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SUMMARY

Prefrontal cortex (PFC) and posterior parietal cor-
tex are key brain areas for magnitude representa-
tions. Whether active discrimination of numerosity
changes neuronal representations is still not known.
We simultaneously recorded from the same
recording sites in the PFC and ventral intraparietal
area (VIP) before and after monkeys learned to
actively discriminate the number of items in a set.
Only PFC neurons, and not VIP neurons, exhibited
heightened representation of number after numeros-
ity training. Increased responsiveness of PFC was
evidenced by enhanced differentiation of numerosity
by the population of neurons, as well as increased
numerosity encoding by individual selective neurons.
None of these effects were observed in the VIP, in
which neurons responded invariably to numerosity
irrespective of behavioral relevance. This suggests
elevated PFC participation during numerical task de-
mands and executive control, whereas VIP encodes
quantity as a perceptual category regardless of
behavioral relevance.

INTRODUCTION

Assessing the number of elements in a set, its numerosity, re-

quires a high level of sensory abstraction. Studies in behaviorally

trained nonhuman primates identified a cortical network in the

prefrontal (PFC) and posterior parietal cortex (PPC) with individ-

ual neurons selectively responding to the number of items [1, 2].

Such numerosity-selective neurons have also been traced indi-

rectly in the human brain using fMRI [3, 4]. Whereas it was tacitly

assumed that neuronal responses to numerosities were shaped

by or even caused by extensive behavioral training, neurons in

PFC and the intraparietal sulcus have recently been reported

to encode numerosity even in monkeys that were never trained

to discriminate numerosities [5]. Furthermore, the tuned coding

of preferred numerosities in numerically naive monkeys was

strikingly similar to that found in experienced animals. Together

with psychophysical findings that numerosity representations

resemble perceptual categories like color and shape and

are susceptible to adaptation [6, 7], the spontaneous presence

of numerosity-selective neurons in untrained animals argues
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for a ‘‘sense of number,’’ the faculty to perceive numerosity intu-

itively [8, 9].

Whereas much has been learned about numerosity coding by

neurons in the fronto-parietal cortex, the role of behavioral rele-

vance and learning in the modulation of neuronal selectivity

remains unexplored. Both parietal and PFC neurons show

increased responses to behaviorally relevant as opposed to irrel-

evant stimuli [10, 11]. Experience-dependent plasticity is further

suggested by observations that visual neurons in prefrontal [12]

and parietal [13] visual areas can respond highly selectively to

familiar and well-trained visual stimuli. Not only do response

properties change, but also the proportion and location of selec-

tive neurons change with learning [14]. Moreover, prefrontal and

posterior parietal neurons robustly reflect the learned category

membership of visual stimuli, and visual selectivity shifts after

monkeys were retrained to group the same stimuli into two

new categories [13, 15, 16]. Whether abstract representations

of quantity experience modifications with behavioral relevance,

learning, and familiarity, however, remains elusive.

To address this, we simultaneously recorded from the same

recording sites in the PFC and ventral intraparietal area (VIP)

while numerically naive monkeys discriminated the color of a

set of dots and, after numerosity training, responded to the num-

ber of items of equivalent dot collections. We found contrasting

neuronal effects for PFC and VIP neurons as a result of learning

to discriminate numerosity explicitly. In addition, the observed

findings were not predicted by experiments using arbitrary

perceptual categories as discriminative stimuli.

RESULTS

Weanalyzed single-neuron activity from the parietal and prefron-

tal cortices of two monkeys before and after training on a

numerosity-delayed match-to-sample task. Before numerosity

training, monkeys matched the color of sequentially presented

multi-dot displays (color task; Figure 1A, top). After numerosity

training, they matched the number of all black dots in the

sequentially presented multi-dot displays (numerosity task; Fig-

ure 1A, bottom). The task structure stayed the same for both

discrimination protocols: monkeys watched a sample display

after a fixed period of visual fixation. The sample was followed

by a 1-s memory delay, after which the test display appeared.

In the color task, the test1 display matched the sample in color

in 50% of the trials (match trials) and did not match in the other

50% of the trials (non-match trials). Importantly, the number of

dots also varied systematically in the dot displays but was
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Figure 1. Behavioral Task Design, Example Stimuli, and Behavioral Performance

(A) Task: the delayed match to sample task involved an initial fixation period of 500 ms followed by a sample period where the visual dot arrays were presented.

