BIOPHYSICAL ANALYSIS OF PLANT GAS EXCHANGE AND RECONSTRUCTION OF PALAEOCLIMATE

Wilfried Konrad^{1,*}, Anita Roth-Nebelsick^{1,2} and Michaela Grein^{1,2}

¹University of Tübingen, Institute for Geosciences, Sigwartstrasse 10, D-72076 Tübingen, Germany ²State Museum of Natural History Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany

*e-mail: wilfried.konrad@uni-tuebingen.de

Introduction

Goal

Reconstruction of palaeo-CO₂ (C_a) from stomatal densities ν of fossil plant leaves.

FIGURE 1: Robert Kidston and David Thomas Gwynne-Vaughan share a pipe over fossils from the Rhynie cherts (ca. 1920).

Model input

- (i) Anatomic data of fossil leaves.
- (ii) Photosynthesis parameters, in case of fossils to be taken from living descendants or relatives (photosynthetic biochemical parameters are comparatively conservative).

Model output

 $\nu(C_a)$ -curves of the long-term variation of stomatal density which allow to infer palaeo-CO₂ (C_a) from the stomatal density (ν) of fossil plant leaves.

FIGURE 2: Cross section through a leaf, diffusional currents and morphological parameters.

Background

1. Land plants are under pressure to maximise assimilation and to minimise transpiration.

Since transpired H₂O molecules leaving the leaf and CO₂ molecules entering it use the same leaf openings ("stomata") land plants face a hunger vs. thirst dilemma.

FIGURE 3: Leaf openings (stomata) on lower leaf surface of *Ginkgo biloba* (left) and stomatal anatomy (right).

Plants cope with this conflict by varying stomatal conductance *g* by

(i) opening and closing stomata actively, reacting on the diurnal cycles of incident solar radiation Q, temperature T, atmospheric humidity w_a and soil water supply,

(ii) varying the stomatal density ν by creating or removing whole stomata, reflecting long-term changes in C_a .

2. An optimisation principle ([1],[3],[4]) — the core of our model — predicts a fictitious stomatal conductance g_{opt} solely from information about the environmental variables of Q, T and w_a and from the "strength" of photosynthesis.

3. Since plants seem to act as predicted ([5]), the equality $g = g_{opt}$ implies the sought for relation $\nu(C_a)$.

4. Because the model is analytic, sensitivity studies can be easily performed (e.g. to assess which input parameters have the highest impact on the results).

References

- [1] Konrad, W., Roth-Nebelsick, A., Grein, M., (2008). Modelling of stomatal density response to atmospheric CO₂. *Journal of Theoretical Biology* **253**, 638–658.
- [2] Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta **149**, 7890. 31
- [3] Cowan, I.R., 1977. Stomatal behaviour and environment. Adv. Bot. Res. 4, 117228.
- [4] Mäkelä, A., Berninger, F., Hari, P., 1996. Optimal control of gas exchange during drought: theoretical analysis. Ann. Bot. 77, 461467.
- [5] Berninger, F., Mäkelä, A., Hari, P., 1996. Optimal control of gas exchange during drought: empirical evidence. Ann. Bot. 77, 469476.

The model

Plant regulation of gas exchange

Fick's Law allows to express stomatal conductance in terms of leaf anatomy (see Fig. 1):

$$g = \frac{D_{\text{CO}_2}}{\left[\left(d_{bl} + d_{as}\frac{\tau_{as}^2}{n_{as}}\right) + \frac{d_{st}}{va_{st}}\right]} \tag{1}$$

Plants adjust g to g_{opt} by varying the stomatal cross section a_{st} (short-term regulation) or the stomatal density ν (long-term regulation).

Submodel diffusion

Leaves and atmosphere exchange CO_2 and H_2O by diffusion. Fick's Law connects transpiration rate E with stomatal conductance g and the H_2O concentrations within leaves (w_i) and atmosphere (w_a) and similarly for the assimilation rate A and the CO_2 concentrations C_i and C_a $(a := D_{H_2O}/D_{CO_2})$.

$$E = g a (w_i - w_a) \qquad A = g (C_a - C_i) \tag{2}$$

Submodel photosynthesis

Assimilation of C_3 plants consumes CO_2 molecules according to the Farquhar model ([2]) of photosynthesis $(q, \Gamma, K, R_d \text{ depend on } T)$:

$$A = q \frac{C_i - \Gamma}{C_i + K} - R_d \tag{3}$$

FIGURE 4: The more CO_2 molecules (C_i) are around the chloroplasts the more assimilates (A) they produce.

