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The dynamics of gas bubbles in conduits of vascular plants
and implications for embolism repair
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Abstract

Pressure-induced tensions in the xylem, the water conducting tissue of vascular plants, can lead to embolism in the water-

conducting cells. The details and mechanisms of embolism repair in vascular plants are still not well understood. In particular,

experimental results which indicate that embolism repair may occur during xylem tension cause great problems with respect to

current paradigms of plant water transport. The present paper deals with a theoretical analysis of interfacial effects at the pits (pores

in the conduit walls), because it was suggested that gas–water interfaces at the pit pores may be involved in the repair process by

hydraulically isolating the embolized conduit. The temporal behaviour of bubbles at the pit pores was especially studied since the

question of whether these pit bubbles are able to persist is of crucial importance for the suggested mechanism to work. The results

indicate that (1) the physical preconditions which are necessary for the suggested mechanism appear to be satisfied, (2) pit bubbles

can achieve temporal stability and therefore persist and (3) dissolving of bubbles in the conduit lumen may lead to the final

breakdown of the hydraulic isolation. The whole process is, however, complex and strongly dependent on the detailed anatomy of

the pit and the contact angle.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

According to the cohesion-tension theory, upward
water flow in land plants is generated by a pressure
gradient originating in the water loss of transpiring
leaves (Zimmermann, 1983; Tyree and Ewers, 1991).
This mechanism may cause large tension gradients in the
xylem, the water-conducting tissue of vascular plants
although the magnitude of the tension is still under
debate (Pickard, 1981; Holbrook et al., 1995; Pockman
et al., 1995; Steudle, 2001). This paper will concentrate
on an important aspect of xylem tension: the develop-
ment of gas bubbles within the xylem conduits, the
tracheids or vessels, which lead to blockage of water
transport (Tyree and Sperry, 1989; Tyree and Yang,
1990; Milburn, 1991).

It is generally assumed that an embolism develops
from an initially small, air filled cavity in the xylem.
Numerous pores (pits), which represent gaps in the
secondary cell wall, exist on the walls of tracheids or
vessels. A porous membrane, the pit membrane, is
located in the centre of the pits. According to the ‘‘air
seeding hypothesis’’, air is drawn through the pores of
the pit membrane into a functioning conduit and leads
to embolism which prevents further water transport
inside the now embolized conduit (Sperry and Tyree,
1988).

The xylem is able to recover from embolism (Tyree
et al., 1999; Holbrook et al., 2001). It is assumed that
one important factor is represented by the (positive)
root pressure which removes the gas filled spaces within
the conduits by forcing the bubbles into solution,
because the xylem pressure has to exceed a certain
threshold value for bubble dissolution, depending on the
radius of the conduits (Tyree et al., 1999). A corre-
sponding physical model is based on the pressure values
and the geometry of the conduits (Yang and Tyree,
1992). Embolism recovery occurs, in fact, frequently
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over night or during rain periods when pressure values
inside the xylem favour bubble solution (Magnani and
Borghetti, 1995). In vines, embolism recovery is observed
during spring when high root pressures occur (Ewers
et al., 1991; Cochard et al., 1994). Stem pressure can also
be involved in embolism reversal (Sperry et al., 1988).

There is recent evidence that embolism represents a
frequent and regular phenomenon during daily xylem
water transport and can be removed (i) very quickly
(within minutes) and (ii) possibly under xylem tension,
that is, during transpiration (Salleo et al., 1996;
McCully, 1999; Tyree et al., 1999). Experimental
indications that embolism repair may occur under xylem
tension represent a serious problem within the current
paradigms of water transport. The various single
questions arising through this observation are: (i) how
does water move into an embolized conduit when
negative pressures exist in the adjacent functioning
conduits and (ii) how can under these circumstances
pressure values be achieved in the embolized conduit
which allow for bubble dissolution? Recently, it was
suggested that (i) living cells within the xylem would
be able to supply embolized conduits with water, and
(ii) surface properties and pit geometry of the
conduits cause special interfacial effects which lead to
hydraulic isolation and contribute to bubble dissolution
(Holbrook and Zwieniecki, 1999).

Anatomical studies carried out by Zwieniecki and
Holbrook (2000) corroborate this suggestion, because
contact angle and pit geometry are in agreement with
the physical pre-conditions of this model. However, no
further physical analysis of this putative mechanism,
which relies heavily on thermodynamic processes, exists
so far. The temporal course of bubble growth or bubble
dissolution is especially of crucial importance to
embolism repair. The present paper concentrates on a
detailed physical analysis of the interfacial processes
which can take place if bubbles appear in xylem
conduits. This analysis includes the temporal behaviour
of bubbles in the lumen of xylem conduits, interfacial
effects which can be expected at the pit and how these
effects influence pressure within ‘‘pit bubbles’’ and their
temporal dynamics. The analysis starts with the
consideration of a simple spherical bubble and the
results will be integrated into the exploration of which
requirements are necessary for a successful ‘‘valve’’
function of a bubble situated at a pit pore.

2. Dynamics of a spherically symmetric bubble

2.1. Volume, surface tension, pressure and number of gas

molecules of a spherically symmetric bubble

In the following sections, it will be described how the
temporal behaviour of a gas bubble immersed in a liquid

can be derived from parameters such as bubble volume,
pressure inside and outside the bubble, surface tension,
temperature and dissolution dynamics of the gas
molecules inside the bubble. We consider a spherically
symmetric gas bubble of radius R: Its volume (cf. Fig. 1) is

V ¼
4p
3

R3: ð1Þ

The pressure p inside the bubble (cf. Fig. 2) is given by the
Young–Laplace equation as the sum of the pressure ps in
the surrounding liquid and a second term which stems
from the surface tension g of the gas/liquid interface,

p ¼ ps þ
2g
R
: ð2Þ

By treating the gaseous content of the bubble as an ideal
gas, we can calculate the number n of gas molecules inside
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Fig. 2. Pressure p in the bubble as a function of bubble radius R;
according to Eq. (2). The pressure ps in the surrounding liquid

amounts to ps ¼ 101 325 Pa (broken line, cases 1 and 2) and ps ¼
�101 325 Pa (solid line, cases 3 and 4), respectively (see text). Surface
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Fig. 1. Bubble volume V as a function of bubble radius R; according
to Eq. (1) (cases 1–4, see text).
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the bubble from the equation for a perfect gas (note that
R represents the gas constant and not a radius, T denotes
absolute temperature, cf. Fig. 3):

n ¼
pV

RT
¼

1

RT

4p
3
ðpsR

3 þ 2gR2Þ: ð3Þ

Before inspecting Eq. (3) further, we notice that the
surface tension g is always positive, whereas the pressure
ps in the liquid is not, because negative pressures can occur
in the xylem. The cases ps > 0 and pso0 lead to quite
different behaviour, as will become evident in the
following sections.

Eq. (3) shows that nðRÞ becomes zero at R ¼ 0;
whatever value ps attains. We first consider the case of
ps > 0: This means for the plant that no xylem tension
exists. This is the case, for example, during the night or
in periods of rainfall and high humidity. A positive
xylem pressure implies that nðRÞ is a positive and
monotonically increasing function of R for RX0: No
bubble (and therefore no gas particles) exist for R ¼ 0;
but for R > 0 an expanding bubble can house increasing
numbers of gas particles. This behaviour is illustrated by
Fig. 3. According to Eq. (2), the pressure p inside the
bubble then approaches the pressure ps of the surround-
ing liquid asymptotically with increasing bubble radius.
Now we consider the case pso0: Negative xylem
pressure (i.e. xylem tension) can occur in the xylem
during transpiration and/or water stress. For pso0; the
function nðRÞ has a second zero on the positive R-axis at

Rmax :¼
2g
�ps

: ð4Þ

This is depicted by Fig. 3. In the case of pso0; the
function nðRÞ is thus positive only if R lies in the interval
0pRp� 2g=ps: Since nðRÞ is a continuous function, it

must attain an extremum for some R-value within this
interval, which lies at

Rm :¼ �
4g
3ps

: ð5Þ

Insertion of Eq. (5) into Eq. (3) returns that the
maximum number of gas molecules, which can be
accomodated in a spherically symmetric bubble sur-
rounded by a liquid at negative pressure, depends only
on the temperature T ; the gas constant R; the pressure
pso0 (the negative xylem pressure) and the surface
tension g of the gas/liquid interface. The maximum
number of gas molecules is given by

nmax :¼
2p g
RT

8g
9ps

� �2

: ð6Þ

The existence of this maximum can be understood in
terms of physics. The gas molecules with their inherent
tendency to expand the volume that they occupy,
are ‘‘kept together’’ by (i) the surface tension and
(ii) the pressure ps of the surrounding liquid as long as
the latter quantity is positive. A negative liquid pressure
ps; however, acts ‘‘in the same direction’’ as the
(potentially) expanding gas particles and the confine-
ment of the gas molecules must be provided solely by
the surface tension term in Eq. (2). Since the volume and
the surface of a sphere are proportional to R3 and R2;
respectively, and the former grows more rapidly with R

than the latter, it is intuitively evident that the surface
tension will be dominated by the volume pressure
beyond a certain R-value. Consequently, the number
of particles which can be accomodated within the bubble
without risk of bursting is limited.