The monkeys were required to remember the sample through the subsequent delay period and respond only to matching test stimuli. If a non-match stimulus

followed, theywere required to withhold response until thematch appeared. The color discrimination task (top panel) was used for all the pre-training data and the

numerosity discrimination task (bottom panel) after the monkeys were trained to discriminate numerosity, for the post-training data.

(B) Examples of the dot array stimuli used. For the color-discrimination task, all five colors were tested in all five numerosities and across two stimulus protocols.

For the numerosity-discrimination task, only black dot arrayswere used in all five numerosities and across two stimulus protocols. The standard stimuli (odd rows)

consist of randomly sized and spaced dots. The control stimuli (even rows) are such that the colored area and the dot density are equalized across numerosities.

(C) Behavioral performance on color discrimination task with the various colors as sample, averaged across monkeys, as a percentage of total trials. Error bars

denote SEM.

(D) Behavioral performance on the numerosity-discrimination task as tested before and after numerosity training (empty bars denote chance level performance

before training; filled bars denote performance after training; dashed horizontal line denotes 50% chance level) for each number as sample numerosity. Error bars

denote SEM.
behaviorally irrelevant and was not used by the monkeys (that

were not trained to respond to numerosity at that stage) to solve

the task. In the numerosity task, the test displays matched the

sample with respect to the number of items (50% match trials),
1260 Current Biology 25, 1259–1269, May 18, 2015 ª2015 Elsevier L
whereas the numerosity did not match in the remaining trials

(50% non-match trials). In the non-match trials, the non-match

test1 item was always followed by a match test2 item. The

monkeys had to respond to the matching item (matching
td All rights reserved



Figure 2. Recording Areas and Neuronal Populations

(A) Schematic diagram of the macaque brain, illustrating the locations where

recordings were performed. Abbreviations: AS, arcuate sulcus; IPS, intra-

parietal sulcus; PS, principal sulcus; STS, superior temporal sulcus.

(B) De-noised regression coefficients for the factor numerosity plotted against

those for the factor stimulus protocol for each recorded neuron. The

coefficients describe how much of the trial-by-trial firing rate of the neuron is

affected by the plotted factors ‘‘protocol’’ and ‘‘number’’. Each dot on the plot

denotes a PFC neuron. Correlations between coefficients are shown (p < 0.05;

Pearson’s correlation coefficient, r) and significant correlations are indicated

by the regression lines in green.

(C) The same layout as in (B) for the PFC neurons recorded post-training.

(D and E) The same as (B) and (C) for area VIP.

See also Figures S1 and S2.
color—before training; matching number—after training) by

releasing a bar that they held throughout the trial. To exclude

that the monkeys were responding to low-level visual features

that co-varied with numerosity, control stimuli were applied (in

50%of the trials) in addition to the pseudo-randomized standard

stimuli. Both in the color task and the numerosity task, the total

dot area and density were equated across numerosities in the

control stimuli (Figure 1B). All task parameters (match versus

non-match, color versus numerosity, and standard versus con-

trol stimuli) were balanced and presented pseudo-randomly to

the monkeys.
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Behavioral Performance before and after Numerosity
Training
In the color task, before numerosity training, color discrimination

performance (Figure 1C) was well above chance for both mon-

keys (monkey L: 99.19% ± 0.24%; monkey S: 97.93% ±

0.34%; binomial test; p < 0.001) for all color combinations (as re-

ported previously in [5]). We confirmed that none of the monkeys

learned to judge numerosity in the color task by confronting the

monkeys with colorless black dots. During the color task, numer-

osity performance tested on two sessionswas at chance level for

both monkeys (monkey L: 43.8% ± 12.7%; monkey S: 58.8% ±

12.4%; two-tailed binomial test; p > 0.05). This suggests that the

monkeys were unable to use numerosity as discriminating stim-

ulus feature during the color task.

After single-cell recordings during the color task were

completed, the same monkeys were retrained to discriminate

numerosity. Color information was eliminated to avoid Stroop-

like effects. After approximately 2 months of training (monkey

L: 41 sessions; monkey S: 30 sessions), both monkeys reached

a high level of numerosity discrimination performance (monkey

L: 91.4% ± 0.78%; monkey S: 84.5% ± 0.99%; two-tailed bino-

mial test; p < 0.001; same sample numerosities as in the color

task; numerical distance between sample and non-match of

two or more; Figure 1D). Performance also showed the classical

effects reported in earlier studies, such as the numerical distance

and size effects [17]. These results collectively show that the

monkeys were numerically naive during the color task but

numerically competent and able to discriminate the number of

items after numerosity training.