Submodel optimisation

Combining (2) and (3), A and E can be expressed in terms of the stomatal conductance g:

$$A[g] = \frac{1}{2g} \left\{ g(C_a + K) + (q - R_d) - \sqrt{[g(C_a - K) - (q - R_d)]^2 + 4g(gKC_a + q\Gamma + KR_d)} \right\} \qquad E[g] = (w_{sat} - w_a) \ ag \tag{4}$$

Optimisation according to "Variation subject to constraints" (weighing carbon gain $\int_{\Delta t} A[g] dt = \max$. by assimilation versus water loss $\int_{\Delta t} E[g] dt = W_0$ by transpiration) produces the (fictitious) optimum stomatal conductivity

$$g_{opt} = \frac{1}{(C_a + K)^2} \left\{ \sqrt{\frac{q(K + \Gamma) \left[C_a (q - R_d) - (q\Gamma + KR_d) \right]}{\left[C_a + K - \lambda (w_{sat} - w_a) \right] \lambda (w_{sat} - w_a)}} \left[C_a + K - 2\lambda (w_{sat} - w_a) \right] + (q - R_d) C_a - (q\Gamma + KR_d) - q(K + \Gamma) \right\}$$
(5)

Once g_{opt} is known, insertion into (4) produces A and E. The relation $v(C_a)$ is obtained from equating (5) and (1), replacing stomatal area a_{st} by maximum stomatal area a_{st}^{max} and solving for v.

Results for Ginkgo biloba

Input values

Symbol Value

Leaf anatomical parameters

Table 1: Photosynthetic, environmental and anatomical parameters used to calculate $\nu(C_a)$ related to *Ginkgo biloba*.

Quantity/Source/Remarks

Leaj an	aiomicai parameie	<i>i</i> 8
l	$84 \pm 11 \text{ mm}$	Average leaf length
d_{st}^{geom}	$31.9 \pm 3.7 \ \mu \text{m}$	Depth
w_{st}^{max}	$1.2 \pm 0.4 \ \mu \mathrm{m}$	Maximum width
h_{st}	$13.1 \pm 1.7 \ \mu \text{m}$	Length
		of stomatal opening
d_{as}	$218 \pm 32 \; \mu \text{m}$	Thickness
$ au_{as}$	1.571	Tortuosity
n_{as}	0.35	Porosity
		of assimilation tissue
Environ	mental parameters	•
u_{wind}	$3 \mathrm{m/s}$	Wind speed
W_{rel}	60 %	Relative atmospheric hu-
		midity
T	19.07 °C	Temperature
λ	1.57×10^{-3}	"Cost of water"
Photosy	enthetic parameters	S
q	$4.28 \mu \text{mol/m}^2/\text{s}$	Maximum rate of carboxy-
		lation
R_d	$0.11 \mu \text{mol/m}^2/\text{s}$	•
		rate in the light
K	$205\mu\mathrm{mol/mol}$	A Michaelis-Menten con-
		stant
Γ	$43 \mu \text{mol/mol}$	CO ₂ -compensation point in
		the absence of dark respira-
		tion

Output: $\nu(C_a)$ -curves

Each family of $\nu(C_a)$ -curves has been generated by varying just one of the parameters of the input parameter set of Table 1.

Leaf anatomical parameters:

Conclusions

1. Stomatal density ν depends strongly on atmospheric CO₂ concentration C_a , leaf temperature T, atmospheric humidity w_a , soil water content (hidden in λ), stomatal area a_{st} , stomatal depth d_{st} and the photosynthetic parameter q.

Compared to these, the influence of the other parameters in Table 1 (for example, wind speed) is negligible.

2. The model ties the (fossil) stomatal density not only to (palaeo-)atmospheric CO₂-concentration, but also to stomatal anatomy and the three (palaeo-)environmental quantities temperature, atmospheric humidity and soil water content.

3. Attempts to obtain the atmospheric CO₂ concentration from stomatal density (or stomatal index) should therefore be accompanied by additional palaeoclimate studies of the considered sites.