We summarize at the end of this section that under
negative xylem pressure:

(i) a gas bubble can only contain a certain maximum
number of gas molecules and

(ii) the radius of a gas bubble has an upper limit.

2.2. Physical basis of temporal bubble behaviour

We now proceed to the dynamics of the bubble. Our
goal is to calculate RðtÞ; i.e. the temporal behaviour of
the radius of the bubble. Once RðtÞ is known, the
functions V ðtÞ; pðtÞ and nðtÞ can be derived from
relations (1), (2) and (3).

For the sake of simplicity, we assume that the gas
particles inside the bubble and the external liquid belong
to different chemical species, i.e. air inside the bubble
and water outside. This simplification limits our model
to embolism events caused by ‘‘air seeding’’. This is a
reasonable limitation, resting on two arguments: (i)
There is evidence that most embolism events are caused
by ‘‘air seeding’’ (Sperry et al., 1996), (ii) although water
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Fig. 3. Particle number n in the bubble as a function of bubble radius

R; according to Eq. (3). The pressures ps in the surrounding liquid

have values ps ¼ 101 325 Pa (broken line, cases 1 and 2) and ps ¼
�101 325 Pa (solid line, cases 3 and 4), respectively. Absolute
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molecules tend to vaporize into bubbles consisting
initially only of air, their fraction of the total particle
content will usually remain small, because it is propor-
tional to the ratio between the water vapour pressure
and the total pressure in the bubble. Thus, if the latter
amounts to p ¼ 1 atm ¼ 101 325 Pa; at a temperature of
25�C only about 3.2% of the particles in the bubble are
water molecules. Under this assumption the dynamic
behaviour of the bubble rests upon two physical effects:

(i) when gas contacts a liquid at an interface, gas
particles dissolve into the liquid according to
Henry’s Law which states that the (partial) pressure
of the gas (inside the bubble) p and the concentra-
tion CR of the dissolved gas particles in the liquid in
the near vicinity of the bubble (which is the meaning
of the index R) are proportional to each other (see
Fig. 4):

CR ¼ kHp; ð7Þ

(ii) if the concentration of dissolved gas particles in
the surrounding liquid deviates from the value CR;
diffusional currents, directed from areas of higher
to areas of lower concentration arise.

As the combined result of both processes we expect that
gas particles are transported either out of and away
from the gas bubble or into the opposite direction. This
process continues until an equilibrium situation is
attained.

2.3. Calculation of temporal evolution of spherically

symmetric bubbles

Our starting point to calculate RðtÞ is the observation,
that changes in the number n of gas particles in the bubble
must be generated by the diffusional current I ; as long as
no other processes take place which consume (or produce)
gas particles. The corresponding equation reads as

�
dn

dt
¼ I : ð8Þ

Since we adopt the convention that a positive diffusional
current transports particles away from the bubble, Eq. (8)
contains a minus sign. By means of the chain rule of
differentiation we conclude

�
dn

dt
¼ �

dn

dR

dR

dt
¼ I ; ð9Þ

which implies the equation

dt

dR
¼ �

dn=dR

I
: ð10Þ

nðRÞ is already explicitly given in Eq. (3). If the current I

can also be written as a function of R; the R-dependence
of the right-hand side of Eq. (10) can be calculated and
the integration

tðRÞ ¼ �
Z

dn=dR

IðRÞ
dR ð11Þ

can be performed. The calculation of IðRÞ is provided in
the Section A.1. Fig. 5 illustrates the results concerning

ARTICLE IN PRESS

Cd

R

d

Fig. 4. Schematic representation of a gas bubble (white) of radius R

immersed in a liquid (grey). Outside of a sphere of radius d (broken

line) the air concentration in the liquid is held at a constant value Cd :
In general, this gives rise to a radial diffusional current (white arrows).

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Radius [µm]

D
iff

us
io

na
l c

ur
re

nt
 [1

0
-1

5
m

ol
/s

]

-10

10

20

0

30

-20

-30

Req ReqReq

40

Fig. 5. Diffusional currents directed into or out of the bubble as a

function of bubble radius. The four curves correspond to cases 1–4 (see

text). The equilibrium radius Req is defined in Eq. (17) and

characterizes the bubble radius where diffusion ceases. The pressure

ps in the surrounding liquid and the pressure pd (equivalent to the air

concentrations Cd at a radial distance d ¼ 15 mm from the bubble)

have the following values: ps ¼ 101 325 Pa; pd ¼ 91 193 Pa (case 1,

upper broken line) ps ¼ 101 325 Pa; pd ¼ 253 313 Pa (case 2, lower

broken line) ps ¼ �101 325 Pa; pd ¼ 20 265 Pa (case 3, lower solid

line) and ps ¼ �101 325 Pa; pd ¼ 11 458 Pa (case 4, upper solid line),

respectively. Effective diffusion coefficient of air in water: S ¼ 1:95�
10�9 m2=s; Henry’s Law constant: kH ¼ 7:75� 10�6 mol=m3=Pa:

W. Konrad, A. Roth-Nebelsick / Journal of Theoretical Biology 224 (2003) 43–6146



IðRÞ for four different cases (explained in the following
sections). Insertion of Eqs. (A.9) and (A.10) (from
Appendix A) into Eq. (11) and subsequent integration
leads to

tðRÞ ¼ aðR � R0Þ þ bðR2 � R2
0Þ þ dðR3 � R3

0Þ

þ e log
R � Req

R0 � Req

� �
: ð12Þ

R0; the constant of integration in Eq. (12), is defined by
tðR0Þ ¼ 0: Thus, R0 denotes the bubble radius at time
t ¼ 0: The greek letters in Eq. (12) represent combinations
of the constants R; g; S and kH and the parameters T ;
Req; Rm and d:

a :¼
2

3RTSdkH

Req

Rm

ðd � ReqÞðRm � ReqÞ; ð13Þ

b :¼
�1

3RTSdkH

Req

Rm

ðRm � Req þ dÞ; ð14Þ

d :¼
2

9RTSdkH

Req

Rm

; ð15Þ

e :¼
2

3RTSdkH

R2
eq

Rm

ðd � ReqÞ ðRm � ReqÞ; ð16Þ

with Req as the ‘‘equilibrium radius’’ (R ¼ Req implies
I ¼ 0; as is shown in Section A.2)

Req :¼
2gkH

Cd � kHps

¼
2g

pd � ps

: ð17Þ

The pressure pd :¼ Cd=kH has been introduced in the last
expression purely for mathematical convenience. (Physi-
cally, it can be interpreted as the partial pressure of
(gaseous) air which is in equilibrium with (liquid) xylem
sap containing air molecules in a concentration Cd :) The
‘‘equilibrium radius’’ Req defined in Eq. (17) represents
the ‘‘final’’ radius of a bubble in those cases, in which
diffusion ceases after some time. A closer inspection of
Eqs. (12) and (A.11) (of Appendix A) reveals that four
qualitatively different cases of bubble behaviour exist:

Case 1 : 0opdops;

Case 2 : 0opsopd ;

Case 3 : pso� 2 pdo0;

Case 4 : �2 pdopso0: ð18Þ

Eq. (12) gives the time t as a function of the bubble
radius R: This may appear to be strange at first sight, but
as Eq. (12) is built up from a polynomial in R and a
logarithmic term containing R; R cannot be expressed as
a function of t: For the problem of exploring the temporal
development of a bubble it is completely irrelevant
whether the radius or the time is the independent variable.

The temporal behaviour of the bubbles for the four
different cases is illustrated in Figs. 6, 7, 8 and 9. A short
discussion of the different cases will be provided in the
following sections.
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Fig. 6. Temporal development of a spherically symmetric gas bubble

which is coupled by diffusion to a gas reservoir at constant pressure.