Representation of Task Variables in the Neuronal
Populations
We recorded single-cell activity from the lateral PFC and the VIP

before and after numerosity training, i.e., during the color and the

numerosity task, from the same two monkeys (Figure 2A). We

targeted the same electrode penetration coordinates and depths

in the color and the numerosity task in both individual monkeys.

This allowed for recordings from the same recording sites post-

numerosity training from where the majority of neurons were

sampled before numerosity training.

We applied multi-variable linear regression analysis to the

trial-by-trial firing rates of all single neurons [18] to first explore

the contributions of the recorded neuronal populations in en-

coding the behaviorally irrelevant features of number and stim-

ulus protocol during the color task. We then applied the same

analysis for the same features, which became behaviorally rele-

vant during the number task. We calculated the weights with

which the various stimulus features affected the neuronal activ-

ity and used principal-component analysis (PCA) to estimate

the most informative (first 12 PCAs) of these weights at each

time point within the analysis period. We call these estimated

weights ‘‘de-noised regression coefficients’’ of number and

stimulus protocol. In particular, we examined the correlations

between these de-noised weights of number and stimulus pro-

tocol. We compared these correlations in the pre-training and

the post-training periods as they reflect how well the neuronal

population was able to extract the numerosity of the stimuli

from the co-varying lower level visual features to solve the

number task.
9–1269, May 18, 2015 ª2015 Elsevier Ltd All rights reserved 1261



We compared sample activity of a total of 268 PFC cells re-

corded during pre-training and 245 cells recorded post-training

with the multi-variable linear regression analysis without pre-se-

lecting neurons for any response properties. The weights of the

‘‘number’’ or ‘‘protocol’’ predictors did not show a significant dif-

ference between the pre-training and post-training population

(Mann-Whitney U test; p = 0.08 and p = 0.20, respectively).

The regression coefficients (beta values) for the factors ‘‘stimulus

protocol’’ and ‘‘numerosity’’ were not correlated pre-training

(Pearson’s correlation coefficient; r < 0.001; p = 1.00; Figure 2B).

However, the coefficients were significantly and negatively

correlated post-training (r = �0.4673; p < 0.0001; Figure 2C).

The correlations for the population indicate that the neuronal

units that are strongly regressed by one of the factors are less

or sometimes conversely affected by the other factor. Excluding

color as a predictor in the pre-training linear model did not

change the main findings. The improvement in the PFC popula-

tion as evident in the weak negative correlation between the pre-

dictors for number and stimulus protocol remained (r =�0.1355;

p = 0.03; Figures S1A and S1B).

In contrast, the comparison of the population of 238 VIP cells

pre-training and 231 cells post-training showed the opposite

effect when performing the samemulti-variable linear regression

analysis. The regression coefficients were significantly and

negatively correlated pre-training (r = �0.2196; p < 0.001; Fig-

ure 2D) but were no longer correlated post-training (r =

�0.0428; p = 0.52; Figure 2E). The weights of the number or pro-

tocol predictors do not show a significant difference between the

pre-training and post-training population (Mann-Whitney U test;

p = 0.44 and p = 0.26, respectively). Excluding color as a predic-

tor in the pre-training period only enhanced the negative correla-

tion observed in the VIP population pre-training (r =�0.6954; p <

0.0001; Figures S1C and S1D).

We used an ANCOVA (at alpha = 0.05) to test the regression

lines pre- and post-training for the two areas (green lines,

Figure 2). We found that, for both areas, PFC and VIP, the

slopes of the regression line were significantly different with

active numerical discrimination. For PFC, the slope post-

training was significantly higher (p = 0.0001), and for VIP, the

slope post-training was significantly lower than pre-training

(p = 0.0394). Additionally, the slope of PFC population post-

training was also significantly higher than that of VIP pre-

training (p = 0.0359).

Proportions of Numerosity-Selective Cells Increased
Only in PFC with Behavioral Relevance
To identify individual neurons that were selective to numerosity

and presumably maximally contributed to the observed effects

found in the population analysis, we performed an ANOVA based

on the trial-by-trial firing rates for each neuron separately. For the

pre-training data (color task), a three-factor ANOVA with main

factors ‘‘sample color’’ (five colors), ‘‘sample numerosity’’ (nu-

merosity 1–5), and ‘‘stimulus protocol’’ (standard versus control

stimuli) was calculated (at alpha = 0.01). For the post-training

condition (numerosity task), a two-factor ANOVA with main fac-

tors ‘‘sample numerosity’’ and ‘‘stimulus protocol’’ was applied.

