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Abstract. During plant water transport, the water in the conducting tissue (xylem) is under tension.
The system is then in a metastable state and prone to bubble development and subsequent embolism
blocking further water transport. It has recently been demonstrated, that embolism can be repaired
under tension (= novel refilling). A model (Pit Valve Mechanism = PVM) has also been suggested
which is based on the development of a special meniscus in the pores (pits) between adjacent conduits.
This meniscus is expected to be able to isolate embolized conduits from neighbouring conduits during
embolism repair. In this contribution the stability of this isolating meniscus against perturbations is
considered which inevitably occur in natural environments. It can be shown that pit shape affects the
stability of PVM fundamentally in the case of perturbation. The results show that a concave pit shape
significantly supports the stability of PVM. Concave pit shape should thus be of selective value for
species practicing novel refilling.
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1. Introduction

According to the Cohesion-Tension Theory, upward water flow in land plants is
generated by a water potential gradient driven by transpiring leaves [1, 2]. This
mechanism can cause large tension gradients in the xylem, the water-conducting
tissue of vascular plants [3–5]. Because it is in a metastable state, this system can be
easily disturbed by the development of gas bubbles within these conduits, block-
ing transport of the water [6–8]. The water-transporting conduits of the xylem
are tracheids or vessels formed by dead lignified cells with a typical radius of
30 µm . . . 100 µm. The conduits are not laterally tight capillaries. Their walls are
strewn with pores (=pits) which represent lateral channels between adjacent con-
duits. Water can flow through these pits from one conduit to a neighbour conduit.
The pit channel between two adjacent conduits is separated by a porous membrane
(=pit membrane) which represents the primary wall.
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There are several possible mechanisms of bubble development during plant
water transport [4, 9] It is, however, generally assumed that embolism events de-
velop in many cases from an initially small, gas filled cavity in the xylem. This
pre-existing bubble is drawn through the pores of the pit membrane into a func-
tioning conduit (the “air seeding hypothesis,” [10]). The expansion of the gaseous
space stops when the gas bubble reaches the conduit pits. This process leads to
embolism preventing any further water transport. There is recent evidence that
embolism occurs frequently during daily xylem water transport and can be re-
moved (1) very quickly (within minutes) and (2) – at least in several species –
under xylem tension, that is, during transpiration [11–14]. The last observation,
termed as “novel refilling,” is difficult to explain [12, 15]. The following questions
arise:
1. How is it possible that water moves into an embolized conduit when negative

pressures exist in the adjacent functioning conduits? According to the pressure
gradient (higher pressure in the embolized conduit than in the non-embolized
conduits), water should rather flow out of the embolized conduit than into it.

2. How is it possible under these circumstances to achieve bubble dissolution in
the embolized conduits, i.e. how can the positive pressures needed for refilling
coexist with tension?

3. How is hydraulic continuity restored?
It has recently been suggested that (1) living cells within the xylem can supply