The bubble radius R is drawn along the abscissa, time t along the
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the present case, every curve either terminates at R ¼ 0 (because the

corresponding bubble has dissolved) or it extends till infinity. Figures
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2.4. Discussion of temporal evolution of spherically

symmetric gas bubbles

Case 1 (see Fig. 6): For a positive pressure 0opops of
the liquid surrounding the gas bubble, the bubble will
disappear after some time. According to the Young–
Laplace equation and Henry’s Law, the concentration
of dissolved gas particles in the liquid in the near vicinity
of the bubble is greater than their concentration at r ¼
d: Hence, the diffusional current I > 0 is directed out of
the bubble (see Fig. 5 or Eq. (A.9)). By losing gas
molecules, the radius of the bubble decreases (see Fig. 3
or Eq. (3)), and the pressure inside increases (see Fig. 2
or Eq. (2)), which results in an ongoing efflux of
particles of the bubble until it has dissolved. The
‘‘dissolution time’’ can either be taken from Figs. 6
and 7 (as the intersection of any curve starting at
R0oReq and the t-axis) or it can be calculated by setting
R ¼ 0 in Eq. (12). This case is realized in the xylem if,
for example, small bubbles dissolve during the night or/
and under root pressure.

Case 2 (see Fig. 7): For R0oReq the tðRÞ-curves show
the same features as in case 1.

A bubble of the initial radius R0 > Req; however, will
not dissolve but grow (in principle indefinitely). R0 > Req

implies that the concentration of the dissolved gas
particles adjacent to the bubble is smaller than their
concentration at r ¼ d: Thus, the diffusional current
Io0 is directed into the bubble (Fig. 5), the particle

number nðRÞ in the bubble increases and—according to
Fig. 3—also its radius. This leads to a decreasing bubble
pressure (Fig. 2) and to a diffusional current Io0: This
case represents conduit bubbles which cannot be
dissolved due to, for example, inability of the plant to
produce significant root pressure or large conduits
which allowed for the development of correspondingly
large bubbles (for example, after pit membrane damage
by fatigue, Hacke et al., 2001). The large vessels of ring-
porous woods are usually irreversibly blocked by
embolism events and new functioning vessels are formed
in the following growing season.

Case 3 (see Fig. 8): The ðR; tÞ-plot (Fig. 8) shows a
more complex structure than in the preceding cases. For
RoRm the interpretation is equal to case 1. This means
that bubbles with an initial radius smaller than Rm

dissolve despite pso0: For RmoRoReq; the diffusional
current I > 0 is directed out of the bubble (Fig. 5).
However, due to the existence of the maximum nmax ¼
nðRmÞ; the loss of particles leads to an increase in R

(Fig. 3). This leads to a decrease of p (Fig. 2) and a
subsequent decrease of I > 0: The process of particle loss
slows down as R approaches Req asymptotically and
stops eventually—in theory after an infinite, in reality
after a finite amount of time.

A similar behaviour develops for R > Req: Since Io0
is directed into the bubble (Fig. 5), n increases and R

decreases (Fig. 3). This leads to an increase in p (Fig. 2),
which slows down the particle influx via Io0: Again, R
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approaches Req and the whole process stops in an
‘‘asymptotic’’ manner at R ¼ Req: We may say, that
the equilibrium at R ¼ Req is stable in case 3, because
after a small perturbation of the bubble radius (say, to a
new radius R ¼ Req þ r with jrj5R) the equilibrium at
R ¼ Req will restore. A formal derivation of this
statement will be provided in Section A.3.

Case 4 (see Fig. 9): For RoReq the interpretation is as
in case 1, that is, the bubble will dissolve after a certain
time interval.

If R > Req in Fig. 9, the bubble appears to show an
‘‘impossible’’ behaviour: time appears to ‘‘stop’’ at R ¼
Rm for all curves who start at a R0 > Req: In all other
cases, the ðR; tÞ-curves behave as expected: they extend
either to temporal infinity (at R ¼ Req or for R-N)
or they intersect after a finite ‘‘dissolution time’’ with the
t-axis, because the bubbles have shrunk to the radius
R ¼ 0; i.e. they have completely dissolved. The strange
behaviour of bubbles with R0 > Req shown in Fig. 9
can be traced to the fact that for this special case the
equations presented in this paper have been stressed
beyond their ‘‘physical limit’’. This will be discussed in
the following.

From Figs. 5 and 3 we see that for every R > Req the
diffusional current is directed into the bubble and that
this influx of particles makes the bubble radius approach
R ¼ Rm; which represents the radius with the maximum
of n: At R ¼ Rm the current Io0 still transports
particles into the bubble, although it cannot accomodate
additional particles. The strange behaviour of the ðR; tÞ-
curves in Fig. 9 is an attempt of our mathematical
framework to deal with this contradiction although the
validity of Eq. (8) (which states that the bubbles’s only
way to lose particles is by means of a diffusional flux out
of the bubble) is already exhausted at R ¼ Rm:

What happens in reality is that the bubble deals with
the breakdown of Eq. (8) by splitting up into ‘‘daughter
bubbles’’. This behaviour is certainly beyond the limits
of Eq. (8). Once the daughter bubbles have formed,
they do again obey Eq. (8), until they reach the radius
R ¼ Rm (which may or may not happen) and the
splitting event repeats.

It is impossible to predict the number, sizes and
respective particle contents of the daughter bubbles
within the framework of the actual equations. Still, we
may be confident that the gross number of all particles
within all bubbles present is the same before and after a
splitting event. Eq. (3) connects the number of particles
in a bubble n with its radius R: Viewed as an equation
for R; Eq. (3) has two real solutions (that is, if Rm is
positive, a negative Rm implies one real solution). Thus,
even if the number of particles within a bubble ‘‘born’’
in a splitting event would be known in advance, the
ambiguity with respect to its radius would remain.

We now provide a short summary of this section.
Four different cases of bubble evolution arise, depend-

ing on xylem pressure and air concentration in the xylem
sap. Under positive xylem pressure, the bubble can
dissolve or it can grow (cases 1 and 2). Under negative
xylem pressure, bubbles with sufficiently small initial
radii dissolve (cases 3 and 4), the bubbles can grow
asymptotically until an equilibrium radius R ¼ Req is
reached (case 3), or splitting of the bubbles can occur
(case 4). The temporal development of a bubble with
R > Req in case 4 can be characterized as a succession of
time intervals with predictable behaviour, punctuated by
events with unpredictable outcome. It is possible to
calculate from Eq. (8) (or, rather from its solution,
Eq. (12)), when the next bubble splitting event will
occur. It is, however, not possible to calculate when the
event following the next one will take place. Since we do
not really need this information for our present
considerations, it suffices to keep in mind, that whenever
in case 4 the bubble radius attains the value R ¼ Rm; our
central vehicle of prediction (i.e. Eq. (8)) is superseded
by a process, whose outcome is only partially predict-
able. The temporal course of splitting events is further
discussed in Section A.2.

3. Dynamics of an axially symmetric pit bubble

3.1. Background and basics of repair scenario

The model of Holbrook and Zwieniecki (1999) and
Zwieniecki and Holbrook (2000) comprises the follow-
ing components (see Fig. 10):

(i) The positive pressure in the embolized conduit
(in contrast to the negative pressures within the
functioning conduits) promotes the dissolution of
the gas bubble.

(ii) The process of dissolution is enhanced by the
surface tension of the liquid/gas interface which
adds to the pressure of the liquid.

(iii) If the resulting pressure in the gas bubble is
sufficiently high, a diffusional flux of dissolved air
molecules to the adjacent conduits develops.

(iv) The pits connecting embolized and functioning
conduits show a special geometry. Their shape
leads to hydraulic isolation of the embolized vessel
from the adjacent conduits, because the effect of
surface tension of the liquid/gas interface and the
pressure of the liquid diminish each other. There-
fore, dissolution of the bubbles at/within the pits
(termed as ‘‘pit bubbles’’, PB, throughout the rest
of the paper) is less effective if compared to the
dissolution of the bubbles within the conduit lumen
(termed as ‘‘lumen bubbles’’, LB, throughout the
rest of the paper). In fact the pressure difference
between them may cause a diffusional current
which ‘‘feeds’’ the PB at expense of the LB.

ARTICLE IN PRESS
W. Konrad, A. Roth-Nebelsick / Journal of Theoretical Biology 224 (2003) 43–61 49



The success of this model depends largely on the
question if the dissolution of the ‘‘embolizing bubbles’’
can be completed before the hydraulic isolation of the
embolized vessel fails due to the dissolution of the PB.
Therefore, the temporal behaviour of both spherically
symmetric LB and of axially symmetric PB is of central
significance to embolism repair and to the general
dynamics of bubbles in xylem conduits.

