
Corresponding author: Wilfried Konrad 
E-mail: wilfried.konrad@uni-tuebingen.de 

 
Journal of Bionic Engineering 6 (2009) 350–356 

 
 

Applying Methods from Differential Geometry to Devise Stable and  
Persistent Air Layers Attached to Objects Immersed in Water 

 
Wilfried Konrad1, Christian Apeltauer1, Jörg Frauendiener2,3,  

Wilhelm Barthlott4, Anita Roth-Nebelsick1,5 
1. Institute for Geosciences, University of Tübingen, D-72076 Tübingen, Germany 

2. Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand 
3. Centre of Mathematics for Applications, University of Oslo, NO-0317 Oslo, Norway 

4. Nees Institute for Biodiversity of Plants, University of Bonn, D-53115 Bonn, Germany 
5. State Museum of Natural History Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 

 

Abstract    
We describe a few mathematical tools which allow to investigate whether air-water interfaces exist (under prescribed 

conditions) and are mechanically stable and temporally persistent. In terms of physics, air-water interfaces are governed by the 
Young-Laplace equation. Mathematically they are surfaces of constant mean curvature which represent solutions of a nonlinear 
elliptic partial differential equation. Although explicit solutions of this equation can be obtained only in very special cases, it is 
– under moderately special circumstances – possible to establish the existence of a solution without actually solving the 
differential equation. We also derive criteria for mechanical stability and temporal persistence of an air layer. Furthermore 
we calculate the lifetime of a non-persistent air layer. Finally, we apply these tools to two examples which exhibit the symme-
tries of 2D lattices. These examples can be viewed as abstractions of the biological model represented by the aquatic fern 
Salvinia. 
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1  Introduction 

Air-water interfaces are important for many appli-
cations. The behaviour of air-water interfaces is dictated 
by their shape, mechanical stability and temporal per-
sistence. These features of air-water interfaces (resp. of 
the air layers enclosed by them) depend on the surface 
geometry and chemical properties of the object to which 
they are attached, on the hydrostatical and hydrody-
namic pressures acting upon the interface, and on the air 
content of the surrounding water which continuously 
exchanges air molecules with the air layer held by the 
object. 

 
1.1  Existence and shape 

The forces acting upon an interface (resp. the air 
layer enclosed by it) can settle to an equilibrium only if 
the Young-Laplace-Equation[1], 

pa = pw + 2 H ,                          (1) 

is compatible with (i) the geometry of the boundary 
between air-water interface and the solid to which it is 
attached and (ii) the contact angle between interface and 
solid object. pa and pw denote air and water pressure, 
respectively, on the two sides of the interface, and  the 
surface tension. H is the mean curvature of the interface 
(for a sphere of radius R, H = 1/R). 

Characterising the interface by the function u(x,y) 
(see Fig. 1) the mean curvature can be written more 
explicitly 

2 2
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If the pressure difference pa  pw across the interface is a 
constant for all points of the interface, Eq. (1) implies 
that the mean curvature H is a constant, too. If so, Eq. (2) 
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takes the form of a nonlinear elliptic partial differential 
equation whose solutions u(x,y) represent surfaces of 
constant mean curvature (“cmc-surfaces”). Eq. (2) is 
completed by boundary conditions, usually a prescrip-
tion of (i) the shape of the contact line between air-water 
interface and solid and (ii) the contact angle  between 
interface and solid object. There is, however, no guar-
antee that solutions of Eq. (2) exist which are compatible 
with arbitrary contact angles and arbitrarily shaped 
boundary geometries. 

 
1.2  Mechanical stability 

With regard to many applications, an air layer 
around an object is useful only if the air-water interface 
returns to its equilibrium position after a (small) per-
turbation. Both the surface geometry of the object to 
which the air-water interface is attached and the contact 
angle are essential for the stability of an interface. Upon 
Taylor expansion of Young-Laplace-Equation and 
Gas-Equation around a point of mechanical equilibrium, 
it turns out that the quantity 

a

a a 0

d2
d

p H
V V

 ,                    (3) 

indicates whether a mechanical equilibrium is stable (  
> 0) or not (  < 0)[2,3]. (Va denotes the volume of the air 
layer.) 

