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Abstract  

A model system, consisting of  a thin spherical shell with radius R and mass M and a point 
mass m at a distance s > R from the center of the sphere, held fixed by an appropriate strut, 
is solved to order raM. The stresses in the shell are not of the canonical Weyl type, and it is 
argued that the same is true for more realistic situations, e.g., rotating matter. Owing to the 
nonlinearity of Einstein's field equations, the field of the point mass is shielded from the in- 
terior of the shell by a factor ~ lying between 1 - 3M/R and 1 - 2M/R, and the field outside 
the shell explicitly depends on R. 

w Introduction 

In the last decade,  very powerfu l  me thods  have been worked  out  which allow 

one to cons t ruc t  a great m a n y  axially symmetr ic  and s ta t ionary solutions o f  Ein- 

stein's vacuum field equat ions .  (See, e.g., [ 1-3 ] for  an overview.)  However ,  m u c h  

less is k n o w n  about  realistic mater ial  sources for these vacuum solutions,  and 

there  does no t  seem to exist  a single exact  solut ion o f  Einstein 's  equat ions  com- 

bining in a con t inuous  way  the  in ter ior  and exter ior  o f  a realistic rotat ing star. 

Since the pioneer ing work  o f  Weyl [ 4 - 6 ] ,  it is known  that  Einstein 's  field equa- 

t ions for axial ly symmet r ic  and s ta t ionary or static conf igurat ions  simplify very 
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much and acquire some similarity to the vacuum equations, if the energy- 
momentum tensor Tgv of the matter fulfills the "canonical" condition T~ + 
TZz = 0, where p and z are radial and axial coordinates. This condition is trivially 
valid for dust solutions and also for some types of electromagnetic fields, but of 
course it will not be satisfied by more general and more realistic models of matter. 

As a simple and intuitive example, we consider the two-body system, con- 
sisting of a thin spherical shell and a point mass outside of this shell. An appro- 
priate strut, connecting both bodies, maintains a static equilibrium. Configura- 
tions with thin mass shells have the privilege that, owing to the contracted 
Bianchi identities, the spatial stresses in these shells are uniquely determined by 
the energy density distribution. For our case, and, to be sure, for many other 
configurations, the stresses in the shell and in the strut definitely have T~ + 
TZz :~ O. 

Besides the property of being a noncanonical Weyl solution, our model sys- 
tem deserves interest under the aspect of gravitational shielding. There are a 
number of phenomena in general relativity which can be interpreted as gravi- 
tational shielding or compensation, some of which have analogs in electromag- 
netism, others do not: For a given gravitational field it is always possible to 
compensate the curvature in a small region (to "flatten" space-time) by placing 
three or more appropriate point masses in the vicinity of this region, a method 
which may have significance for precision experiments in space laboratories [7]. 
Quasistatic shielding occurs for instance in the tides and in other situations, 
where gravitational fields induce displacements within mass configurations, and 
in this way lead to an effective reduction of the gravitational field [8]. For sys- 
tems of rapidly rotating objects, the Newtonian gravitational attraction can be 
reduced by a repulsive spin-spin interaction. As has been shown recently [9], 
there are vacuum solutions-but presumably no realistic matter solutions-where 
a complete balance between these two types of gravitational interactions can be 
reached. All of these examples of gravitational shielding or compensation are 
analogous to corresponding electromagnetic phenomena, differing from the elec- 
tromagnetic examples only by sign and by their quadrupole instead of dipole 
character. 

In general relativity, there exist, however, still other types of gravitational 
compensation and shielding, having no analog in electromagnetism. Besides the 
well-known possibility of  local elimination of gravitational fields due to Ein- 
stein's principle of equivalence, these are brought about mainly by the non- 
linearity of general relativity. And in this respect, the aforementioned system 
of a spherical shell and a mass point seems to be the most simple configuration, 
showing this shielding effect in a particularly clean way. 