Since an exact mathematical description of the
situation is impossible and a near-exact treatment
requires extensive use of numerical mathematics (which
is beyond the scope of this contribution), we pursue an
approximate quantitative approach to the processes
which are happening after an air seeding event.

In reality (see Fig. 10) LB and PB interact, because
generally the pressures in the LB and in the PB are not
the same and they are both different from the pressure
Cb=kH ; equivalent to the air concentration Cb in the
adjacent conduits. Therefore, diffusional currents be-
tween all three develop, which couple the dynamics of
the LB and the PB. Fig. 11 indicates the approximations
we employ (i) to break up this coupling on the
mathematical level and (ii) to obtain simple boundary
conditions on simply shaped geometrical forms, exhibit-
ing a high degree of symmetry. We assume that the LB
exchanges particles only with a sphere of radius d

around the LB where the air concentration in the liquid
has the constant value Cd : Similarly, the row of PB is
supposed to have diffusional contact only to a ‘‘bar’’ at

a distance D from the pit necks. Thus, the constant air
concentration Cb of the adjacent conduits has been
replaced by the constant air concentration Cd which is
also present in the embolized vessel, with the exception
of the sphere of radius d around the LB. In a sense, the
constant air concentration CD at distance D from the pit
necks replaces the diffusional current between the LB
and the PB. The dynamics of the LB and the PB are no
longer coupled.

The following part of the paper concentrates on the
putative ‘‘valve’’ function of PB. Hereby, the results of
the analysis of LB dynamics are used as basis for the far
more complex problem of the interfacial effects at the
PB. We discuss the dynamics of a PB under the aspect of
achieving the hydraulic isolation of an embolized vessel
from its intact neighbours. Thus, we assume that the
liquid in the embolized vessel is under a positive pressure
pe > 0 while in its intact neighbour conduit (on the other
side of the pit) a negative pressure pio0 remains.

3.2. Compatibility conditions between pit geometry and

pressure difference across the interface

A gas/liquid interface within a cone-shaped pit may
be realized according to Holbrook and Zwieniecki
(1999) and Zwieniecki and Holbrook (2000) as in
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Fig. 10. Schematic representation of an embolized vessel (lower part of

figure) filled with xylem sap under positive pressure pe and an intact

vessel (upper part of figures) filled with liquid under tension (negative

pressure). White: gas. White arrows symbolize diffusional currents

between the LB, the PBs and the adjacent conduits. The broken line

along the border of the vessel indicates a constant air concentration Cb

in the xylem sap of the adjacent conduits. This figure depicts the

realistic situation.
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Fig. 11. Schematic representation of an embolized vessel (lower part of

figure) filled with xylem sap under positive pressure pe and an intact

vessel (upper part of figure) filled with liquid under tension (negative

pressure). White: gas. The broken lines labelled cd and cD denote the

reservoirs of constant air concentration to which the PBs and the LB,

respectively, are coupled by diffusion. This figure depicts the

approximate treatment of the situation.
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Fig. 12: the area between the gas/liquid interface
(in the embolized side of the pit) and the membrane is
filled with gas and the interface bulges towards the
pit membrane.

An interface is capable to maintain hydraulic isolation
of an embolized vessel only if the pit geometry and
the pressures concerned fulfil several conditions (see
Fig. 12):

(i) the gas/liquid interface should bulge towards the
pit membrane,

(ii) the gas/liquid interface should not touch the pit
membrane, because then hydraulic isolation of the
embolized vessel would break down,

(iii) if the gas/liquid interface is situated at the mouth
of the pit neck, it should not retreat further,

(iv) the pressure in the gaseous part of the pit should be
positive, because we assume it to be filled with an
ideal gas and ideal gases do not exhibit attractive
forces between their constituents,

(v) the interface should be able to provide the required
pressure difference.

In order to formulate these conditions in mathematical
terms we characterize the position of the interface by the
variable l (i.e. the distance between interface and
membrane, measured along the ‘‘side’’ of the pit as in
Fig. 12). Trigonometric relations allow then the expres-
sion of R in terms of the contact angle y; the parameters
s and a (characterizing the shape of the pit) and the
variable l:

R ¼
s � l sin a

�cosðaþ yÞ
: ð19Þ

y and a are restricted by definition and geometry,
respectively, to the intervals (see also Fig. 12):

0pypp and 0pap
p
2
: ð20Þ

The conditions now read as

(i)
yþ a >

p
2
: ð21Þ

If condition (21) is fulfilled, R is positive: Eq. (20)
implies p=2oaþ yp3p=2: The cosine is negative
on this interval.

(ii) Assuming that the membrane remains flat under all
circumstances (which cannot be taken for granted,
because the membrane must necessarily sustain the
high pressure difference between the intact vessel
and the gaseous interior of the pit, see Fig. 12),
geometric relations (consult Fig. 12) imply the
following conclusion:

lXs
1� sinðaþ yÞ
sin a� cos y

¼: lmin
g : ð22Þ

(iii) Denoting the radius of the pit neck by w; Fig. 12
implies

lp
1

sin a
ðs � wÞ ¼: lmax

g : ð23Þ

(iv) Denoting the pressures in the intact and embolized
vessels by pio0 and pe > 0; respectively, the
Young–Laplace equation takes the form:

p ¼ pe �
2g
R

¼ pe þ 2g
cosðaþ yÞ
s � l sin a

: ð24Þ

Recalling that the pressure is positive in the
embolized vessel ðpe > 0Þ and negative in the intact
one ðpio0Þ; Eq. (24) implies that values of the
expression 2g=R which are too large result in a
negative pressure in the gas bubble within the pit.
The condition

pX0 ð25Þ

transforms upon use of Eq. (24) into a geometric
condition on l:

lp
1

sin a
s þ

2g
pe

cosðaþ yÞ
� �

¼: lmax
p : ð26Þ

(v) The maximum pressure difference Dpmax which
can, in principle, be sustained by the interface
(while bulging into the required direction and
obeying condition (21), ignoring, however, restric-
tion (26)), is identical to the maximum of the
expression 2g=R: This lies at l ¼ lmax

g (i.e. at the
mouth of the pit neck), because 2g=R increases for
increasing values of l; as is evident from Eqs. (19)
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Fig. 12. Schematic representation of a pit, isolating an intact (upper

part of figure) from an embolized vessel (lower part of figure). The

quantity l characterizes the position of the gas/liquid interface, l ¼ 0 ¼
position of the membrane.

white: air, grey: water, s: radius of pit membrane, y: contact angle,
a: pit opening half-angle, w: radius of pit neck, lmin

g : minimum value of

l due to condition (22), lmax
g : maximum value of l due to condition (23).
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and (20). Thus,

Dpmax ¼
2g
R

����
l¼lmax

g

¼ �
2g cosðaþ yÞ

w
: ð27Þ

As the pressure p in the gaseous part of the pit
cannot drop below p ¼ 0; a sufficient condition to
be met by the gas/liquid interface is given by the
relation

Dpmax
Xpe; ð28Þ

which can be obtained formally by insertion of
Eq. (27) into Eq. (24) and setting p ¼ 0:

Results (ii)–(v) summarize to the following relations
(minðx; yÞ denotes the smaller of x and y):

lmin
g plpminðlmax

g ; lmax
p Þ and Dpmax

Xpe: ð29Þ

Eqs. (29) can be read as compatibility conditions
between the quantities defining the pit and the pressure
pe: an interface can only be realized, if the conditions

lmin
g pminðlmax

g ; lmax
p Þ and Dpmax

Xpe ð30Þ

are satisfied.
Since Eqs. (28), (27), (19) and the definition of lmax

g

(Eq. (23)) lead to the statements ðDpmax
Xpe )

lmax
g Xlmax

p Þ and ðDpmax
Xpe ) minðlmax

g ; lmax
p Þ ¼ lmax

p Þ;
conditions (30) for the existence of an interface can be
rephrased in the form

Dpmax
Xpe and lmin

g plmax
p : ð31Þ

Employing the definitions of the quantities Dpmax; lmin
g

and lmax
p ; conditions (31) can be cast into the form

2g
s

sin a� cos y
cos a

ppep
2g
w

ð�cosðaþ yÞÞ ð32Þ

which is especially well suited to enquire into the effects
of changes in the pit defining quantities s; w and a or in
the contact angle y on the acceptable range of pe:

3.2.1. Comparison with measurements

Values of the maximum pressure differences reported
in the literature amount to peE150 000 Pa: The magni-
tude of values concerning the contact angle y and the pit
opening half-angle a appear to amount roughly to
yE50� and aE75�; respectively, and the radii of the pit
membrane and the pit neck are given as sE2:5 mm and
wE0:5 mm (Zwieniecki and Holbrook, 2000; van
Ieperen et al., 2001). The maximum pressure difference
and the boundaries of the l-interval resulting from these
values are found from Eqs. (27), (22), (23) and (26):
Dpmax ¼ 165 190 Pa; lmin

g ¼ 1:39 mm; lmax
g ¼ 2:07 mm;

lmax
p ¼ 2:02 mm: Application of conditions (30) yields
the following result:

lmin
g ¼ 1:392 mmo2:02 mm ¼ lmax

p ¼ minðlmax
g ; lmax

p Þ;

ð33Þ

Dpmax ¼ 165 190 PaX150 000 PaEpe; ð34Þ

that is, with the pit data given above, all conditions are
met and we can proceed to the analysis of the PB
dynamics.