 
1.3  Persistence 

Aside from mechanical stability, the durability of 
an air layer around a solid object is to a high degree 
controlled by the exchange of “air” molecules between 
the air layer and – via diffusion through the surrounding 

water – the atmosphere. The Young-Laplace-Equation, 
Henry’s Law 

a H a atm H atm,   ,p k c p k c                  (4) 

and Fick’s Law of diffusion 

j = Da grad c ,                        (5) 

allow to derive the also intuitively plausible criterion pa 
 patm for the persistence of an air layer of pressure pa 

which is in diffusional exchange with the atmosphere 
(pressure patm). Henry’s Law states a proportionality 
between the mole fractions ca (resp. catm) of air in water 
and the pressure pa (resp. patm) of the air on the other side 
of the liquid/gas interface. kH is Henry’s Law constant. j 
denotes the flux of air molecules diffusing through water 
and Da denotes the accordant constant of diffusion. Ob-
viously, the air layer disappears if pa > patm lasts suffi-
ciently long, and it grows whenever pa < patm is realised. 

A systematic description of shape, stability and 
persistence of an air-water interface (resp. an air layer) 
which adheres to a given solid support would ideally 
start with solving the boundary value problem repre-
sented by Eq. (2) for u(x,y). The result would allow to 
calculate the gas volume V, the mean curvature H and 
then – via Eqs. (1) and (3) – the quantity  which is 
related to mechanical stability. Finally, the criterion pa  
patm for the temporal persistence of the air layer could be 
assessed. This direct approach often fails at the first step, 
since Eq. (2) can rarely be solved explicitly. 

More often, however, it is possible to establish the 
existence (or nonexistence) of a solution without actu-
ally calculating it. Similarly, moderate complex inter-
face/solid configurations allow sometimes to assess 
whether a given air layer is also mechanically stable and 
persistent or not. 

In what follows we will demonstrate in more detail 
this approach of combining exact information about 
existence, stability and persistence with approximate 
knowledge about the shape of an interface. In the next 
section we present a few intermediate results exhibiting 
a certain generality. Then we apply these results to spe-
cific examples. 

2  Intermediate results 
2.1  Shape, curvature and existence 

We consider a regular lattice-like arrangement of 
vertical pillars with constant cross section standing on a 

x 

u(x,y)
y 

Liquid, pw

Solid

Gas, Pa

 
Fig. 1  The shape of the interface is described by giving the 
distance u(x,y) (measured parallel to the z-axis) between 
xy-plane and interface for every point (x,y) on the xy-plane. pa 
and pw denote air and water pressure, respectively, on the two 
sides of the interface, and  the contact angle. 
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horizontal solid flat plane. We assume that an interface 
has formed stretching from pillar to pillar like a tent’s 
roof. 

We would like to know whether solutions of Eq. (2) 
exist if we prescribe the geometry of the (2D) unit cell of 
the lattice, the pillar radius and the contact angle be-
tween pillar and interface. Due to the symmetry of the 
situation it is sufficient to consider just one unit cell (see 
Fig. 2). Focussing on a single unit cell, the boundary 
condition consists of two parts: along the contact line of 
pillar and interface the contact angle  can be arbitrarily 
prescribed, along the borders of the unit cells it has the 
value  =  /2 because otherwise, the symmetry of the 
situation would not allow a smooth interface. 
 

ˆ

 
Fig. 2  Lattice-like arrangement of vertical pillars with constant 
cross section (solid circles) seen from above. The domain  
(hatched region, area | |) borders the pillar along ˆ . (In the 
situation depicted, the length | ˆ | amounts to a quarter of the 
pillar’s circumference.) 
 

Application of the 2D divergence theorem yields a 
relation between mean curvature, contact angle and 
geometry of the elementary cell 

ˆcos | |
2 | |

H  .                           (6) 

It is possible to derive a necessary and sufficient 
criterion[4,5] for the existence of a solution of the 
boundary value problem just described. Starting from 
the divergence theorem one performs a variety of ma-
nipulations and obtains eventually a scheme consisting 
of two steps. 

Step 1: Try to inscribe into the domain  a (circular) 
arc  of radius 

| |
ˆ| || cos |

R                              (7) 

which fulfills two conditions (see Figs. 2 and 3): (i) the 
angle between arc and ˆ  equals the contact angle , (ii) 
the angle between arc and any other boundary of  is 
90 . 