Numerosity-selective cells were determined to be those cells

that displayed a main effect for the factor sample numerosity.

In Figure 3, example numerosity-selective neurons and their
1262 Current Biology 25, 1259–1269, May 18, 2015 ª2015 Elsevier L
respective tuning curves from the PFC (Figure 3A) and the VIP

(Figure 3B) can be seen.

To confirm that the results from the multi-variable linear

regression analysis of the population mainly relied on the contri-

butions of numerosity-selective neurons, we calculated the

correlations based solely on the numerosity-selective neurons

identified by the ANOVA. In PFC, the coefficients were signifi-

cantly negatively correlated post-training, but not pre-training

(Figures S2A and S2B). In VIP, we found significantly negatively

correlated coefficients pre-training, but not post-training (Fig-

ures S2C and S2D). For both post-training PFC and pre-training

VIP, the magnitude of Pearson’s correlation coefficients were

higher for the population of numerosity-selective neurons than

the entire population of all recorded neurons. This suggests

that numerosity-selective neurons contributed significantly to

the observed population effects and thus were probably most

important to convey numerosity information.

We found evidence that the proportion of numerosity-selective

cells in the PFC increased from 14% (38/268) pre-training to 20%

(50/245) post-training (chi-square test; p = 0.06; Figure 3C; Table

S1). The majority of these cells were unaffected by the co-vary-

ing lower visual features of the stimuli and thus showed no effect

of the stimulus protocol or an interaction of numerosity with

stimulus protocol. In the PFC, the proportion of such ‘‘pure’’

numerosity-selective cells was 10% pre-training and 13%

post-training.

We did not observe a change in the proportion of numeros-

ity-selective neurons in the parietal cortex. Numerosity-selec-

tive cells in the VIP were 14% (32/238) pre-training and 11%

(26/231) post-training (chi-square test; p = 0.47). Pure numer-

osity proportions, i.e., without effects or interactions of stimulus

protocol, were 10% pre-training and 9% post-training (Fig-

ure 3D). We report the results of the ANOVAs in detail in

Table S1.

Sharpness of Numerosity Tuning Was Unchanged by
Relevance
Active discrimination has been shown to change tuning proper-

ties of sensory neurons. We therefore investigated whether

active numerosity discrimination resulted in an increase in the

strength of tuning to numerosity in our selective population. Nu-

merosity-selective cells have displayed tuned responses to the

number of items in dot displays [19], in item sequences [20],

and across modalities [21]. Such tuning is characterized by a

maximal response toward a preferred numerosity with a gradual

decrease of activity for numerosities with increasing numerical

distance to the preferred numerosity. We also found tuned

responses to numerosity in our selective population before and

after numerosity training (Figures 4A–4D). The frequencies of

preferred numerosities were also similar in both areas pre- and

post-training. We compared the tuning sharpness pre-training

and post-training in PFC and VIP from population-tuning curves

created by normalizing and averaging all individual tuning curves

around the preferred numerosity and the graded responses

expressed as a factor of numerical distance. The pre-training

and post-training population tuning functions for PFC (Figure 4E)

and VIP neurons (Figure 4F) were indistinguishable (except

for few arbitrary numerical distances; Mann-Whitney U test;

p < 0.05).
td All rights reserved



Figure 3. Numerosity-Selective Neurons

(A) An example numerosity-selective cell in PFC.

Trials are sorted by sample numerosity (top panel)

in the raster plot, and each dot denotes an action

potential. Vertical lines mark the various task

phases. The discharge is thus averaged across

trials to create a peri-stimulus time histogram

(bottom panel) for each sample numerosity. The

inset shows the numerical tuning function for that

neuron by averaging the activity across time and

trials.

(B) The same as (A) for an example neuron re-

corded in VIP.

(C) Pie charts showing the proportions of numer-

osity-selective neurons among those recorded in

the PFC. The dashed contours enclose the

proportions found in the PFC pre-training (top),

and the solid contours enclose the proportions

found post-training (bottom). The colored areas

depict the numerosity-selective proportions

found with ANOVA. The darker shaded areas

depict the ‘‘purely’’ numerosity-selective pro-

portions, and the lighter shaded areas depict the

proportions sensitive to stimulus protocol effects,

i.e., co-varying low-level visual features of the

stimulus.

(D) Same layout as (C) for area VIP.

See also Figure S2 and Table S1.
Explained Variance Measures
Because raw tuning curve measures do not necessarily take

the strength of response modulation into account, we also

calculated the proportion of explained variance (u2 PEV) [22].