3.3. Volume, surface tension, pressure and number of gas

molecules of a pit bubble

We shall explore the dynamics of a PB with the same
framework applied to the LB (Section 2).

The volume of a PB is obtained from Fig. 12 by
adding and subtracting cones and sections of a sphere as
(see also Fig. 13)

V ¼

p
3

l2
cos a

�cosðaþ yÞ

� �
f3s sin y� l½2 sin a sin y

þ cos a cos y�g if 0plplmin
g ;

p
3

s3 cot a

�
p
3

s � l sin a
�cosðaþ yÞ

� �3

fcot a½�cosðaþ yÞ�3þ

½1� sinðaþ yÞ�2½2þ sinðaþ yÞ�g if lXlmin
g :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð35Þ

Eq. (35) is more complex than its counterpart, Eq. (1).
The simplicity of the latter is due to: (i) the spherical
symmetry of the LB (a sphere is completely described
by its radius, for the still axisymmetric geometry of
a pit, however, the three variables s; w and a are
required), and (ii) the fact, that in the case of a
spherically symmetric bubble the radius of curvature
of its surface coincides with the radius of the
bubble.
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The pressure p inside the PB (cf. Fig. 14) is given by
the Young–Laplace equation as

p ¼ pe �
2g
R

¼ pe � 2g
�cosðaþ yÞ

s � l sin a

� �
: ð36Þ

Eq. (36) is similar to Eq. (2) (provided the variable ps in
Eq. (2) attains negative values) in that the right-hand
sides of both equations become zero for some value of R

(respectively l) and the dynamics which develops is quite
similar in both cases.

The number n of gas molecules inside the bubble
follows from the equation for a perfect gas (cf. Fig. 15),

n ¼
pV

RT
ð37Þ

with p and V as provided by Eqs. (35) and (36). A closer
inspection of Eq. (37) would reveal that nðlÞ has two
zeros and a maximum within the interval 0plps=sin a:
The zeros are inherited from the functions V ðlÞ and pðlÞ:
The maximum follows because (i) the left zero derives
from V ðlÞ and the right one from pðlÞ; (ii) V ðlÞ and pðlÞ

are continuous functions of l; and, (iii) dV=dlX0
and dp=dlp0 for 0plps=sin a: As dn=dl is a poly-
nomial of fourth degree in l; attempts to calculate the
position lm of nmax on the l-axis lead to uncomfortably
long expressions. Therefore, we restrict the treatment to
define lm by the equation nðlmÞ ¼ nmax and to illustrate
the situation by Fig. 15.

The principle result of this section is that a PB
can—similarly as a LB under negative liquid pressure—
contain only a certain maximum number of gas
molecules without bursting immediately.

3.4. Dynamics of a cone-shaped pit

Our goal is to calculate lðtÞ: As before, we assume that
changes in the number n of gas particles in the bubble
are exclusively due to the diffusional current I :

�
dn

dt
¼ I : ð38Þ

This can be reformulated as

�
dn

dt
¼ �

dn

dl

dl

dt
¼ I ; ð39Þ

from which we conclude

dt

dl
¼ �

dn=dl

I
ð40Þ

and

tðlÞ ¼ �
Z

dn=dl

IðlÞ
dl; ð41Þ

provided the diffusional current IðlÞ is known. IðlÞ is
calculated in Section A.4 as Eq. (A.28) and depicted by
Fig. 16. nðlÞ is already provided by (37), insertion of
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For the description of cases A and B, see text.
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dn=dl (from Eq. (37)) and IðlÞ into Eq. (40) shows that
the integrand is a rational function in l; which consists of
a polynomial of fifth degree in the numerator over
a polynomial of third degree in the denominator.
Subsequent integration leads to a transcendental func-
tion in l with the following structure:

tðlÞ ¼
1

d1 l þ d0
� f½x1l þ x0�

� logðl1l þ l0Þ þ ½X1l þ X0� logðL1l þ L0Þ

þ n4l4 þ n3l3 þ n2l2 þ n1l þ n0g

�
1

d1l0 þ d0
� f½x1 l0 þ x0�

� logðl1l0 þ l0Þ þ ½X1 l0 þ X0� logðL1 l0 þ L0Þ

þ n4l40 þ n3l30 þ n2l20 þ n1l0 þ n0g: ð42Þ

l0; the constant of integration in Eq. (42), is defined by
tðl0Þ ¼ 0: Thus, l0 denotes the position of the interface
at time t ¼ 0: The greek letters in Eq. (42) represent
lengthy combinations of the constants R; g; S and kH

and the parameters T ; leq; lm; a; y; s; w; CD and D: The

‘‘equilibrium interface position’’ (l ¼ leq implies I ¼ 0
and pD ¼ CDkH ) is found to be

leq :¼
1

sin a
s þ

2g
pe � pD

cosðaþ yÞ
� �

: ð43Þ

Figs. 17 and 18 illustrate the two distinct cases of pit
behaviour which are possible, according to Eq. (42).
Which case is realized depends on the relation between
leq and lm (the value of the parameter l at maximum
number of molecules in the PB):

Case A : leqXlm;

Case B : leqplm: ð44Þ

Comparison with Figs. 8 and 9 shows, that the PB
behaves in entire analogy with a spherical bubble
immersed in a liquid under negative pressure. Since
cases A and B correspond to cases 3 and 4, respectively,
a discussion of cases A and B can be omitted. We merely
mention, that in case B, PB with their interface
positioned initially at an l0 > leq should be treated as
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Fig. 17. Temporal development of an axisymmetric gas bubble in a pit

which is coupled by diffusion to a gas reservoir at constant pressure.

The insets show magnified details for small values of l and t: Time t is

represented by the ordinate, the interface positions l by the abscissa.

The abscissa terminates at the left at l ¼ lmin
g (for smaller l-values the

interface would touch the pit membrane) and at the right at l ¼ lmax
p

(greater l-values would lead to negative pressures within the gas

bubble). lm and leq denote the interface positions where the capacity of

the bubble to host particles is at its maximum and where diffusion

ceases, respectively. Each curve starts for t ¼ 0 at an interface initial

position l0: Curves with l0olm (see inset) describe PBs which dissolve,

whereas curves starting at an l0 > lm extend to temporal infinity, thus

indicating that the interface approaches the equilibrium value l ¼ leq:
(case A, left). lm and/or leq may be smaller than l ¼ lmin

g or greater than

l ¼ lmax
p : Their location depends on the values of pe (pressure of the

surrounding liquid) and pD (pressure equivalent to the concentration

CD ¼ pDkH of gas particles in the surrounding liquid at a distance D

from the pit). Since we want the figure to give a full picture of all effects

possible, rather than to represent realistic cases, we have chosen pe ¼
150 000 Pa and pD ¼ 70 000 Pa: Absolute temperature is T ¼ 298 K:
This case A illustrates.
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Fig. 18. Temporal development of an axisymmetric gas bubble in a pit

which is coupled by diffusion to a gas reservoir at constant pressure.

The insets show magnified details for small values of l and t: Time t is

represented by the ordinate, the interface positions l by the abscissa.

The abscissa terminates at the left at l ¼ lmin
g (for smaller l-values the

interface would touch the pit membrane) and at the right at l ¼ lmax
p

(greater l-values would lead to negative pressures within the gas

bubble). lm and leq denote the interface positions where the capacity of

the bubble to host particles is at its maximum and where diffusion

ceases, respectively. Each curve starts for t ¼ 0 at an interface initial

position l0: PBs with their interface positioned initially at an l0oleq (see

inset) dissolve in the course of time while curves starting with an l0 > leq

describe what happens if our system of equations exceeds its limits of

competence. The problem can be resolved in the same way as in case 4

(Section 2 and Appendix A). lm and/or leq may be smaller than l ¼ lmin
g

or greater than l ¼ lmax
p : Their location depends on the values of pe

(pressure of the surrounding liquid) and pD (pressure equivalent to the

concentration CD ¼ pDkH of gas particles in the surrounding liquid at

a distance D from the pit). Since we want the figure to give a full

picture of all effects possible, rather than to represent realistic cases, we

have chosen pe ¼ 150 000 Pa and pD ¼ 76 500 Pa (case B, right).