In Section 2, the metric and the field equations for axially symmetric and 
static configurations are stated, and the field equations solved in the (trivial) 
orders m and M. The stresses, induced in the mass shell by the point mass, are 
calculated to lowest order in Section 3. With these ingredients, the field equa- 
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tions are solved in order m M  in Section 4. These solutions violate elementary 
flatness at parts of the axis, enforcing in this way a strut between the two bodies. 
In Section 5, the shielding of the point mass from the interior of  the shell and 
the R dependence of the field outside the shell are computed and discussed. 

w (2): Metric and Field Equations for  Axially Symmetr ic  
and Static Configurations 

For a very wide class of  matter configurations, including our model system, 
a static and axially symmetric field admits 2-spaces, everywhere orthogonal to 
the timelike Killing vector 0t and to the spacelike azimuthal Killing vector 0~ 
[3], and since in this 2-space an "isothermal" form of the line element can be 
chosen [4], we will start with the following form of the metric: 

ds 2 = -e  2~ dt  2 + e-2g[eZK(dp z + dz 2) + F 2 d~b 2] (1) 

where U, K, and F are functions o f p  and z only. Herewith, Einstein's field equa- 
tions GUy = 8zrTUv (with G = c = 1) attain a form which can be taken from many 
places in the literature, e.g., [10]: 

-2Uoo  - 2 U z z  + K, pp + K,z  z + F - l ( F ,  po + F, zz) 

+ U,p 2 + U,z 2 - 2 F - I ( U ,  oF, o + U, zF, z ) = 8~e2(K-U)Ttt  (2) 

F - 1 F  zz - ,  U p  2 + U,z2 + F-a  (K ~F , - K , zF ,  z )= 8~re2(X-U)T~ o (3) 

F-aFpo, + Up  2 - U ,  z 2  _ F - l ( K ,  p F p  _ K, z F z )  = 8fre2(K-U)TZz (4) 

-F-1F ,  pz - 2U o U  z + F - I ( K ,  pF, z + K, zF, o)= 8rre2(K-U)T~ (5) 

K,o o + K,z  z + U,o 2 + U,z 2 = 8zreZ(K-U)T4~ (6) 

Combining these five equations, we can form the simpler equations 

Up O + U,z z +F-I(U, oFo + U, z f  z) = 47re2(K-cr)(TV o + TZz + T4)O - Ttt) (7) 

F - l ( F p o  + F z z  ) = 8~reZ(X-V)(r~ o + TZz) (8) 

In Section 4 we will use these two equations to determine the functions U 
and F. The function K will then be found with the help of equation (4). The re- 
maining field equations are satisfied automatically if the energy-momentum ten- 
sor TU~ fulfills the local conservation laws TUv;u = 0, which are considered in 
Section 3. 

Since it does not seem possible to find exact solutions of  these field equa- 
tions for our model system of a spherical mass shell M and a point mass m, and 
since approximate solutions are sufficient for a physical discussion of the non- 
linear shielding effect, we expand the energy-momentum tensor T and the metric 
functions U, K, and F in powers of m and M (resp. in powers of mG/dc 2 and 
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MG/dc 2, where d is a typical spatial dimension of our system as are the radius R 
of the spherical shell or the distance s > R of the point mass from the center of 
the sphere), starting with Minkowski space.time (U = K = 0, F = p) in zeroth 
order. From these expansions, we keep only terms of order m, M, and mM. The 

rn M 
terms TUv and TUv basically define our two-body system. Having a static system 
without energy flux, the components Tto, T~,  and Tt~ are zero. Stresses TPo, 
T~ etc. come about only by gravitational interaction between the mass elements 
of our system and therefore appear only in orders m 2, M 2, mM, and higher or- 
ders. For these reasons, in orders m and M there remain only the energy density 
components 

m m M M 
T t t -  2zrp 6 (p )8 (z -  s), T t t = - ~ 6 ( ( p Z + z 2 )  ~ /2 -R)  (9) 

Strictly speaking, a Schwarzschild point mass m is represented in cylindrical coor- 
dinates p, z, ~ by a line of uniform mass density, extending at the axis p = 0 from 
z = s - mG/c 2 to z = s + mG/c 2 [4]. Differences to our ansatz (9) appear, how- 
ever, only in orders m 2 and higher, which we do not consider. For the spherical 
mass shell M, the exact configuration has been given by Brill and Cohen [11], 
which, by neglecting terms of orders M 2 and higher, reduces to (9). 