embolized conduits with water needed for refilling [16] and (2) the surface prop-
erties and the pit geometry of the conduits cause interfacial effects which lead to
hydraulic isolation and contribute to bubble dissolution [17]. This mechanism is
termed as Pit Valve Mechanism (=PVM) throughout the rest of this paper. Ac-
cording to [17], novel refilling would thus rely on (1) a biological basis and (2) a
physical basis represented by PVM. A biophysical analysis of PVM concentrating
on the temporal course of bubble growth or bubble dissolution during embolism
repair has been recently presented [18]. The essence of the repair scenario is that
a “reverse meniscus” (see Figure 1) can develop between a gas bubble in the pit
chamber (termed as “PB”, pit bubble, throughout the rest of this text) and the water
in an embolized conduit if the contact angle and the geometry of the pit chamber
are suitably related. The interface then exerts pressure upon the water and not upon
the gas and is probably able to hydraulically isolate the embolized vessels from
their intact neighbours, so that the high pressure required to drive the gas back into
solution can be generated in the embolized conduit only. Although the study [18]
demonstrated that PVM is principally possible there are still open questions con-
cerning the reliability and biological relevance of PVM. One significant aspect is
how stable PVM is against perturbations from external forces which inevitably oc-
cur in a natural environment (for example, mechanical vibrations caused by wind
or animals) and how pit shape affects PVM. In this paper, the stability of PVM
against perturbations and the influence of pit shape are investigated in detail. It will
be demonstrated that pit shape is of high significance for the stability of PVM.
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Figure 1. Section through a pit along its axis of symmetry. The shape of the pit is described
by the function z = f (ρ) (lower, right part of figure). The other parts of the pit shape arise
from (1) mirror symmetry with respect to the z = 0-plane (upper, right part of figure) and (2)
rotational symmetry around the z-axis (left part of figure). The function z = M(ρ) describes
the membrane, which bends because of the pressure difference between the embolized vessel
(pressure pe > 0) and the intact vessel (pressure pi < 0) towards the latter. θ denotes the contact
angle between water and pit wall. η is the angle between the tangent of the function f (ρ) and
the z = 0-plane, thus tan η = f ′(ρ). s denotes the radius of the (unbent) pit membrane, w the
radius of the pit mouth, and H the height of a half pit along its symmetry axis.

In the present article, we do not discuss PVM in general. For a general exposition
as well as for the details of PVM we refer to [17, 18].

2. Concept of Stability for Axisymmetric Pit Bubbles

The reasoning in this section follows a line of thought given in Shen et al. [19]
for spherically symmetric gas bubbles immersed in a liquid of either positive or
negative pressure.

Our goal is to find a criterion which allows to decide whether or not a meniscus
at a given position within a pit represents a point of stable or of unstable equilibrium
with respect to small perturbations of the position of the meniscus.

If the gas bubble neither contracts nor expands, we may conclude that within
the gas/liquid-interface an equilibrium exists between (1) the “confining” liquid
pressure pe, and (2) the “expansive” pressure p̃ exerted by the expansion seeking
gas within the bubble plus the surface tension of the reverse meniscus of the PB
which acts, due to the pit geometry, also in an “expansive” way.

We start from the equation of an ideal gas

p̃ = RT n

V
(1)

and from the Young–Laplace Equation

p = pe − 2γ

R
(2)
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where the quantity R denotes the radius of curvature of the meniscus (the geometry
is depicted in Figure 1) and expand p̃ and p in Taylor series with respect to V
around the equilibrium value V = V0,

p̃(V0 + dV ) = p̃(V0) − RT n

V0
2 dV + (terms of order (dV )2 and higher) (3)

p(V0 + dV ) = p(V0) + 2γ

R0
2

d R

dV

∣
∣
∣
∣
0

dV + (terms of order (dV )2 and higher) (4)

Retaining only terms linear in dV , we obtain

δp : = p̃(V0 + dV ) − p(V0 + dV ) = { p̃(V0) − p(V0)}
−

[RT n0

V0
2 + 2γ

R0
2

d R

dV

∣
∣
∣
∣
0

]

dV (5)

The expression in the braces in Equation (5) disappears because of the assumed
equilibrium at V = V0, i.e. p̃(V0) = p(V0).

For an interpretation of Equation (5) recall that δp denotes the discrepancy
between expansion and contraction seeking pressures which develop after a distur-
bance connected with a volume change dV . Simplifying the terms in the brackets
with Equations (1) and (2) and applying the definition

ξ :=
[

1

V

(

pe − 2γ

R

)

+ 2γ

R2

d R

dV

]

0

(6)

(each quantity is to be evaluated at its equilibrium value, denoted by the index 0),
Equation (5) reads as

δp = −ξ dV (7)

On inspection of Equation (7) we notice that two cases may be realized:
1. ξ > 0: In this case, an increase in bubble volume (i.e. dV > 0) implies δp < 0.