Absolute temperature is T ¼ 298 K: This depicts case B.
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artefacts of our system of equations, rather than reality,
in the same sense as their counterparts in case 4. A
physically acceptable resolution of the problem with
case B—the PB splits into daughter bubbles—follows
the same principles as in case 4 (see also Section A.2).

The essential result of this section is that the PB can
develop temporal stability (and only under this condi-
tion it can act as valve) if certain combinations of pe and
pD exist in the conduit.

4. Bubble dynamics after air seeding events

4.1. Air seeding without embolism

An air seeding event does not necessarily embolize an
intact vessel. If, according to Sections 2.1 and 2.3, the air
sucked into the vessel develops into a (spherical) bubble
which contains at most nmax ¼ ð2pg=RTÞð8g=9psÞ

2 par-
ticles, chances are good that the bubble behaves as
described in cases 3 and 4: For R0oRm in case 3 and for
R0oReq in case 4 the bubble should have dissolved after
some time.

For R0 > Rm in case 3, however, it should approach
the equilibrium radius Req; and thus exist—in princi-
ple—indefinitely long. Within the framework of our
equations (which quite naturally does not encompass all
possible effects), a limited number of such non-expand-
ing bubbles may be tolerated in an operating vessel.
They can, however, disturb the metastable state of
xylem tension and lead to its breakdown.

4.2. Repair after embolism

If, however, a bubble with R0 > Req develops accord-
ing to case 4, or a bubble tries to form, which would
contain n > nmax particles, things are different: Then (in
case 4, only when the radius R ¼ Rm has been reached)
the expansion tendency of the gas particles due to their
statistical movements inevitably outweighs the surface
tension. Thus an equilibrium between the forces con-
nected with both effects—which is a necessary condition
for a bubble to establish itself—cannot be achieved. As
discussed in Section A.2, the bubble will probably split
up into daughter bubbles, which may or may not
dissolve. The exact result of this situation is unpredict-
able, but it may well happen that repeated bursting of
bubbles into daughter bubbles causes the water (which is
in a metastable state under negative pressure) to
‘‘collapse’’ into a stable state. As a result, a positive
water pressure establishes within the vessel and small gas
bubbles drift into the pits connecting the embolizing
vessel with its still intact neighbours. In the end, the
ability of the vessel to conduct water has broken down
completely.

According to the model of Holbrook and Zwieniecki
(shortly described in Section 3.1) the repair scenario
should now be initiated. In view of our results we
reexamine three crucial aspects of the model, namely the
questions (i) under which circumstances a diffusional
flux of dissolved air molecules to the adjacent conduits
establishes, (ii) whether the embolized vessel remains
hydraulically isolated during the dissolution process,
and (iii) how and when this hydraulic isolation breaks
down.

(i) As the liquid pressure pe is positive in an embolized
vessel, it behaves according to cases 1 or 2 (notice,
that when cases 1 and 2 are employed to describe a
LB in an embolized vessel, ps and pe denote the
same pressure). For pdope case 1 is realized and
the LB dissolves for all initial radii R0 (see Fig. 6,
notice that dissolution is not restricted to the
R0-values of the figure, e.g. a bubble with R0 ¼
50 mm needs under otherwise identical conditions
about 20 s for dissolution). For pd > pe case 2
(Fig. 7) is realized and the LB dissolves only if
R0oReq (which is in view of Eq. (17) equivalent to
the condition peopdope þ 2g=R0), otherwise (for
pd > pe þ 2g=R0) it expands until it fills the lumen
completely.

Since the concentration Cd of air dissolved in the
xylem sap has in most cases presumably a value
such that the condition pdope is satisfied (recall
that pd is defined by Cd ¼ kH pd), a LB will quite
probably dissolve after some time, provided the
embolized bubble remains hydraulically isolated
during the dissolution process.

(ii) In terms of Figs. 17 and 18 an interface maintains
hydraulic isolation (in principle) indefinitely long,
if its ðl; tÞ-curve approaches l ¼ leq: Curves, which
intersect the vertical line l ¼ lmin

g indicate hereby,
that the interface touches the membrane and that
hydraulic isolation fails due to bursting of the PB.
If case A is realized, interfaces initially at a l0olm
do not isolate, those initially at a l0 > lm do.
Interfaces which behave according to case B are
unsuited for isolation purposes, because they
either (for l0oleq) move towards and touch
eventually the membrane, or (for l0 > leq) they run
through a sequence of splitting events in the sense
of Section A.2.

Consulting Fig. 19, we see that the relative
positions of lmin

g ; lmax
g ; lmax

p and lm depend on the
pressure pe: We furthermore observe, that for
peopcrit

e (with pcrit
e E135 000 Pa for the values of

the pit geometry and the contact angle chosen in
Section 3) lm is smaller than lmin

g : In view of Fig. 17,
which illustrates case A, the inequality peopcrit

e

implies that curves with l0olm (leading to isolation
failure) do not exist, that is, all interfaces approach
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leq (preserving isolation). Related to Fig. 18, which
illustrates case B, condition lmolmin

g (which is
equivalent to peopcrit

e ) implies that all curves
intersect the vertical line l ¼ lmin

g ; which means
failure of isolation. Since case B is defined via the
condition leqolm; we conclude: if the pit is exposed
to the pressure peopcrit

e ; hydraulic isolation is
preserved as long as the relation leq > lmin

g is valid.
When leq drops below lmin

g ; isolation fails almost
immediately (see Figs. 20–22).

This result is a general one, although we do not
give explicitly pcrit

e as a function of the contact
angle y; the pit opening half-angle a and the radii s

and w of pit membrane and pit neck, respectively.
This is, because pcrit

e ðy; a; s;wÞ is equivalent to and
would have to be solved for from the equation lm ¼
lmin
g ; which is possible in principle but beyond the
scope of the present contribution.

We should point out that the values of the
pressures pe and pD (or, rather, the ‘‘boundary
concentration’’ CD ¼ kHpD of air in water) leading
to Figs. 17 and 18 were primarily chosen with
respect to the purpose of illustrating all possible
aspects of cases A and B. In an embolized vessel, a
value of the pressure pe of the xylem sap around
1 atm ¼ 101 325 Pa appears to be not unreason-
able, because it is the pressure of the atmosphere.
Even if the plant is capable somehow to exert an
additional pressure on the embolized vessel, the
value pcrit

e E135 000 Pa leaves some margin for the
relation peopcrit

e to be satisfied. Remember,
however, that the value of pcrit

e ðy; a; s;wÞ is species
dependent.

(iii) Figs. 23 and 24 (and, more generally, Eq. (43) upon
differentiation with respect to pD) show that leq is a
monotonically decreasing function of pD: That is,

there are values of pD which satisfy the unequality
leqðpDÞ > lmin

g (implying that the respective interface
maintains hydraulic isolation). If we increase pD;
the value of leqðpDÞ decreases and reaches even-
tually values leqðpDÞolmin

g (which indicate the loss
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p Þ (curved broken line), lmin
g (straight broken line)

and lm (solid line) as functions of the pressure pe in the xylem sap.

lmðpeÞ and lmin
g intersect at pe ¼ pcrit

e : The values of the pit geometry and

the contact angle chosen in Section 3 imply pcrit
e E135 000 Pa:
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Fig. 20. Sequence of ðt; lÞ-curves for the pD-value 1500 Pa: Time tðDÞ is
drawn along the ordinate, the interface position l ðmmÞ along the

abscissa. The pressure of the xylem sap is pe ¼ 75 000 Pa: The sequence
of Figs. 20–22 illustrate a section of the curve leqðpDÞ in Fig. 23. The

parameter values in this figure satisfy lmolmin
g oleq: The present figure

(and Fig. 21) describe pits which preserve hydraulic isolation (every

interface approaches l ¼ leq; reaches it after at most 3:5 s and stays

there infinitely).
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Fig. 21. Sequence of ðt; lÞ-curves for the pD-value 3000 Pa: Time t (s) is

drawn along the ordinate, the interface positions l ðmmÞ along the

abscissa. The pressure of the xylem sap is pe ¼ 75 000 Pa: The sequence
of Figs. 20–22 illustrate a section of the curve leqðpDÞ in Fig. 23. The

parameter values in this figure satisfy lmolmin
g oleq: Fig. 20 and the

present figure (Fig. 21) describe pits which preserve hydraulic isolation

(every interface approaches l ¼ leq; reaches it after at most 3:5 s and

stays there infinitely).
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of the isolation ability of the pit, as explained
above).