Now, considering the field equations in orders m and M, together with the 
boundary conditions for isolated systems, that U and K have to vanish asymp- 
totically and that Fhas  to behave asymptotically like p if p = 0 is chosen as the 
axis of the system, we find that equation (8) has the unique solution 

(o) (1) 
F = p, F = 0 (10) 

Equation (7) then reduces to AU = -4nTtt,  which, together with (9) and the de- 
mand of continuity across the shell has the solution 

O) m M 
U = U + U  (11) 

with 

/ ~ar 
rn M [ L~_, for p2 + Z 2 ~< R 2 
U = - m [ p  2 + ( z - s )  2]-1/2, U = /  R (12) 

~-M(p2+z2) - l /2 ,  f o r p 2 + z 2 > R  2 

Equation (4) then results in 

(1)  

K = 0 (13) 

With these solutions, the contracted Bianchi identities and therefore the remain- 
ing field equations are identically fulfiUed in orders m and M. 
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w The Stresses in the Spherical Mass Shell 

We now come to the nontrivial part of  our two-body problem, namely, the 
terms of  order rnM in the energy-momentum tensor TUv and the metric func- 
tions U, K, and F. The relations T ~ = T ~' + PUuxTX~ - PXuvT~' x = 0 en- 

P : ~ m M  P ' #  

able us to calculate the spatial stresses Ttk in the mass shell more or less uniquely 
m M m M 

using the energy densities Ttt and Ttt and the solutions U and U given in Sec- 
tion 2. 

For v = t and p = 4, the relations T"u; .  = 0 are trivially satisfied owing to the 
time and axial symmetry of  our problem. From the metric (1), it can be deduced 
that the only Christoffet symbols of  order unity, are lP~ ~ -p,  and Peoe ~ p-1,  
and that furthermore P " . t  = 0, Otto = U,p and Ptt  z = U z. Therefore the rela- 
tions T"v ; .  = 0 for v = p and v = z take the forms 

m M  m M  m M  rnM m M M m 
TOp, ~ + TZ 1 p,z + ~ (TOo - Tee )  = U, oTtt  + U o T t t  (14) 

mM mM 1 mM m M M m 
rPz,o + r z + TPz = U z r t t  + U z r tr  (15) 

Being interested in the stresses in the mass shell, we look only for terms being 
m M  

singular at (p2 + zZ)l/2 = R, i.e., we set T ~  = f ik6((p2 + z2)  1/2 - R )  and omit 
m M m 

the terms Ttt . (The term U o Ttt gives no contribution anyway, and the term 
M m 

U z Ttt is connected with the energy-momentum tensor o f  the strut.) For the 
detailed discussion of  equations (14) and (15), it is appropriate to turn to spher- 
ical coordinates r, 0 by p = r sin O, z = r cos 0. Equations (14) and (15) then have 
terms proportional to 6@ - R)  and those proportional to (d/dr)6@ - R),  which 
have to vanish separately, in this way producing four equations (the derivatives 
o f f %  with respect to their single variable 0 being denoted by '):  

sin O f ~  + cos OfPz = 0 (16) 

1 m M  
cos O f ~ '  + s~nO (fPo - f4)e) - sin Of~ ' - 4n sin O(R z - 2Rs cos 0 + s2) -3/2 

sin OfPz + cos OfZz = 0 

l p  m M @  O) 
cos Of~ ' + s~nO f z - sin OfZz ' = 4~r - cos 

�9 (R 2 - 2Rs  cos 0 + s2) -3/2 

Owing to (16) and (18), in the (p, z)-2-space f ~  has the structure 

(17) 

(18) 

(19) 
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cotan 0 -co tan0)  
f ~  = \-cotan0 1 fZz (20) 

and therefore, in the (r, 0)-2-space, only f~  o is nonvanishing, i.e., in the mass 
shell only stresses along the surface and no radial stresses exist, as is intuitively 
plausible. 