If this proves to be impossible, an interface u(x,y) 
(i.e. a solution of Eq. (2)) which spans across the lattice 
characterised by the geometry  and ˆ  and forms a 
contact angle  with the pillars does exist. 

If it is possible to inscribe such an arc  into , 
proceed to Step 2 to resolve the question of existence. 

Step 2: The arc  cuts both the domain  and the 
contact line ˆ  into two pieces (for the definitions used 
in what follows consult Fig. 4). Calculate the functional 

* *
ˆ| | cosˆ[ ] | | | | cos | |

| |
    (8) 

for every arc  which could be inscribed into  in Step 1. 
If [ ] > 0 for all arcs  related to the same boundary 
conditions a solution u(x,y) of Eq. (2) under these 
boundary conditions exists. If one obtains [ ]  0 for at 
least one of these arcs, no solution (i.e. no interface) 
exists. 
 

ˆ

 
Fig. 3  Two circular arcs (  =  resp.  = ) satisfying the condi-
tions of Step 1. 
 

ˆ

ˆ

 
Fig. 4  Left:  > /2, Right:  < /2. 
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2.2  Persistence 
We consider the situation depicted in Fig. 5. A 

spherical interface of radius  containing air of pressure 
pa is submersed in water at depth h below a flat water 
surface, above which the atmosphere (under air pressure 
patm) resides. Clearly, for 

pa  patm   (“Persistence condition”) ,    (9) 

the submersed air bubble persists; whereas for pa > patm, 
it will have disappeared after some time . 
 

 
Fig. 5  Air bubble (radius , pressure pa, depth h) in diffusional 
contact with the atmosphere (pressure patm). For ca > catm 
(equivalent to pa > patm), air particles leave the bubble and diffuse 
along the trajectories ending in arrowheads towards the atmos-
phere. 
 
2.2.1  Persistent bubble and submersion depth 

Since the overlying water body contributes to the 
pressure within the bubble according to 

pw = patm + wgh ,                   (10) 

( w denotes the density of liquid water, g the gravita-
tional acceleration), it depends on the submersion depth 
h whether the bubble persists or dissolves. Insertion of 
Eq. (10) into Eq. (1) produces a criterion for the sub-
mersion depth h: persistence requires that h fulfills the 
condition 

w

2 Hh h
g

.                      (11) 

We call h  the maximum persistence depth. If the air 
holding structure fulfills the assumptions leading to  
Eq. (6) (i.e. a lattice-like arrangement of vertical pillars 
with constant cross section standing on a horizontal solid 
flat plane) we may insert Eq. (6) into Eq. (11) and arrive 
at 

w

ˆcos | |
| |

h
g

 .                       (12) 

It implies immediately that interfaces which attach to 
hydrophilic surfaces (which are characterised by a con-
tact angle 0 <  <  /2, leading to positive values of cos ) 
can not persist. 

 
2.2.2  Non-persistent bubble and lifetime 

A bubble which violates the persistence condition 
Eq. (9) (or, equivalently, Eq. (11)) will vanish after a 
time . We now calculate  if the pressures pa and patm, 
the air bubble radius , its depth h and its air particle 
content na are prescribed. 

First, we use Henry’s Law to obtain the associated 
mole fractions ca and catm via Eq. (4). They are a pre-
requisite for the formulation of a boundary value prob-
lem for the diffusion equation 

a
c D c
t

 ,                          (13) 

whose solution provides via Fick’s Law the flux j of air 
particles. Integration of j across the water/atmosphere 
interface gives the total air current I. Assuming temporal 
constancy of I (i.e. ignoring that during the first phase of 
diffusional transport particles have already left the bub-
ble but no particles have yet arrived at the atmospheric 
interface), the lifetime  of the submersed air bubble 
follows eventually from 

an
I

 .                               (14) 

Neglecting “switch-on” effects implies that this expres-
sion underestimates the real bubble lifetime. Put dif-
ferently,  represents a lower boundary for bubble life-
time. Another implication of ignoring “switch-on” ef-
fects is that it suffices to consider the time-independent 
version of Eq. (13), 

a0 D c  .                            (15) 

Appropriate boundary conditions for this equation are (i) 
at the water/atmosphere interface 

