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Goal
Reconstruction of palaeo-CO(Cg) from stomatal densi
tiesy of fossil plant leaves.

Plant regulation of gas exchange Submodel photosynthesis

Fick's Law allows to express stomatal conductance in termieaf
anatomy (see Fig. 1):

Assimilation of G plants consumes C{Omolecules according to the
Farquhar model ([2]) of photosynthesig, (', K, Ry depend o).

_ Deo,
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Plants adjusy to gopt by varying the stomatal cross sectiag (short-
term requlation) or the stomatal densityflong-term regulation).

| (1) | 3)

Submodel diffusion

Leaves and atmosphere exchange,@@d HO by diffusion. Fick’s
Law connects transpiration ratewith stomatal conductangeand the RS
H->O concentrations within leavew) and atmosphereng) and simi- f

larly for the assimilation raté and the CQ concentration&; andCy
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Ficure 1. Robert Kidston and David Thomas Gwynne-Vaughan sh

a pipe over fossils from the Rhynie cherts (ca. 1920). Ficure 4: The more C@molecules ;) are around the chloroplasts the more assi

llates (A) they produce.
Model input

(1) Anatomic data of fossil leaves.

(i) Photosynthesis parameters, in case of fossils to
taken from living descendants or relatives (photosynthée
biochemical parameters are comparatively conservati

A=9(Ca-GCj) (2)

Submodel optimisation
Model output
v(Cgq)-curves of the long-term variation of stomatal de
sity which allow to infer palaeo-C&(Cj3) from the stom-
atal density ¢) of fossil plant leaves.

Combining (2) and (3)A and E can be expressed in terms of the stomatal conducigince

Alg] = 2—1g {g (Ca+K)+(Q-Rg) - \/ [9(Ca—K) - (4 - Ry)]* +4g(gKCa + qT + KRd)} E[g] = (Wsat — Wa) ag (4)

Optimisation according to “Variation subject to constraints” (weighing carbon g@m[g] dt = max. by assimilation versus water Ioﬁ& E[g] dt =
W by transpiration) produces the (fictitious) optimum storhataductivity

o - 1 (\/Q(K+F)[Ca(q—Rd)—(qr+KRd)] |

Cat K02 | VICat K = A (Weat — Wa)] A (Wegg —wg) 2 T ¢~ &t (Weat = Wall + (G = Ra) Ca = (G0 + KRa) — (K + r)) (5)

Ficure 2. Cross section through a leaffidisional currents and mor

ohological parameters Oncegopt Is known, insertion into (4) producesand E. The relationv(Cy) Is obtained from equating (5) and (1), replacing stomatad ageby

maximum stomatal areal® and solving fory.

Background

1. Land plants are under pressure to maximise assi
tion and to minimise transpiration.

Since transpired bD molecules leaving the leaf and GC
molecules entering it use the same leaf openings (“st
ata”) land plants face a hunger vs. thirst dilemma.

Results for Ginkgo biloba

Environmental Parameters:

|nput values Output: v(C,)-curves

Each family ofy(Cg)-curves has been gener-
ated by varying just one of the parameters of
the input parameter set of Table 1.

TaBLE 1. Photosynthetic, environmental and anatom-
iIcal parameters used to calculatéC,) related to
Ginkgo biloba.
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Ficure 3: Leaf openings (stomata) on lower leaf surfacesaofikgo dg i 0
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(i) opening and closing stomata actively, reacting on 1571 Tortuosity
diurnal cycles of incident solar radiatia®, temperature 0.35 Porosity

: . . of assimilation tissue
T, atmospheric humidityy and soil water supply,
(1) varying the stomatal densityby creating or removing
whole stomata, reflecting long-term change€in Uing ~ 3M/S
2. An optimisation principle ([1],[3],[4]) — the core o Whel c0%
our model — predicts a fictitious stomatal conducta T
Jopt Solely from information about the environmental va A
able:_:, ofQ, T andwy and from the “strength” of photosy Photosynthetic parameters | N
theS_IS. _ q 4.28umol/m?/s Maximum rate of carboxy- q Ry
3. Since plants seem to act as predicted ([5]), the equa lation |
d = gopt Implies the sought for relation(C). R
4. Because the model is analytic, sensitivity studies ca
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easily performed (e.g. to assess which input parame
have the highest impact on the results).
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Conclusions

1. Stomatal density depends strongly on at-
mospheric CQ concentratiorCy, leaf tem-
peature T, atmospheric humidityvs, soll
water content (hidden i), stomatal area
agt, stomatal deptldg and the photosyn-
thetic parameteq.

Compared to these, the influence of the other
parameters in Table 1 (for example, wind
speed) is negligible.

2. The model ties the (fossil) stomatal den- 3. Attempts to obtain the atmospher
sity not only to (palaeo-)atmospheric GO CO, concentration from stomatal densit
concentration, but also to stomatal anatomy, (or stomatal index) should therefore be &
and the three (palaeo-)environmental quanti:  companied by additional palaeoclimate st
ties temperature, atmospheric humidity and  ies of the considered sites.

soll water content.