It quantifies how much information about the sample numeros-

ity was carried by the discharge rates of the population of nu-

merosity-selective neurons. We used a two-way ANOVA with

the factors sample numerosity and stimulus protocol to addi-

tionally explore the interaction term between stimulus protocol

and numerosity.

The sliding-window analysis in Figure 5A shows that the u2

values for PFC neurons increased during the sample period, as

expected for selective neurons. Interestingly, however, the u2
Current Biology 25, 1259–1269, May 18, 2015 ª
PEV values were higher during post-

training compared to pre-training. This

difference was significant when com-

pared in an 800-ms interval covering the

entire sample period (median 0.0591

pre-training, n = 38; median 0.0640

post-training, n = 50; Mann-Whitney U

test; p = 0.025; Figure 5A, inset). This

difference was still present when only

the purely numerosity-selective neurons

were analyzed (two-tailed Mann-Whitney

U test; p = 0.024; n = 28 pre-training

and n = 33 post-training). The ex-

plained variance for the stimulus pro-

tocol and interaction did not show any

significant changes (Figure 5A, purple

and black functions). The explained vari-

ance for the whole population of PFC

cells did not change post-training (all
cells, median 0.0025 pre-training; median 0.0039 post-training;

p = 0.24).

In the VIP, however, the result was different (Figure 5B). The

u2 PEV for the factor numerosity did not change for pre-

compared to post-training (median 0.0577 pre-training, n =

32; median 0.0605 post-training, n = 26; two-tailed Mann-

Whitney U test; p = 0.52; Figure 5B, inset). For purely numeros-

ity-selective neurons, there was no difference in u2 PEV

between pre- and post-training (two-tailed Mann-Whitney

U test; p = 0.96; n = 24 pre-training and n = 22 post-training).

The explained variance for the stimulus protocol and interac-

tion did not show any significant changes. The explained vari-

ance for the whole population of VIP cells did not change
2015 Elsevier Ltd All rights reserved 1263



Figure 4. Tuning Curves of Selective

Neurons

(A–D) The numerosity-selective neurons are

grouped according to the preferred number elicit-

ing the maximal response, indicated here by the

different colors. Their responses to the various

numerosities are then normalized and plotted here

as tuning curves. (A) PFC neurons recorded pre-

training (n = 38). (B) PFC neurons recorded post-

training (n = 50). (C) VIP neurons pre-training

(n = 32). (D) VIP neurons post-training (n = 26).

(E) The neuronal responses to various sample nu-

merosities are normalized (preferred numerosity =

100% and least preferred numerosity = 0%) and

centered to the preferred numerosity such that the

other sample numerosities are expressed as nu-

merical distance from the preferred numerosity.

Dashed lines depict selective cells pre-training and

solid lines post-training in the PFC. Error bars

denote SEM.

(F) The same as (E) for VIP neurons.
post-training (all cells, median 0.0039 pre-training; median

0.0028 post-training; p = 0.24).

Numerosity Discriminability Changes in PFC and VIP
Weapplied an ROCanalysis derived from signal detection theory

to quantify the neuronal discriminability for numerosity in the

same sample time windows as used for the other analyses.

The values of the area under the ROC curve (AUC) could range

from 0.5 (no discriminability between most- and least-preferred

magnitude value) to 1.0 (perfect discriminability).

In the PFC, the AUC values were significantly higher post-

training compared to pre-training (median pre-training = 0.693

to post-training = 0.724; two-tailed Mann-Whitney U test; p =

0.016; Figure 6A). This significant improvement in discriminabil-

ity was also seen for purely numerosity-selective neurons alone

(two-tailed Mann-Whitney U test; p = 0.024). The AUC value

also increased significantly across the whole population of

PFC neurons, irrespective of numerosity selectivity (for all re-

corded PFC cells, median pre-training = 0.586 to median

post-training = 0.595; p < 0.05). This indicates that numerosity
1264 Current Biology 25, 1259–1269, May 18, 2015 ª2015 Elsevier Ltd All rights reserved
discriminability robustly increased post-

training in the PFC for neuronal popula-

tions containing numerosity-selective

neurons. This improvement did not arise

from differences between firing-rate dis-

tributions of the two recording periods.

We tested the means of distributions

(t test; p > 0.05) and the shape of the

distributions (Kolmogorov-Smirnov test;

p > 0.05) and found no significant differ-

ences between the pre-training and

post-training samples. Additionally, this

change in the AUC values was stable

during the entire recording period (Fig-

ure 6C) and did not change over time

(regression analysis; p > 0.1). For num-

ber-selective PFC cells, the AUC calcu-

lated for error trials post-training had a
median of 0.708 and was not significantly different from those

calculated for correct trials (p = 0.11). For the whole population

of PFC cells, median AUC for error trials was 0.517 and signif-

icantly different from those calculated for correct trials (p <

0.0001).