Furthermore, (16) and (18)lead to 

_- 1 
fO a + f z  z sin2----- ~ fz  z (21) 

and this cannot be identically zero, because otherwise also f z  z and f ~  z would be 
identically zero in contradiction to (19). Thus we see that the stresses, induced 
in the mass shell by the point mass m, have necessarily TOp + TZz 4: O, therefore 

mM 
equation (8) leads to a function F v~ 0, and the metric (1) does not have the 
canonical Weyl form [4], which is presupposed in most examples of axially sym- 
metric and static or stationary configurations, discussed in the literature till now 
[3]. It might be argued that our two-body system, forced to be static by an ap- 
propriate strut, is quite unrealistic and therefore the result F ~ p is not represen- 
tative of other systems. However, since F = p is generally possible only with 
TPp + TZz = 0, and since this is a quite unphysical condition, being valid only 
for dust solutions, special types of electromagnetic fields, or appropriate mixtures 
of electromagnetic fields and fluids, we should like to argue that for realistic ma- 
terial models for, e.g., rotating stars, noncanonical metrics with F @ P have to be 
taken. We should like to come back to this point in Section 4 after the explicit 

mM 
calculation of the metric function F. 

mM 
In order to calculate the stresses T~k in the mass shell explicitly, we insert 

(18) into (19), and obtain 

mM (c R )  fZz'= 4rr sin0 o s 0 -  (R 2- 2RscosO+s2) -3/z (22) 

with the solution 

= m----~M I(  R 1) C 1 f z  z 4/rs 2 cos  0 - (g 2 - 2Rs cos 0 + $2)-1]2 + (23) 

with an integration constant C, whose physical significance will be discussed in 
Section 4. fPp andf~ are then given by (20). f~r is calculated from (17) to 

f q ~ b = - - ~ - - -  - ~ -COS ( R 2 - 2 R s c o s O + s 2 ) - 3 [ 2 - ( f o o + f Z z )  (24) 

The singularities offPo,f~ and f ~ ,  at 0 = 0 and 0 = ~r are to be expected phys- 
ically, because at these points the strut impinges upon the mass shell, as outlined 
in Section 4. 
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w (4): Solution o f  the Field Equations in Order m M  

m M  

With the spatial stresses T~k known, we can now set to work to solve the 
field equations (7), (8), and (4) in order raM. In this order, the field equations 
reduce, due to (10) and (13), to 

m M  m M  m M  m M  m M  m M  M m  

A U = 4n(  r~  + TZz + T %  - Tt t )  + STr(VTtt + UTtt )  (25) 

m M  m M  m M  m M  

F, oo + F, zz = 8rro( T~ + TZz) (26) 

m M  m M  m M m M m M  

K,o = F,o o + 2 0 ( U o U ,  o - U, zU, z ) - 8rrp TZz (27) 

Starting with (25), we see from (24) that the sum of  the spatial stresses has the 
relatively simple form 

T~ + TZz + T 4 ~ O = ~  - ~ - c o s  (R 2 - 2Rs cos O + s2)- 3/2 8(r - R ) 

(28) 

which is, moreover, independent of  the integration constant C. 
m M  

The term Ttt is however as yet unknown, and for instance not fixed by the 
m M  

energy-momentum conservation laws TUv;u = 0. Rather, T t serves to define 
(in order m M )  the physical system, we are considering. Since, for static systems, 
Ttt represents the invariant rest mass density, it should be constant on the shell. 
(A nonuniform mass distribution on the shell could simulate a shielding effect 
even in Newtonian theory of  gravitation!) Furthermore,  there should be a sym- 
metry  between the action of  m on the shell M and the back-reaction of  M on m, 
so that, in analogy to (9), we unambiguously come to the ansatz 

Ttt = ~ ~ s  8 (0)6(z  - s) + 8(r - R (29) 

The constant/3 has to be fixed by the total energy of  our two-body-system, 
which we wish (in our approximation) to be equal to 

m M  
Eto t = m + M - - -  (30) 

$ 

This value can be justified for instance by the following prescription for install- 
ing our two-body system: we start with the two bodies at very large distance 
(s -> o~), where the total energy surely is m + M. We tie the bodies by some sort 
of  wires to springs which stay at infinity. By the gravitational attraction the 
bodies get into (slow!) mot ion towards each other, rolling up the wires and 
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stretching the springs, until the process stops at some finite distance s of  the 
bodies. The energy lost by  the two body system is stored in the springs, and 
for s > >  m, M this energy loss is, in analogy to Newtonian gravity, approxi- 
mately equal to mM/s, as could in principle be tested experimentally. (As is 
well known from the literature and discussed at the end of  this section, the 
wires or struts, which hold the bodies in static equilibrium finally, do not con- 
tribute to Eto t.) 