That is, the initial (externally caused) increase in volume makes the contracting
forces dominate the expanding forces, whereupon the bubble volume V returns
to its equilibrium value V0, provided, the system is undisturbed afterwards. A
decrease in bubble volume (i.e. dV < 0), however, implies δp > 0, hence the
bubble volume is expanded to the equilibrium value from which it was “perturbed
away”. Thus, if ξ > 0, equilibrium is restored irrespective of the sign of the
perturbation dV .

2. ξ < 0: In this case, dV > 0 implies δp > 0 and dV < 0 implies δp < 0. The
consequences are quite different from the previous case, because an increase in
bubble volume (dV > 0) now leads to a strengthening of the expanding forces
(δp > 0) leading to a further bubble expansion. Similarly, an initial decrease of
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bubble radius reinforces the contracting forces resulting in a further contraction
of the bubble, etc. Thus, once the equilibrium has been perturbed, it will never
be restored.

From Equation (6) we draw the conclusions:
1. If pe (the liquid pressure in the embolized conduit) is high enough, every pit

bubble exhibits stable equilibrium.
2. As the difference pe − (2γ /R) represents via the Young-Laplace-Equation (2)

the (necessarily positive) pressure in the PB, d R/dV > 0 implies ξ > 0. For
d R/dV < 0, however, ξ may be positive or negative, depending on the absolute
value of d R/dV . Thus, d R/dV > 0 is sufficient (although not necessary) for
stability.

Further conclusions require more explicit prescriptions of the geometry of the pits
to be investigated.

3. Pit Shape – General Considerations

Small variations in shape have a profound influence on stability, precise data of
the morphology of pits are, however, difficult to obtain. Therefore, we approach
the problem of PB stability from a more theoretical point of view: we apply the
stability criterion Equation (7) to several “typical” but idealized pit forms and
try to identify pit shapes which are able to support stability of PVM. Support
for approach comes from the principle of natural selection which suggests that
pit shapes fulfilling the stability criterion are more likely expressed by plants
than those failing in this respect, provided, that embolism repair actually takes
place and if stability in the sense defined above is a necessary prerequisite for
it.

For the sake of simplicity, we assume axial symmetry of the pits (with the axis
normal to the pit membrane) because then, any liquid/gas-interface figures as a
section of a sphere of radius R. Figure 1 shows a pit connecting an intact (upper
part of figure) and an embolized (lower part of figure) vessel. We introduce coordi-
nates r (the distance from the symmetry axis) and z (identical with the symmetry
axis).

The shape of the pit is described by the function z = f (r ) and, s, the ra-
dius of the (unbent) pit membrane, w, the radius of the pit mouth, and H , the
height of a half pit along its symmetry axis. θ is the contact angle between wa-
ter and pit wall. Finally, η denotes the angle between the tangent of the func-
tion f (r ) and the z = 0-plane, thus tan η = f ′(r ). z = M(r ) describes the
shape of the membrane which is possibly bent towards the upper part of the
pit.

The radius R of the meniscus developing in the lower part of the pit and the gas
volume between meniscus and pit membrane can be calculated quite generally, if the
contact angle θ and the pit shape z = f (r ) are given (and if f (r ) behaves sensible).
Employing the definitions of the quantities θ and η, we infer with standard methods



62 W. KONRAD AND A. ROTH-NEBELSICK

of geometry for a meniscus touching the pit wall at position (r, z) = (ρ, −ζ ):

R(ρ) = ρ

sin(θ − η(ρ))
= ρ

√

1 + f ′(ρ)2

sin θ − f ′(ρ) cos θ
(8)

Similarly, from formulas of trigonometry, the height g(ρ) (measured along the
z-axis) of the spherical segment denoted Vkal in Figure 2 is calculated as

g(ρ) = R(ρ)[1 − cos(θ − η)] = R(ρ)

[

1 − cos θ + f ′(ρ) sin θ
√

1 + f ′(ρ)2

]

(9)

From Figure 2 it is apparent that the gas volume V (ρ) within the PB can be
obtained via V = Vmem + Vint − Vkal.
1. The volume Vkal follows from geometrical formulas related to spheres:

Vkal(ρ) = π

3
g(ρ)2[3 R(ρ) − g(ρ)] (10)