The neuronal discriminability in VIP, on the other hand, did not

change with training (Figure 6B). The AUC values pre- and post-

training were comparable for numerosity-selective neurons

(median pre-training = 0.715; post-training = 0.702; two-tailed

Mann-Whitney U test; p = 0.120) and also for the population of

purely numerosity-selective neurons (two-tailed Mann-Whitney

U test; p = 0.286). Similarly, no difference was detectable for

the entire population of all recorded VIP neurons (for all recorded

VIP cells, median pre-training = 0.597 to median post-training =

0.598; p < 0.05). For number-selective VIP cells, the AUC calcu-

lated for error trials post-training had a median of 0.618 and was

not significantly different from those calculated for correct trials

(p = 0.06). For the whole population of VIP cells, median AUC for

error trials was 0.515 and significantly different from those

calculated for correct trials (p < 0.001).



Figure 5. Numerosity Information in Selective Neurons

(A) Proportion explained variance (u2 PEV) calculatedwith a slidingwindowof 100ms slid by 20ms steps for the numerosity-selective cells in PFC. Dashed lines in

the plot depict pre-training data, and solid lines depict post-training data. Cyan lines show the u2 PEV values for the factor numerosity, purple lines the factor

stimulus protocol, and black lines the interaction (numerosity 3 stimulus protocol). The inset boxplot describes the numerosity u2 PEV calculated during the

sample period for all the selective neurons. The horizontal red lines indicate the medians within the boxes spanning the 25th–75th percentiles of the data. The

whiskers span the 5th–95th percentiles.

(B) The same as (A) for area VIP with orange lines depicting the u2 PEV values for the factor numerosity.
Broad Spiking Cells Show Improvement by Numerosity
Training in PFC
Finally, we investigated the training effects for the two major

cortical cell classes [23–25]. We grouped the recorded neu-

rons based on their extracellularly recorded waveforms into

narrow spiking (NS) (23% of all neurons pre-training and

23% post-training), i.e., putative interneurons, and broad

spiking (BS) (74% of all neurons pre-training and 73%

post-training), i.e., putative pyramidal cells (Figure 7). We calcu-

lated an averaged and normalized waveform for each

recorded neuron and used a linear classifier to classify the

neurons into the two different classes. This method of classifi-

cation has been used in recent studies to investigate the

involvement of different neuronal classes in different aspects

of a task [26].

In the PFC (Figure 7A), BS cells showed a slight increase in

AUC values (0.693 to 0.718; p = 0.0505) post-training. NS cells,

however, did not show changes (0.694 to 0.735; p > 0.1) with

behavioral relevance. In the VIP (Figure 7B), neither cell class

showed a corresponding effect (BS cells 0.722 to 0.694;

p = 0.0985; NS cells 0.705 to 0.708; p > 0.1).

DISCUSSION

We hypothesized that active discrimination of numerosity

would change response properties of neurons in the PFC

and/or VIP, two areas known to be engaged in processing

numerical information. We report that only the PFC became

more responsive to numerosity during active numerosity

discrimination. The regression analysis performed for the

entire neuronal population showed that the PFC improved

in its ability to differentiate between numerosity and co-

varying lower visual parameters. Closely following this find-

ing, numerosity-selective neurons in PFC also became more

frequent and more informative about numerosity. This improve-
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ment was due mostly to broad-spiking putative pyramidal

neurons.

In contrast to the PFC, none of these effects were observed for

VIP neurons, even though VIP neurons were also responsive to

numerosity. As a population, VIP neurons were not effective in

discriminating between numerosity and co-varying lower visual

parameters after numerosity training whereas individual numer-

osity-selective cells maintained their selectivity. Neither the

proportion of numerosity-selective cells, nor numerosity discrim-

inability of VIP neurons changed with active discrimination of

numerosity. This lack of modulation of quantity categories in

the parietal cortex through behavioral relevance stands in

contrast to previous findings obtained with arbitrary perceptual

categories.