In order to calculate the constant/3 from the prescription (30), we recall 
that Eto t is given by the asymptotic behavior of  the metric functions for r ~ 0% 

mM mM 
and in this regime the contributions from K and F are negligible compared to 

mM 
the contributions from U, as can be read of f  from the explicit expressions for 
these functions given later on in this section. Considering now equation (25) in 
the asymptotic region r ~ o% only the volume integrals of  the sources (the mono- 
pole terms) are relevant. The volume integral of  (28) vanishes however, as is also 
intuitively clear, since the stresses in the mass shell have to compensate each 
other as a whole. There remains the asymptotic equation 

mM mM /Vim mM 
AX Uas = 8rr (UTtt + UTtt) - 4rr Ttt 

which, in view of  (9), (12), and (29), has the asymptotic solution 

mM mM 
Uas = (2/3 - 4) - -  sr 

so that the total U has the asymptotic form 

M mM 1 
(~r+U+ U ) a s = - - - ; [ m + M - ( 2 / 3 - 4 ) - - ~  -] 

Comparison with (30) leads to/3 = 5. (At the end, we will see that the value of/3 
does not have much influence on the shielding phenomenon.)  

The complete equation (25) now reads 

mM I- 1 ~ 5  6(r - R) ~ U =mM --~O S(O)8(z - s)-  

5 + - ~  (R 2 - 2Rs cos 0 + sZ)-l/25(r - R) 

s 2 - R 2 )] 
2R 2 (R 2 - 2Rs cos 0 + s2)-3/28(r- R (31) 

- . I  

The first term o f  the right-hand side leads to 

mM 
U(a) = mM (r 2 _ 2rs cos 0 + s2) -1/2 

2s 
(32) 



AXIALLY SYMMETRIC SOLUTIONS OF EINSTEIN'S FIELD EQUATIONS 987 

the second term to 

rnM R for r ~<R 
U (2) = (33) 

mM for r > R  

m M  

The part U (3), generated by the last two source terms of (31), could in princi- 
ple be found by integration over the Green's function of the Laplacian. This 
leads however to elliptic integrals, which are difficult to manage and to interpret. 

m M  

We therefore prefer to expand U (3) in Legendre polynomials: 

m M  

U (3) = s fl(r)Pt(cos O) 
l=0 

with [12] 

__)__)l 
(R 2 - 2Rs cos 0 + $2) -1/2 = L 2 Pt(cos 0) 

S l=0 

(R 2 - 2Rs cos 0 + s2) -3/2 = 1 ,o ( T ) l  S(S2 -R2 ) ~ (2l+ 1) Pl(cos 0) 
1=0 

We obtain from (31) the following differential equations for the functions fl(r): 

1 d (r2 rr ) I ( l+1)  mM I (__.~_)t 
r z dr fl(r) r2 ft(r) = - ~ - - s  ( - 2) ~(r - R) (34) 

m M  

In order that U (3) falls off for r ~ oo and is regular at r = 0, the solutions 
f}a)(r) = c}a)r t have to be taken for r ~< R, and the solutions f}b)(r) = c}b)r -1-1 
for r > R. The coefficients c} a) and c} b) are determined by the requirement that 
fl(r) be continuous across the shell and f/, r (r) has the correct discontinuity at 
r = R according to the right-hand side of (34). 

[ m M .  2 . 2 -1  2 5raM ~ 1 r t 
I~-R---[p + ( z - s ) ] ~  ~ t~=o 2--f-~(s)Pt(cosO), 

umM((3)(r, O ) = ~  forr~<R 

+ co2 
/ 
Ik f o r r > R  

The first terms in these expressions look as if they were produced by point 
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m M  

sources lying on the axis p = 0 at z = s (compare with U(O!), resp. at the "mir- 
ror" point z = R2/s. The whole contribution to the function U in order rnM is of  
course the sum 

m M  m M  m M  m M  
U = U (1) + U (2) + U (31 (36) 

m M  

We now come to the solution of equation (26) for the function F. Because 
of the factor 6(r - R )  of the source term, it is advantageous to go over to spheri- 
cal coordinates r, 0 : 