2. Vint is calculated by cutting the volume into a stack of circular discs of radius
r (z) and of thickness dz, sharing the problem’s symmetry around the z-axis. The
connection between the z-position and the radius r of each disc is provided by
the relation z = f (r ), hence,

Vint(ρ) = π

∫ 0

−ζ

f −1(z) dz (11)

where the integration is from z = −ζ (where the meniscus touches the pit
wall) till the z = 0-plane. Application of the substitution rule of integration
with respect to the relation z = f (r ) implies dz = f ′(r ) dr (a prime denotes
differentiation with respect to the argument), f −1(−ζ ) = ρ and f −1(0) = f (s),

Figure 2. Volumes involved in the calculation of the gas volume within the pit (Equations (10)
through (14)). Oblique cross hatching (Vmem) denotes the gas volume between the z = 0-plane
and the distorted pit membrane, simple oblique hatching (Vint − Vkal) denotes the gas volume
between the z = 0-plane and the gas/liquid interface and horizontal hatching designates the
spherical segment Vkal. Vkal is filled with liquid, not with gas.
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provided f is a one-to-one function. If so, Vint takes the form

Vint(ρ) = π

∫ s

ρ

r2 f ′(r ) dr (12)

The examples of the relation z = f (r ) we shall calculate below, are one-to-one
functions.

3. Vmem is calculated similarly as Vint by exploiting first its symmetry with respect
to the z-axis

Vmem(ρ) = π

∫ M(0)

0
r2 dz = π

∫ 0

s
r2 M ′(r ) dr (13)

and then using the substitution rule of integration with respect to the relation
z = M(r ).
Collecting these contributions we arrive eventually at

V (ρ) = Vint(ρ) − Vkal(ρ) + Vmem(ρ)

= π

∫ s

ρ

r2 f ′(r ) dr − π

3
g(r )2[3 R(r ) − g(r )] + π

∫ 0

s
r2 M ′(r ) dr (14)

The “typical” pit forms we will consider share the following geometric proper-
ties: (1) the radius s of the (unbent) membrane, (2) the “mouth radius” w, and
(3) the half height H (as measured along the symmetry axis). Thus, a curve
z = f (r ) describing the pit shape has to pass through the points (r, z) = (s, 0)
and (r, z) = (w, −H ).

4. Shape of the Pit Membrane

Before proceeding with the analysis of the influence of pit shape on the stability
of PVM, we have to consider the shape of the pit membrane. In a pit connecting
two intact vessels, the membrane should be unbent, i.e. coincide with the plane
z = 0. After an embolism has occurred and a PB isolates intact and embolized
vessel from each other, the former vessel remains under negative pressure (typically
pi ≈ −4 MPa . . . − 1 MPa) whereas the pressure pe within the latter increases to
a positive value, probably close to atmospheric pressure (i.e. pe ≈ 0.1 MPa), as
explained in the introduction. The membrane therefore bulges towards the intact
vessel and assumes the shape z = M(r ). In SEM pictures, deformed pit membranes
can be observed [20]. Additionally, there are indications of pit membrane fatigue
after embolism events due to strong mechanical load and deformation [21]. Thus,
deviations from the original (unbent) shape of the pit membrane have to be taken
into account.

We will now explore which shape of a bent pit membrane is appropriate, be-
cause the function z = M(r ) which contributes to the expression V (r ) for the gas
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volume in the pit (Equation (13)) has to be determined as a prerequisite for cal-
culating ξ (Equation (6)). The appropriate way to treat this situation would be to
calculate the shape of the membrane caused by the pressure difference from the
elasto-mechanical properties of pit membranes. Because these are – to the authors
knowledge – not known, we examine two somewhat idealized cases that can be
treated without this information.
1. We consider a very stiff membrane that remains in the z = 0-plane in spite of

the pressure difference trying to bend it, i.e.