PFC Encodes Behaviorally Relevant Numerical
Information
Our population analysis of the task variables and their effect on

trial-by-trial firing rates yielded diametrically opposite results

in prefrontal and posterior parietal lobe. The post-training

emergence of a neuronal PFC population that was differentially

influenced by the factors number and stimulus protocol con-

trasted with the lack of such correlated activity post-training

in VIP. As the de-noised regression coefficients describe

how much of the trial-by-trial firing rate of the unit depends

on the task variables at hand [18], the correlations between

the regression coefficients to the different factors are telling

of the mixed selectivity experienced by the units [27]. The

emergence of this property in PFC during active numerosity

discrimination indicates that prefrontal neurons distinguished

between the numerosity of the stimuli and the co-varying

visual features much more strongly post-training. Thus, our re-

sults are indicative of the PFC playing a role in actively discrim-

inating behaviorally relevant numerical categories from the

co-varying visual features with decreased behavioral relevance.
9–1269, May 18, 2015 ª2015 Elsevier Ltd All rights reserved 1265



Figure 6. Coding Quality Assessed by Area

under the ROC Curve

(A) Histograms showing AUC values in PFC

colored by recording periods; empty bars, pre-

training; filled bars, post-training. Black vertical

lines indicate the median values; dashed lines,

pre-training; solid lines, post-training.

(B) The same as (A) for area VIP.

(C) AUC values plotted as a function of days

(session numbers) pre-training (left panel) and

post-training (right panel). Each data point repre-

sents an average across all neurons recorded in a

bin of 6 days (pre-training) or 7 days (post-

training); cyan data points indicate PFC cells, and

orange data points indicate VIP cells. Error bars

show SEM. Solid lines represent the linear

regression; none of the slopes was significantly

different than zero.
This is consistent with the PFC conveying top-down signals to

parietal neurons to exert cognitive control during rule-based

tasks [16].

Selective Neurons in PFC, but Not VIP, Improve during
Active Numerosity Discrimination
After the color-discrimination task, we retrained the monkeys to

discriminate numerosity. This introduced numerosity as a

behaviorally relevant stimulus feature and increased the mon-

keys’ experience with numerosity. One might expect that

these changes also had an impact on the response properties

of neurons in such classical association areas like the PFC

and the VIP. Experience-dependent sharpening of neuronal

selectivity has been described in early (V1) [28] and intermedi-

ate (V4) [29, 30] visual cortex. Also in the inferior temporal

cortex (area IT), the termination zone of the ventral visual

pathway, learning to discriminate among complex objects

was found to enhance object selectivity of neurons [31, 32].

Similarly, neurons in the PPC of the dorsal visual pathway

have been shown to reflect behavioral relevance [10, 33]

and learned arbitrary category membership of visual motion

stimuli [13, 34]. In the PFC, behavioral relevance sometimes

has dramatic effects on neuronal responses and can even re-

tune cells according to changed boundaries of arbitrary

perceptual categories [35]. An increase in proportions of

responsive neurons when switching from a passive fixation
1266 Current Biology 25, 1259–1269, May 18, 2015 ª2015 Elsevier Ltd All rights reserved
task to an active working memory task

has also been found in PFC [14].

Our data show that learning- and rele-

vance-dependent neuronal plasticity

does not hold true for all possible visual

stimulus features, particularly in the

PPC. After analysis of several neuronal

parameters, we could not detect

enhancement for numerical categories

in VIP. VIP neurons steadily encoded nu-

merosity during both the color- and the

numerosity-discrimination tasks but in-

dependent of whether numerosity was

behaviorally relevant or not. This also
suggests that numerosity selectivity in VIP evolves along the vi-

sual pathway through a bottom-up process not requiring top-

down modulation by the PFC [36]. This is in agreement with

the observation that, sometimes even in trained animals, parietal

signals of visual categories do not arise as a result of feedback

from PFC [34]. Response latency data support this hypothesis

because neurons in the intraparietal cortex represent their

preferred numerosity on average about 50 ms earlier than PFC

neurons, both in numerically naive [5] and numerically trained

monkeys [37, 38]. Collectively, this suggests that sensory repre-

sentations of numerosity are rapidly and automatically encoded

in VIP, irrespective of task demands. Of course, this is not to say

that VIP neurons cannot be modulated whenever numerical in-

formation needs to be processed according to the rules of other

cognitive control functions.