0 atm|zc c  ,                            (16) 

and (ii) at the water/air boundary of the submersed 
bubble 

2 2 a( )
|

z h
c c  .                    (17) 

Exploiting the axial symmetry of the situation we move 
to cylindrical coordinates ( , , z), where  

2 2x y , 
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represents the distance from the z-axis, and  denotes the 
angle of rotation around it. An appropriate solution for 
the problem of Eqs. (15), (16) and (17) is given by the 
function[6] 

a atm a atm
atm 2 2 2 2

( ) | ( ) |( , )
( ) ( )

c c c cc z c
z h z h

.  (18) 

It satisfies Eqs. (15) and (16) exactly and (17) in good 
approximation provided /2h << 1. This is realised if the 
air retaining structures of the submersed object are small 
compared to the submersion depth. Notice that  is as-
sumed to represent half the maximum length of these 
structures. 

Upon insertion of Eq. (18) into Eq. (5) we find 

a atm
0 a 3

2 2

( )
| 2z

c c
hD

h
j  .                (19) 

Integration over the xy-plane (i.e. the water/atmosphere 
interface) yields 

2

a a atm 3
2 20 0

a a atm

2 ( )

4 ( ).                                     (20)

d dI hD c c
h

D c c

 

Combining Eqs. (14), (4) and (20) with the Gas Equation 
paVa = naRT we obtain for the bubble lifetime 

a a

a a atm4 ( )
Hp V k

D RT p p
 ,               (21) 

where R and T are the gas constant and temperature, 
respectively. 

Noting that at depth h the water pressure pw splits 
up according to pw = patm + wgh, we insert Eq. (1) into 
Eq. (21) and get 

a H atm

a w

1
4 2

V k p
D RT gh H

 .    (22) 

Replacing H in favour of h  (defined in Eq. (11)) we 
obtain for the bubble lifetime (or at least its lower 
boundary) the overall result 

a H atm

a w

                                                if  

1     if  
4 ( )

h h

V k p
h h

D RT g h h
 .   (23) 

The validity of Eq. (23) is not restricted to h  > 0. Al-
though the descriptive meaning of the term “maximum 
persistence depth” is obvious only for /2 <  < , the 
mathematical machinery behind Eqs. (9), (11) and (23) 

works fine also if the contact angle is in the interval  
0 <  < /2. 

3  Examples 

We consider two specific examples which have in 
common a lattice-like arrangement of vertical pillars 
with constant cross section standing on a horizontal solid 
flat plane. In one case, the pillars form a (2D) cubic 
lattice, and in the other case, a hexagonal lattice (see  
Fig. 6). It is to be expected that in both cases an interface 
stretches from pillar to pillar like a tent’s roof, similar to 
that in Fig. 7 which represents already an abstraction of 
the leaf surface of the floating fern Salvinia[7]. 

In what follows we shall need the unit cell area | | 
and the contact line length | ˆ | associated with it ex-
pressed in terms of the lattice constant a and the pillar 
radius r. They are 

Hexagonal lattice 
2 23 2 ˆ| | ,   | |=
12 3

a r r  ,        (24) 

Cubic lattice 
2 2

ˆ| | ,   | |=
4 2

a r r  .               (25) 

 

 
Fig. 6  Hexagonal (left) and cubic (right) lattice of vertical pillars 
seen from above. a denotes the lattice constant. The polygons in 
the centres outline the unit cell of the respective lattice. 
 
 

 
Fig. 7  The surface of the floating fern Salvinia is enclosed by an 
air layer whose outer interface stretches between pillarlike pro-
trusions, resembling a tent’s roof. 



Konrad et al.:  Applying Methods From Differential Geometry to Devise Stable and Persistent  
Air Layers Attached to Objects Immersed in Water 355

3.1  Shape and Existence 
Applying the existence criterion described in Sec-

tion 2.1 we find that for a hexagonal lattice an interface 
exists for all values of the contact angle , the lattice 
constant a and the pillar radius r (provided a  2r is 
satisfied). In the case of the cubic lattice, however, there 
are combinations of  and a/r which allow no solution 
(see Fig. 8). 
 

a / r
2 3 4 5 6

0

45

90

135

180

(d
eg

re
e)

 
Fig. 8  Area of existence of an interface attached to round pillars 
arranged in a 2D cubic lattice. The lattice constant a is given in 
multiples of the pillar radius r, thus a  2r,  is contact angle. No 
solution exists for the (a / r, )-pairs in the hatched regions of the 
(a / r, )-plane. 
 