M(r ) = 0 (15)

2. For the sake of simplicity, we assume only the central part of the membrane to be
undeformably stiff; its periphery, however, we assume to be very elastic. Then,
the pressure difference pushes the membrane along the positive z-axis until its
elastic periphery clings to the pit wall (desribed by the function z = f (r )) and
the central part is located on the pit opening towards the intact vessel like a flat
lid:

M(r ) =
{− f (w) if 0 ≤ r ≤ w

− f (r ) if w ≤ r ≤ s
(16)

In both cases, the gas volume above the z = 0-plane contributes to V (r ) (as
calculated in Equation (13)) only a constant term which is independent of the coor-
dinate r and vanishes therefore from the derivative dV/dr . Thus, in the treatment
we are going to apply, the second term in ξ (Equation (6)) is not affected by the re-
action of the membrane to changes in the pressure difference of the gaseous content
of the PB which occur after the event of embolism has taken place. The contribution
of M(r ) to the first term in ξ (via V (r )) can be easily calculated.

5. Pit Shape – Examples

There is an infinity of shape-defining curves. We choose to describe curved pit walls
by

f(r ) = z0 + b

a

√

a2 − (r0 − r )2 (17)

which is part of an ellipse with centre (r, z) = (r0, z0) and long and short half axes
a and b, respectively (see Figure 3).

Four conditions are necessary to determine the four constants r0, z0, a and b. Two
of them are derived from the condition that the pit curve should have its endpoints
at (r, z) = (s, 0) and (r, z) = (w, −H ). Insertion of these into Equation (17) gives

0 = f(s) = z0 + b

a

√

a2 − (r0 − s)2 (18)

− H

2
= f(w) = z0 + b

a

√

a2 − (r0 − w)2 (19)
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Figure 3. Pit, generated by rotating part of an ellipse around the symmetry axis of the pit, i.e.
the z-axis. The general features of the pit shape are defined by the quantities s, w and H . Its
detailed features are described by a section of the ellipse of Equation (17), which contains the
four constants r0, z0, a and b. By adjusting their values appropriately, the real pit shape can be
approximated.

The remaining two constants follow from other conditions: we could demand, for
instance, that f (r ) touches two more prescribed points. Alternatively, we require
f (r ) to form the angle ηs with the z = 0-plane at the point r = s and, likewise, the
angle ηw with the z = −H -plane at r = w. Employing Equation (17) this amounts
to

tan ηs = f ′(s) = b

a

r0 − s
√

a2 − (r0 − s)2
(20)

tan ηw = f ′(w) = b

a

r0 − w
√

a2 − (r0 − w)2
(21)

Calculation of r0, z0, a and b from the system of Equations (18) to (21) completes
pit shape determination.

We now consider four different pit forms. Three of them (Figures 4, 5 and 7)
are derived from (17) by choosing specific values for ηs and ηw, the fourth one
(Figure 6) is generated by rotating a straight line around the symmetry axis of the
pit.

Concave pit (a), Figure 4 (ηs = 0, ηw = θ ):

f (r ) = − H

s − w − 2 H cot θ

(

s − w − H cot θ

−
√

(s − w − H cot θ )2 − (s − r )2

(

1 − 2 H cot θ

s − w

))

(22)

Concave pit (b), Figure 5 (ηs = 0, ηw = π/2):

f (r ) = − H

s − w
(s − w −

√

(s − w)2 − (s − r )2) (23)
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Figures 4–7. The four pit shapes of Equations (22) to (25) (for orientation see also Figure 1).
• Upper pits open into intact, lower pits open into embolized vessels.
• Right halves of the figures are related to a very stiff, immovable membrane (Equation (15)),
left halves correspond to a partially stiff, partially elastic membrane adapting to the shape of
the pit wall (Equation (16)).
• Membranes are indicated by thick, broken lines.
• Sectors of circles represent liquid/gas-interfaces. Thin, broken lines indicate interfaces which
cannot exist, because they would touch the membrane (higher r -values, all figures) or because
they imply negative pressures in the PB (lower r -values, between asterisks in Figure 6 [r	 =
0.83 µm] and Figure 7 [r	 = 1.03 µm]).
• Thick black strokes beneath the pit walls indicate possible positions of stable interfaces.
• Arrows point to minima of the interface radii of curvature R(r ) in Figure 4 (r↗ = 0.89 µm)
and Figure 5 (r↗ = 0.85 µm).
• Values common to all figures: radius of pit membrane s = 2.5 µm, radius of pit mouth w =
0.5 µm, half height of pit H = 0.54 µm, pressure within embolized vessel pe = 100 000 Pa
(cf. Figure 1). All interfaces form the same contact angle (θ = 50◦) with the pit wall.
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Straight walled pit, Figure 6:

f (r ) = − H

s − w
(s − r ) (24)

Convex pit, Figure 7 (ηs = π/2, ηw = 0):

f (r ) = − H

s − w
(
√

(s − w)2 − (r − w)2) (25)

The range of r is in all cases restricted to

w ≤ r ≤ s (26)

6. Application of Stability Criterion – Effects of Pit Shape on PVM

Insertion of the definitions of pit and membrane shape (Equations (22) to (25)
and Equations (15) or (16)) into Equations (8) to (9) allows explicit calculation of
R(r ), V (r ) and ξ (r ). We do not give here the resulting, rather lengthy expressions,
because the main results can be more easily obtained from Figures 4–7. These
have been calculated for the following (common) values: Contact angle between
interfaces and pit wall: θ = 50◦, radius of pit membrane: s = 2.5 µm, radius of
pit mouth: w = 0.5 µm, height of pit: H = 0.54 µm, pressure within embolized
vessel: pe = 100 000 Pa.

Before inspecting the results, we summarize conditions which are to be satisfied
by successfully operating gas/liquid-interfaces:
1. Interfaces should bulge towards the intact vessel, that is, every interface at

position r = ρ should obey the inequality θ > η(ρ) = arctan f ′(ρ) (cf.
Figure 1).

2. An interface should not touch the membrane, as otherwise water molecules from
both sides of the membrane would come into contact, and the conductivity of
the xylem sap through the membrane would be restored. This would lead to a
breakdown of hydraulic isolation.

3. An interface should be stable, i.e. the inequality ξ (ρ) > 0 should be fulfilled
for an interface at position ρ.

4. Being filled by a gas, the pressure in the PB should be positive. The condition
p > 0 implies via the Young-Laplace Equation (2), R(ρ) > 2 γ /pe ≈ 1.44µm.
The numerical value is obtained upon insertion of pe = 100 000 Pa ≈ patm.

Conditions (1) and (2) are related solely to geometric properties of a pit, whereas
(3) and (4) also include the liquid pressure pe in the embolized vessel.

It should be noted at this point that the results concerning stability presented so
far, do apply not only to gas bubbles which consist solely of air molecules but also to
bubbles including water vapour. This is possible because the underlying principles
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of the model considerations presented above are not restricted to a special gas (apart
from the assumption that they can be treated as an ideal gas).

In the following, the results depicted in Figures 4–7 will be analyzed with respect
to the suitability of the different pit shapes for PVM. The degree of suitability is
reflected by the ability of the pit shape to maintain stability of hydraulic isolation
by obeying conditions (1)–(4).

We recall that the first term in ξ (Equation (6)) is necessarily (independent of
pit shape) positive, if condition (4) is fulfilled. The second term in ξ , however, can
attain both signs: for d R/dV > 0 it is positive, for d R/dV < 0 it is negative.
Thus, the second term in ξ is shape-dependent, not in a very obvious way but
– because of d R/dV = (d R/dρ)/(dV/dρ) – rather through the ρ-dependance
of the radius of curvature of the liquid/gas-interface R(ρ) and of the gas volume
V (ρ).