In contrast to VIP, active discrimination of set size significantly

enhanced the representation of numerosity in PFC. Surprisingly,

this enhancement was onlymodestly based on an increase in the

frequency of selective neurons but rather caused by a higher

quality of numerosity encoding by a relatively stable set of

numerosity-selective neurons. This relevance-induced improve-

ment in numerosity discriminability of PFC neurons was primarily

found in BS (putative pyramidal) neurons. This suggests a prefer-

ential modulation of BS neurons with active numerosity process-

ing and corresponds with our previous finding that putative

pyramidal cells showed a higher degree of numerosity selectivity



Figure 7. Change in AUC Mediated by Different Neuronal Classes

(A) PFC neurons classified into narrow spiking (NS) (black) and broad spiking (BS) (gray) by their normalized waveforms (top panel) and boxplots depicting the

AUC values (bottom panel) for the two cell classes pre-training (left) and post-training (right). The horizontal lines indicate the medians within the boxes spanning

the 25th–75th percentiles of the data. The whiskers span the 5th–95th percentiles.

(B) The same as (A) for VIP neurons.
[23]. BS neurons in PFC also seem to contribute to other PFC

functions, such as learning to memorize stimuli [14], motion

discrimination [26], and decision making [39]. Sensory prefrontal

neurons are also differentially affected by dopaminergic modula-

tion [24, 40].

Our results contrast activity changes found in ventral PFC of

monkeys before (i.e., during passive fixation) and after training

on a spatial working memory task. Qi et al. [14] observed a

doubling of the proportion of activated neurons (from 10% to

20%) but also a degradation of the neurons’ stimulus selectivity

after training. In our study, however, we witnessed only a very

moderate increase of the proportion of numerosity-selective

neurons but a clear enhancement of the coding quality of such

neurons after numerosity training. A possible explanation for

this discrepancy may include differences in the discriminative

stimulus (numerical versus spatial stimulus feature) but perhaps

more importantly differences in the cognitive states themonkeys

needed to adopt, because passive fixation (as applied by Qi

et al.) demands only little attention and/or arousal compared to

an active discrimination task. We, therefore, had the monkeys

engaged in equally demanding delayed discrimination tasks

pre-training (color discrimination) and post-training (numerosity

discrimination) to exclude general internal state differences.
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Our data also diverge from results obtained with perceptual

category training. Strong categorical representations of stimuli

in PFC have been described in monkeys trained to recognize bi-

nary category membership of sensory stimuli, such as ‘‘up

versus down’’ motion directions [34, 41] or ‘‘cats versus dogs’’

classes [15]. Both in IPS and PFC, such categorical discharges

are not present in naive animals but emerge with training to

encode behaviorally relevant stimulus groups. Changing cate-

gory boundaries also causes adaptive changes in PFC neurons

[15]. The encoding of numerical categories differed from these

findings because numerosity-selective neurons in the IPS and

PFC are already present in numerically naive monkeys [5] and

they exhibit a stable labeled-line code irrespective of stimulus

context (PFC) [42] or training status (current study). We suspect

that this coding stability is related to numerosities being ‘‘natu-

ral’’ categories, which—unlike arbitrary perceptual categories

that necessarily need to be conditioned—possess an inherent

meaning with permanent category boundaries. In addition (and

unlike VIP), PFC numerosity-selective neurons did experience

enhancement of coding quality. We interpret this improved

neuronal selectivity as a reflection of increased relevance of

numerical categories post-training. This improved selectivity

might help the PFC exert top-down influence on downstream
9–1269, May 18, 2015 ª2015 Elsevier Ltd All rights reserved 1267



cortical stages and guide executive functions via numerical

information.

Quantities as Stable Natural Categories
The current data suggest that numerosity representations in the

PFC and VIP rely on a sparse code [43] with dedicated and

relatively stable ‘‘labeled lines’’ [44]. Sensory numerosity repre-

sentations in the parietal lobe seem to be largely independent

from task relevance, thus supporting the idea of a visual

‘‘number sense,’’ the faculty to perceive visual collections intu-

itively [8, 9]. Visual numerosity-selective neurons may develop

spontaneously and naturally within visual neural structures of

the primate brain, prior to learning how to use this information.

In agreement with this idea and based on psychophysical

findings, Burr and Ross [6] suggested visual numerosity as a

sensory attribute that is susceptible to adaptation just like co-

lor, contrast, or speed. Perhaps numerosity, like faces [45],

constitutes an exceptionally relevant type of information with

adaptive value. The numerical category ‘‘set size’’ could

therefore emerge as a natural category represented spontane-

ously in a dedicated parieto-frontal network. Just as face

selectivity, numerosity selectivity could potentially be present

at birth [46]. In the PFC, however, numerosity selectivity is

enhanced during explicit processing of sensory numerical infor-

mation. This plasticity potentially enables PFC networks to

emphasize behavioral relevance of numerosity during executive

functions.
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