m M  1 m M  1 m M  m M  m M  

F'rr + r F , r  + - ~  F,oo = 87ro( TP v + TZz) (37) 

m M  

Expansion of F in the eigenfunctions sin lO and cos lO of the operator 32/~02 
m M  

leads to a separation of the variables r and 0. We have to demand that F is a unique 
(0) (1) m M  m M  

function of p and z, and that in the expansion F + F + F = p(1 + p-  1 F )  the 
i m M  

term p-  F is nonsingular at the axis 0 = 0. Therefore l has to be an integer, and 
only the eigenfunctions sin lO are allowed: 

F = gl(r)s in( l+ 1)0 (38) 
/=0 

A corresponding expansion of the right-hand side of (37) 

m M  m M  

87tO (TPp + TZz)= ~ tt sin(/+ 1 ) 0 6 ( r -  R )  (39) 
I=0 

has, with (21) and (23) the coefficients 

4raM (Tr sin(/+ 1)0 
tl = -  dO [(s cos0 - R ) ( R  2 -  2RscosO +s2)-1/2+C] 

zrs2 Jo sin 0 

(4O) 

which cannot be integrated in an elementary way. Equation (37) reduces now to 
the following differential equations for the functions gt(r): 

1 (l+ 1) 2 
gt, rr + --  gl, r r 2 gl = tl6(r - R )  (41) 

r 

m M  

The solutions, which lead to a function F,  falling off asymptotically and being 
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regular at r - -0 ,  are g(a)(r)= e}a)r l+1 for r ~< R, and g}b) (r ) :  e}b)r - l - '  for r > R. 
The coefficients e} a) and e} b) are again determined by continuity o f g  t across the 
shell and correct discontinuity ofgt, r according to (41). In this way we arrive at 

m M  

the following expression for the function F : 

m M  - ~ -  ~ sin(l+ 1)0, for r~<R 
l=0 

F(r, 0) = (42) 

- 7  ~ sin(l+ 1)0, for r > R  
- l=0 

m M  

The detailed form of  F(r, 0), i.e., the integration of  (40) or the summation of  
m M  

the series in (42), is not important, since as will be shown in Section 5, F does 
m M  

not occur in the shielding factor. We only want to stress that F falls off  like r-  I 
m M  

for r -+ o% and therefore the "correction term" p - 1 F fails of f  like r- 2. 
m M  

If we insist on a canonical Weyl metric with F = p and therefore F -- 0 in 
the outside region r > R, as is o f  course possible in this vacuum region and is the 
practice in the literature, we have to choose gt(r) = 0 for r > R and all l. If we 
now, however, wish to extend this solution in a continuous manner to the in- 
terior of  the shell-as is necessary, if we look for a complete description of  our 
physical system and not only o f  parts o f  i t - w e  have contributions from both 
classes of  functions gfa)(r) ~ r l§ and gfa)(r) ~ r -t-  1 in the interior, and there- 

rnM 

fore F is singular at the center of  the shell r = 0. (Likewise, we encounter a sin- 
m M  

gularity of  F at r -+ ~ if we insist on having F = p inside the mass shell.) 
If one would even insist on having a canonical Weyl metric both outside and 

inside the mass shell in spite o f  the fact that TP o + TZz 4= 0 in the shell, one 
would be forced to give up the continuity of  this coordinate system (with re- 
spect to our noncanonical Weyl coordinates p, z, resp. the spherical coordinates 
r, 0): By setting F(p,  z) = ~ in the whole space-time, the conjugate variable ~, 
which forms together with ~ a Weyl-type coordinate system, would be given by 
~z/~O = -r3~/~r = -r~F/3r, and therefore 

T r t l  1 

~- = const + r cos 0 + 

~ cos( l+ 1)0, for r > R  

which obviously is discontinuous at r = R. Therefore in the coordinate system 
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(fi, Z) the presence of the mass shell, at least as far as the trace part TOo + TZz 
is concerned, would be "hidden" in a discontinuity of the coordinate system. 