The different degrees of suitability of the pit shapes of Figures 4–7 for main-
taining stability during perturbation can be summarized as follows:
• Since all conditions apply, the concave pit with ηw = θ (Equation (22), Figure 4)

is best suited to maintain stability of hydraulic isolation of an embolized vessel,
at least for the parameter values given above. Notice, that for ρ-values between
the arrows in Figure 4 the relation d R/dV > 0 holds, hence both terms in ξ are
positive. ρ-values beyond the arrows are connected with d R/dV < 0, thus the
second term in ξ is negative. Altogether, however, ξ > 0 is valid and stability is
maintained.

• The concave pit with ηw = 0 (Equation (23), Figure 5) is very similar to the
concave pit with ηw = θ . The only difference lies in the “stability gap” in the
case of the partially elastic membrane (left halve of Figure 5), which opens up
because the balance between the positive first and negative second term in ξ is
in this case more delicate.

• The pit with straight walls (Equation (24), Figure 6) exhibits stability only if
the membrane is – at least partially – elastic. This can be understood as fol-
lows: The derivative d R/dV = (d R/dρ)/(dV/dρ) is negative for all interfaces
(as can be seen from inspection of Figure 6: obviously, dV/dρ is a decreas-
ing function of ρ, whereas d R/dρ increases with ρ). Therefore, stability is
restricted to ρ-values for which the gas volume V (ρ) is comparatively small, and
the first, positive, term in ξ becomes – due to its 1/V (ρ)-dependancy – larger
than the second, negative term. Figure 6 (left halve of Figure) shows that this
occurs with higher ρ-values of the elastic membrane, because then the fluid/gas-
interface lies relatively close to the upper pit wall, thus leaving little gas space
V (ρ).

In contrast, the gas volume between the stiff membrane and an interface close
to it (right part of Figure 6) is much larger and diminishes the positive first term
in ξ to such an extent that ξ as a whole remains below zero. Comparison with the
concave interfaces in Figures 4 and 5 reveals that straight walls are unfavourable
with respect to minimizing the gas volume V (ρ).
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We note that interfaces with r ≤ 0.83 µm (indicated by an asterisk in the
figure) generally violate condition (4) (the pressure in the PB should be positive)
and therefore cannot exist.

• The convex pit (Equation (25), Figure 7) does not allow for stability since the
derivative d R/dV is negative for all interfaces and the sum of both terms in ξ is
negative even for a partially elastic membrane.

7. Concluding Remarks

The results of these theoretical studies demonstrate the significance of detailed pit
shape for the functionality of PVM. Additionally to the basic prerequisite archi-
tecture – the funnel-shaped appearance – concave curvature of the pit chamber is
beneficial for PVM, because it leads to the maintenance of the hydraulic isolation
of the embolized pit under mechanical perturbations, which will inevitably occur
in a natural environment (e.g. wind, animals). This effect is not restricted to a spe-
cial gas and is thus applicable to both air and water vapour bubbles. As is also
demonstrated in this study, the deformation of the pit membrane due to the strong
pressure difference between functioning and embolized conduits also contributes
to the stability of PVM. Hence, it may be speculated that interfacial effects in wood
play a significant functional role in plant water transport under various aspects.

From this we draw the conclusion that PVM – if it is biologically relevant –
should lead to concave pit shapes by natural selection. In order to verify this hy-
pothesis, it will be necessary to collect detailed information about the shapes of real
pits, preferably from SEM-pictures of undistorted xylem vessels of various species.

Further research should also address the possible functional implications of
the numerous microstructures which are expressed by wood conduits, because the
above results indicate that at least some of them may be involved in interfacial
effects. Combined studies concerning physical, anatomical and ecophysiological
aspects are expected to contribute significantly to our knowledge of fluid behaviour
in wood on the micrometer/nanometer scale.
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Note Added in Proof

During the publication procedure of this manuscript, a new paper was published
by Salleo et al. (2004) in which (1) novel refilling in Laurus nobilis L. was again
confirmed and (2) the refilling process was interpreted to be dependent on living
cells.
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S. Salleo, Lo Gullo, M.A., Trifilo, P. and Nardini, A.: New evidence for a role of
vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems
of Laurus nobilis L. Plant Cell Environ. 27 (2004), 1065–1076.
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