3.2  Stability 

Combining Eqs. (6) and (24) (resp. Eq. (25)) one 
sees that the curvature H of the interface u(x,y) depends 
only on the area of the unit cell (defined by the pa-
rameters a and r) but not on the thickness of the air layer. 
Thus, the quantity Eq. (3) reduces to 

a

a 0

0
p
V

 ,                        (26) 

i.e. the interface is stable against (small) mechanical 
perturbations. 
 
3.3  Persistence 

Application of Eq. (12) for the maximum persis-
tence depth h  as function of the lattice constant a pro-
duces Fig. 9. Obviously, increasing the distances be-
tween the pillars (i.e. increasing the lattice parameter a) 
decreases the depth h  within which submersed air 
bubbles do not peter out. Furthermore, the contact angle 
(pairs of solid and broken curves correspond to  = 95 , 
120 , 160 ) has a greater effect on h  than the arrange-
ment of the pillars (solid lines: cubic lattice, broken lines: 
hexagonal lattice). Notice that the curves corresponding 
to the cubic lattice and to the contact angles  = 120  and 
 = 160  exist only for a 13 μm and a 17 μm (see  

Fig. 8), respectively, if the pillars have radius r = 5 μm. 
Air bubbles which are deeper submersed than h  

disappear after a time , according to Eq. (23). Fig. 10 
depicts the dependence of  on the difference h  h  for 
an air volume Va = b1 b2 l. b1 and b2 denote the side 
lengths of the rectangular solid plane on which the pil-
lars are erected, l denotes the (averaged) initial thickness 
of the air layer. The radius  which appears in the deri-
vation of  in section 2.2 follows from equating the in-
terface area b1b2 with the surface area 4 2 of a sphere 
with radius . 
 

h
 (m

)

 
Fig. 9  Maximum persistence depth h  as function of the lattice 
constant a for r = 5 μm (see Eq. (12)). Solid and broken lines are 
related to the cubic and hexagonal lattices depicted in Fig. 2. The 
pairs of curves correspond to the contact angles  = 95  (closest to 
axes),  = 120  (central) and  = 160 . 
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Fig. 10  Lifetime  of an submersed air bubble as function of the 
difference h  h  according to Eq. (23). Input values: T = 293 K, 
Va = b1b2l with l = 30 μm, b1 = 18 mm, b2 = 13.5 mm. 

4  Conclusions 

We have demonstrated that fundamental properties 
of air-water interfaces attached to pillars which are  
arranged as 2D lattices can be deduced without solving 
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explicitly the differential equation which governs the 
shape of such interfaces. Efforts to devise submersed 
objects, which are able to develop air layers with pre-
scribed behaviour with respect to stability and persis-
tence, may benefit from this approach. 

In the future we will expand two aspects of our 
approach. 

(i) At first sight, Eq. (26) predicting stability of 
interfaces attached to arbitrarily wide lattices seems to 
contradict common sense. However, Eq. (26) rests on 
the assumption of small deflexions of an interface from 
its equilibrium position. Thus, we presume that an  
improved stability criterion, which compares various 
formation energies quantitatively (and is therefore not 
restricted to small perturbations), will remedy this de-
fect. 

(ii) So far we examined air layers which are at-
tached to pillars of constant radius and constant contact 
angle. According to section 2.2 such air layers show a 
very delicate behaviour with respect to persistence: at 
any submersion depth other than h  (defined in Eq. (12)) 
they necessarily lose or accumulate air molecules. This 
rigid coupling between persistence and the properties of 
the solid, to which the air layer attaches, is a direct con-
sequence of the constancy of pillar radius and contact 
angle. Hence, it appears worthwhile to extend our ap-
proach to (a) pillars of non-constant radius (e.g. cones), 
(b) pillars with varying contact angle, and (c) flexible 
pillars. First results indicate that such pillars may lead to 
the formation of air layers which are both stable and 
persistent at a wide range of submersion depths. 
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