Recalling from Fig. 2 (or from the Young–
Laplace equation) that the pressure within a

spherical bubble grows rapidly with decreasing
bubble radius, Henry’s Law implies an increasing
air concentration in the liquid around the LB
during the dissolution process, in fact, it culminates
at the moment when the LB disappears.

We propose, that the combination of both effects
cause the breakdown of hydraulic isolation as the
last act of the repair process. We cannot become
more specific at this point, because the mathe-
matics we have used so far is too simple to express
(or predict) the time of isolation breakdown as a
function of pit geometry, vessel geometry, contact
angle, of the pressures involved and of the number
of particles trapped initially in an LB. The reason
for the complexity of these processes is primarily
due to the diffusional currents which evolve
between the LB, the PB and the adjacent conduits
(see Fig. 10). To describe the situation more
accurately, the diffusion equation must be solved
in at least two dimensions and more sophisticated
approximations for the boundary conditions must
be employed.

5. Final conclusions

This first physical analysis provides evidence that
(i) the preconditions for the mechanism are satisfied
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Fig. 24. minðlmax
g ; lmax

p Þ (upper broken line), lmin
g (lower broken line), lm

(solid line, horizontal) and leq (solid line, curved) as functions of the

pressure pD; which stands for the air concentration CD ¼ kH pD in the

xylem sap at the distance D from the pit neck (see Figs. 11 and 26). The

gas/liquid interface in a pit provides hydraulic isolation, if (i) lm lies

below the lower broken line (i.e lmolmin
g ), and (ii) leqðpDÞ lies between

the broken lines (i.e. lmin
g oleqominðlmax

g ; lmax
p Þ). In the present figure,

pe ¼ 150 000 Pa; that is, pe > pcrit
e : Thus, condition (i) is not fulfilled

and the gas/liquid interface in the PB behaves as in case A (see Fig. 18).

Hydraulic isolation cannot be achieved, although condition (ii) is

fulfilled for a wide range of pD-values. The values of the pit geometry

and the contact angle chosen in Section 3 imply pcrit
e E135 000 Pa:
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Fig. 22. Sequence of ðt; lÞ-curves for the pD-value 3250 Pa: Time t (s) is

drawn along the ordinate, the interface positions l ðmmÞ along the

abscissa. The pressure of the xylem sap is pe ¼ 75 000 Pa: The sequence
of Figs. 20–22 illustrate a section of the curve leqðpDÞ in Fig. 23. The

present figure is based upon the relation lmoleqolmin
g : The pits

considered by this figure become permeable because every interface

approaches the pit membrane and touches it after at most 1:7 s:
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Fig. 23. minðlmax
g ; lmax

p Þ (upper broken line), lmin
g (lower broken line), lm

(solid line, horizontal) and leq (solid line, curved) as functions of the

pressure pD; which stands for the air concentration CD ¼ kH pD in the

xylem sap at a distance D from the pit neck (see Figs. 11 and 26). The

gas/liquid interface in a pit provides hydraulic isolation, if (i) lm lies

below the lower broken line (i.e lmolmin
g ), and (ii) leqðpDÞ lies between

the broken lines (i.e. lmin
g oleqominðlmax

g ; lmax
p Þ). In the present figure,

pe ¼ 75 000 Pa; that is, peopcrit
e : Thus, condition (i) is fulfilled and the

gas/liquid interface in the PB behaves as in case A (see Fig. 17). Figs.

20–22 are related to Fig. 23, the present figure in that the former can be

viewed as ‘‘realizations’’ of the latter for different values of the variable

pD: In Figs. 20 and 21 conditions (ii) is also fulfilled and hydraulic

isolation thus realized, in Fig. 22 it is not.
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(within the chosen parameters), (ii) temporally stable PB
can establish and that (iii) the breakdown of the pit
bubbles can be initiated by the final stage of the repair
process. The results summarized so far thus indicate that
the mechanism suggested by Holbrook and Zwieniecki
(1999) is principally able to cause hydraulic isolation of
an embolized conduit. The results, however, also show
that the underlying physical processes are very complex
and depend heavily on the geometric properties of the
pits, on the developing contact angle and on the gas
concentration in the sap. Further analyses of the bubble
behaviour in xylem conduits are expected to yield a
more detailed understanding of the involved mechan-
isms and of the role of interfacial effects. Since the
considered processes cannot be observed directly,
theoretical analyses of this subject are an indispensable
tool for improving our knowledge of the significance of
interfacial effects for plant water transport.

Appendix A

A.1. Diffusion equation and diffusion current IðRÞ in a

spherically symmetric situation

For the sake of simplicity, we assume the following
(see Fig. 4): (i) The gas bubble is surrounded by an
(imaginary) sphere-shaped closed surface with radius d

which resides completely within the vessel lumen. This
sphere serves as source or sink for the diffusing gas
particles. (ii) Outside of this closed surface the concen-
tration of dissolved gas particles is kept constant at the
value Cd : Thus, we restrict the process of diffusion to a
spherical section of the vessel lumen which contains the
gas bubble, and we assume that the air concentration in
the xylem sap exterior to this section remains constant.
Due to this auxiliary construction the whole system is
spherically symmetric and can conveniently be parame-
trized with the radial coordinate r; the distance to the
centre of the bubble.

In order to calculate IðRÞ we first have to solve the
diffusion equation for the area between r ¼ R and d:

The time-independent diffusion equation for spherical
symmetry reads as

1

r2
d

dr
r2
dC

dr

� �
¼ 0: ðA:1Þ

The general solution of this equation contains two
arbitrary constants, a and b;

CðrÞ ¼ a þ
b

r
: ðA:2Þ

The solution CðrÞ is subject to the boundary conditions

CðRÞ ¼ CR and CðdÞ ¼ Cd : ðA:3Þ

CR means the concentration of air in the near vicinity of
the bubble and Cd denotes the (constant) concentration

of air in the liquid, the xylem sap (as depicted in Fig. 4).
Application of the boundary conditions (A.3) results in

CðrÞ ¼
Cdd � CRR

d � R
þ

Rd

d � R
ðCR � CdÞ

1

r
: ðA:4Þ

The current density ~jj of the gas particles diffusing
through the liquid follows from (A.4) according to
Fick’s Law

~jj ¼ �S grad C; ðA:5Þ

where S represents the effective conductance of the
liquid for the diffusing substance. Due to spherical
symmetry only the radial component of ~jj remains,

jðrÞ ¼ �S
dCðrÞ
dr

¼ S
Rd

d � R
ðCR � Cd Þ

1

r2
: ðA:6Þ

The (total) current I including all gas particles diffusing
into or out of the gas bubble is given by integration over
the (closed) surface of a sphere centered at r ¼ 0 with a
radius ra which may lie anywhere in the interval
Roraod:

I ¼
I

~jj � d~AA ¼ jðraÞr2a

Z p

0

sin y dy
Z 2p

0

df

¼ 4pjðraÞr2a ¼ 4pS
Rd

d � R
ðCR � CdÞ: ðA:7Þ

Eq. (A.7) states that the gas bubble is in equilibrium
with the environment (i.e. no gas particles are ex-
changed), when there is no diffusion current. How CR is
dependant on R follows from Henry’s Law (7) and the
Young–Laplace equation (2),

CR ¼ kHps þ
2gkH

R
: ðA:8Þ

This one-to-one relation between CR and R is the basis
of the geometric characterization of the equilibrium
situation CR ¼ Cd (equivalent to I ¼ 0 by (A.7)) via the
‘‘equilibrium radius’’ Req ¼ 2g=ðpd � psÞ of definition
(17): Substitution of R ¼ Req in (A.8) leads to CR ¼ Cd

and hence to I ¼ 0:
Eventually, after insertion of Eqs. (A.8) and (17) we

obtain the explicit R-dependence of Eq. (A.7)

IðRÞ ¼ 8pSgkH
d

Req

Req � R

d � R
: ðA:9Þ

For the evaluation of the integral in Eq. (11) we need a
second ingredient beneath IðRÞ: Using Eq. (5) in order
to eliminate ps in favour of Rm from dn=dR we obtain

dn

dR
¼

16pg
3RT

R

Rm

ðRm � RÞ: ðA:10Þ

We note that the interpretations of the quantities Rm

and Req are significant only if the relations pso0 and
pd � ps > 0; respectively, are valid, i.e. if the xylem
pressure is negative. Eqs. (5) and (17), however, can and
will be viewed as formal definitions of Rm and Req also
for positive xylem pressure, in the sense of a shorthand
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notation. Interpretations in terms of radii are, however,
not valid then.

