PFC.



EXPERIMENTAL PROCEDURES

Subjects and Surgery

Two adult rhesus monkeys (Macaca mulatta) were implanted with two

recording chambers each, centered over the principal sulcus in the dorsolat-

eral PFC and the VIP in the posterior parietal cortex. All procedures were per-

formed in accordance with the guidelines for animal experimentation

approved by authorities (Regierungspräsidium Tübingen, Germany) (see the

Supplemental Experimental Procedures for details).

Stimuli

Numerosity stimuli were presented on an LCD screen and consisted ofmultiple-

dot patterns against a gray background. To ensure that the monkeys solved the

task by judging discrete quantity, we controlled low-level visual features in two

stimulus protocols. In the standard protocol, black solid dots appeared at ran-

domized locations and their diameter was pseudo-randomly varied. In the con-

trolprotocol,overall dot area,dotdensity, and total stimulus luminancewerekept

constant across countable numerosities (1–4). Background luminance was var-

ied across and between protocols to control for luminance differences that may

occur for the empty set and to detect their effect on neuronal responses. For

testing of how invariant the neuronal representation of empty sets is to image-

like features, both stimulus protocols (standard and control) were shown either

with a circular background (Figure 1B, left) or a square background (Figure 1B,

right) (see the Supplemental Experimental Procedures for details).

Behavioral Protocol

Monkeys were required to grab a bar and keep fixation in order to start a trial.

Then, a green square or circle background appeared on the screen during a

500 ms fixation period. Subsequently, a sample stimulus consisting of a gray

backgroundcontaining zero to four dotswasshown for 500ms.After a 1 sdelay,

during which the green backgroundwas again shown, a test stimulus appeared

and themonkeyswere expected to release thebar if itmatched thesamplestim-

ulus in quantity. Thatwas thecase in 50%of the trials, referred to asmatch trials.

Otherwise, in non-match-trials, a 300 ms second delay was followed by a sec-

ond test stimulus (500ms) that alwaysmatched the sample stimulus in number.

The green fixation and delay background displays framed the sample epoch.

This background was chosen to match in luminance with the gray level dis-

played in the trial samplestimulus.Backgroundshapewaskeptconstant across

thedifferent epochs of a single trial, i.e., all displays in the circle-shape trials pre-

sented a circle as background, whereas all displays in the square-shape trials

showed a square as background. Correct responses were rewardedwithwater

(see the Supplemental Experimental Procedures for details).

Behavioral Data Analysis

For each session, behavioral performance functions were derived from the

percent of correct responses to all possible stimulus combinations. Behavioral

curves per session were fitted with a Gaussian function when plotted either on

a linear or a logarithmic numerical scaling (log2(n + 1)), and goodness-of-fit

values (r2) were derived. Overall performance tuning functions were obtained

by averaging behavioral tuning functions over sessions (see the Supplemental

Experimental Procedures for details).

Neurophysiological Recording

In each session, arrays of up to eight glass-coated tungsten microelectrodes

were inserted in each recording chamber using a grid with 1mm spacing. Neu-

rons were selected at random, as no attempt was made to preselect neurons

according to response properties. Waveform sorting was performed off-line

(see the Supplemental Experimental Procedures for details).

Neuronal Data Analysis

Selectivity and Tuning Analysis

Neurons that had aminimum average firing rate of 1 Hz and at least three stim-

ulus repetitions per specific condition (20 specific conditions from five sample

numerosities 3 two types of protocol 3 two background shapes) were

analyzed. For determination of numerosity selectivity, activity during the sam-

ple phase was derived from a 500 ms interval after stimulus onset. To account

for differences in the response latencies between brain areas, we shifted the

analysis window by 50 ms after sample onset for VIP and 100 ms for PFC neu-
rons. This differential shift captured the intervals after physical stimulus onset

when neurons are responsive to the sample stimulus [3, 9]. To determine nu-

merosity selectivity of individual neurons, we ran a three-way ANOVA with fac-

tors number (five sample numerosities), protocol (standard and control),

and shape (circle and square). Significance was evaluated for each factor at

p < 0.01. For creation of neuronal filter functions, activity rates were normalized

by setting, for each neuron, the firing rate to the most-preferred numerosity as

1 and to the least-preferred numerosity as 0. The normalized individual tuning

curves were then averaged across neurons with the same preferred numeros-

ity. The responses of individual empty-set neurons to countable numerosities

(1 to 4) were fitted with a linear function to derive a slope. The tuning curves of

empty-set neurons were also fitted with an exponential decay function to

derive the time constant tau (t) as a measure of the decrease in firing rates

as a function of number. Finally, the tuning curves of all selective neurons

were fitted by a Gaussian function to evaluate tuning width (sigma, s) and

derive goodness-of-fit values (r2) in different numerical scalings (see the Sup-

plemental Experimental Procedures for details).

Error Trial Analysis

For comparison of firing rates in error and correct trials, we included selective

neurons with at least three non-correct trials per involved stimulus. Because

mistakes were rare, especially in trials involving small sample numerosities,

a reduced number of neurons was included in the comparisons of correct

and error trials.

Population Analyses

AGPFA [31] was used to extract low-dimensional neuronal trajectories in state

space from the spiking activity of similarly sized pseudo-populations of neu-

rons in both cortical areas (see the Supplemental Experimental Procedures

for more information). In addition, a multi-class linear SVM classifier [32] was

trained and tested on trial firing rates to discriminate sample numerosity. We

evaluated the decoding performance of the classifier in balanced VIP and

PFC pseudo-populations of neurons (see the Supplemental Experimental Pro-

cedures for details).
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