By using Eqs. (A.9) and (A.10) we obtain from
Eq. (10)

dt

dR
¼

�2

3RTSdkH

ðd � RÞR
Req

Rm

Rm � R

Req � R
; ðA:11Þ

the desired integrand of Eq. (11).

A.2. Detailed discussion of a lumen bubble (LB)

according to case 4

Fig. 25 gives a more realistic picture of the temporal
development of a case 4-bubble than Fig. 9. The upper
part of the figure shows the number of particles nðRÞ in
the bubble, its lower part represents typical examples on
a bubble’s ðR; tÞ-path (the path given here describes the
fate of just one bubble, the sister or daughter bubbles do
not appear). The ðR; tÞ-path consists of two types of
curves:

* the curves 0-1�; 1þ-2�; 2þ-3�; 20 þ-30;
and beyond 3þ represent time segments, which are
predicted by Eq. (8),

* the straight lines 1�-1þ; 2�-2þ; 2�-20þ and
3�-3þ stand for the ‘‘jumps’’ in radius R caused
by the formation of daughter bubbles whenever the
bubble radius R takes on the value R ¼ Rm:

The quantities Dn1; Dn2; Dn20 and Dn3 in the upper part
of the figure are related to the numbers of particles lost
from the considered bubble during the splitting events
1�-1þ; 2�-2þ; 2�-20þ and 3�-3þ :

The bubble’s route through the ðR; tÞ-plain evolves as
follows:

* Starting at a radius R ¼ R0 (point 0) the bubble
develops according to Eq. (8) until it undergoes a
non-predictable splitting event at 1� : Then it loses
Dn1 particles, which forces its radius to jump to one
of the two solutions of Eq. (3) for n ¼ nmax � Dn1:We
suppose that the value R1þ is realized.

* Curve 1þ-2� again obeys Eq. (8), at 2� the
bubble experiences a second splitting, the particle
loss amounts to Dn2: Again, the bubble radius may
jump to either of the two R-values R2þ or R20þ:

* If the bubble happens to ‘‘choose’’ the latter value,
the diffusional current, which has procured particles
so far, is from now on directed out of the bubble, and
the bubbles fate is, according to Eq. (8), to evaporate
particles until its existence ceases at 30:

* If the bubble radius takes on the latter value, the
diffusional current is again directed into the bubble,
the curve 2þ-3� evolves according to Eq. (8), a
third splitting of the bubble occurs at 3�; combined
with a particle loss Dn3; and so on.

A.3. Stability of the diffusional equilibrium at R ¼ Req

In order to shed some light onto the nature of the
equilibrium characterized by I ¼ 0; or, in geometric
terms, by R ¼ Req; we examine the system’s behaviour if
it is initially in equilibrium (i.e. no diffusional current)
and then slightly perturbed. In order to define this we
expand Eq. (8) about R ¼ Req after setting RðtÞ ¼ Req þ
rðtÞ: Since we assume jrj5R it is sufficient to keep only
the linear terms in r: The expansions

nðRÞEnðReqÞ þ n0ðReqÞ � r; ðA:12Þ

IðRÞEIðReqÞ þ I 0ðReqÞ � r ðA:13Þ

(a prime stands for differentiation with respect to R)
reduce upon differentiation with respect to t (which is
characterized by a dot) and in view of the condition of
equilibrium IðReqÞ ¼ 0 to

’nðRÞEn0ðReqÞ � ’r; ðA:14Þ

IðRÞEI 0ðReqÞ � r: ðA:15Þ

Insertion into Eq. (8) and reorganization leads to the
linear first order differential equation

’rþ
I 0ðReqÞ
n0ðReqÞ

r ¼ 0 ðA:16Þ
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with the readily obtained solution

rðtÞ ¼ r0 exp �
I 0ðReqÞ
n0ðReqÞ

t

� �
: ðA:17Þ

r0; the constant of integration, characterizes the radial
distance by which the bubble has been disturbed
initially, at t ¼ 0:

The interpretation of the result (A.17) is straightfor-
ward: An initial perturbation r0 ‘‘dies out’’ with an
characteristic ‘‘decay time’’ t :¼ n0ðReqÞ=I 0ðReqÞ if the
expression

n0ðReqÞ
I 0ðReqÞ

¼
2

3RTSdkH

R2
eq ðd � ReqÞ

Req � Rm

Rm

; ðA:18Þ

in the exponent in Eq. (A.17) is (strictly) positive. If it is
negative, the initial perturbation r0 grows unboundedly
with time.

As all parameters in the first factor on the right-hand
side of Eq. (A.18) are positive and as the relations Req >
0 and d > Req are valid by assumption, the sign of
Eq. (A.18) depends on the signs of Rm and of the
difference Req � Rm: The results are given in the
following table (the ‘‘case-labels’’ refer to table (18))

Unstable equilibrium : rðtÞ-N if Rmo0 ðcase 2Þ;

rðtÞ-N if Rm > 0

and ReqoRm ðcase 4Þ:

Stable equilibrium : rðtÞ-0 if Rm > 0

and Req > Rm ðcase 3Þ ðA:19Þ

A.4. Diffusion equation and diffusion current IðlÞ in an

axisymmetric situation

In order to calculate IðlÞ we first have to solve the
diffusion equation in the area where transport of gas
particles via diffusion occurs. For the sake of simplicity,
we rely on the following assumptions and approxima-
tions (see Fig. 26):

(i) No gas particles diffuse across the walls of the pit
and of the pit channel.

(ii) Diffusional transport of gas particles through
xylem sap is restricted to the embolized side of
the pit (that is, the pit membrane is supposed to be
dense).

(iii) At a distance z ¼ z� :¼ �D from the pit and
beyond (i.e. for zpz�) the concentration of
dissolved gas particles in the liquid is kept constant
at the value CD ¼ pDkH :

(iv) The gas/liquid interface at position l coincides
approximately with a section of a (fictitious) sphere
of radius r ¼ rþ :¼ ðs=sin aÞ � l (for y ¼ p=2 the
coincidence is exact).

(v) The section of a (fictitious) sphere of radius r ¼
r� :¼ w=sin a coincides in an approximate sense

with the (equally fictitious) flat(!), circular disc of
radius w at z ¼ zþ :¼ w cot a:

Thus, we employ a similar auxiliary construction as
above, which allows us to work with (i) one-dimensional
versions of the diffusion equation (and hence simple,
analytic solutions) on two spatial ‘‘patches’’, and
(ii) very simple boundary conditions. On the patch
defined by r�prprþ the time-independent diffusion
equation for spherical symmetry reads as

1

r2
d

dr
r2
dC

dr

� �
¼ 0; ðA:20Þ

with general solution

CðrÞ ¼ a þ
b

r
: ðA:21Þ
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On the patch with z�pzpzþ the cylinder symmetric
equivalent of Eq. (A.20) is

d2C

dz2
¼ 0; ðA:22Þ

with solution

CðzÞ ¼ A þ Bz: ðA:23Þ

a; b; A and B are arbitrary constants which are
calculated from the boundary conditions

CðrþÞECl and Cðz�Þ ¼ CD; ðA:24Þ

and the conditions of continuity for particle concentra-
tion and particle current

Cðr�ÞECðzþÞ and Iðr�ÞEIðzþÞ: ðA:25Þ

Eqs. (A.24) and (A.25) are the formalized versions of
assumptions (iii)–(v). Assumption (ii) (‘‘no-flow bound-
ary’’) is automatically fulfilled by Eqs. (A.21) and
(A.23). Application of Eqs. (A.24) and (A.25) to the
general solutions (A.21) and (A.23), use of Henry’s Law

Cl ¼ pkH ; ðA:26Þ

and Fick’s Law

~jj ¼ �S grad C; ðA:27Þ

and an integration similar to that leading from
Eq. (A.16) to Eq. (A.17) results in

IðlÞ ¼ 2pSkHw2sin a
ðs � l sin aÞðpe � pDÞ þ 2g cosðaþ yÞ

ðs � l sin aÞ½wð1þ 3 cos aÞ þ 2D sin a� � w2ð1þ cos aÞ
:

ðA:28Þ
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