Since equation (8), which is the basis for having F ~a O for our two-body 
system, is valid not only for static axially symmetric systems but equally for 
systems in stationary rotation [10], also the above arguments for having F 4= p 
even in the vacuum regions take over to rotating shells. This is exemplified by 
the slowly rotating shell of Brill and Cohen [11], which, to first order in the 
rotation parameter, produces the Kerr metric in the outside region [13]. If one 
wants, however, to describe this system in Weyl-type coordinates in a continu- 
ous and singularity-free manner, one cannot take the usual canonical Weyl form 
of the Kerr metric [14] but has to work with some noncanonical form with 
F ~ p in the outside region. 

The arguments for having F ~a p even in the vacuum region, however, break 
down if we consider instead of shell structures more realistic, extended bodies, 
because then appropriate boundary conditions, for instance, lim(TPp + TZz) = 0 
at the surface of the body, can at least in principle manage a continuous transi- 
t ion from canonical Weyl coordinates (F = 19) in the outside region to noncanoni- 
cal and singularity-free Weyl coordinates inside the body. This can for instance 
be seen by studying the exterior and interior Schwarzschild metric in Weyl-type 
coordinates, or by recent work of Marek and coworkers [15, 16] on sources for 
the Kerr metric. 

m M  

There remains the solution of equation (27) for the metric function K. 
Studying the singular terms of the type 6(r - R) in equation (26), we see that on 
the one hand 

m M  m M  m M  m M  m M  1 rnM 

F , p  o + F . . . .  zz "~ s in2 0 F rr + COS2 0 F ~r = F rr ~- sin 2 0 F ' o p  

on the other hand, because of (21) 

mM rnM 1 mM 
87rp( TOo + TZz) = sin2----- ff 8rrp TZz 

m M  

so that in equation (27) the terms of type 6(r - R), coming from F,a p and 
m M  m M  

8vro TZz cancel, and K is continuous at r = R. Now, we should like to integrate 
equation (27) for fixed z with respect to p from p = ~o inwards. For r )>R, the 

m M  
term TZz does not contribute, and with the help of the solutions (12) we get 

mM mM 2 mM 
K (r > R ) = F,o + - - 7 -  [ ( r -  s cos O )(r 2 -  2rs cos O +s2) -1/2 - 1] 

where the integration constant takes care of  the correct asymptotic behavior. 
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rn M 
For r < R,  the integral o f  the functions U and U has to be taken only until 

M 
p = (R 2 - z2) y2, because U is constant for r < R,  thus giving the contribution 

2mM 
s2 [ ( R -  scosO)(R 2-  2RscosO +s2)  -1 /2 -  1] 

m M  
The term TZz now contributes 

2raM 
s2 [ ( scos0  -R)(R 2-  2RscosO +s2)-1/2+C] 

so that as a whole we have 

m M  rnM 2 m M  

K(r < R)= F,o + - - 7 -  (C- 1) 

mM 

Inserting the result (42) for F,  we get 

K(r, O) = 

1 (_~)t 2mM 
- -~ ~ tl cos lO + - - ~  (C - 1), for r ~< R 

/=0 

1 ~o [ r \-t-2 2raM (43) cos(1+2)0+ s--r- 

�9 [ ( r -  s cos0 ) ( r  2 -  2rs cos0 + s2) -1/2- 1], for r > R  

rnM m M  
For r-+ 0% K falls o f f  like r -2. The detailed form of  K, i.e., the summation of 
the series, is again not very important for the following. 

Now, although the solutions (36), (42), and (43) fulfill reasonable asymp- 
totic conditions and are continuous at the mass shell, they are not yet completely 
satisfactory from the physical point of  view because, as is well known since the 
work of  Bach and Weyl [6], in all 2-body or n-body systems which are artifi- 
cially made static by using the metric (1), elementary flatness is violated at parts 
o f  the axis p = 0. To see this in our case, let us consider at z = const an infinitesi- 
mal circle around the axis, with p = e. In view of the metric form (1), this circle 
has radius 

~0 ~ 

Ap = dp e K-U ~ e e K(p=e'z)-U(p=e'z) 

due to the continuity of  U and K. For the circumference, we get 
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A u  = dc~ Fe -U = 2rrF(o = e, z ) e  -U(~ 

mM 
Therefore the ratio A u /Ap  = 27re-lF(p = e, z)  e-K(P = e, z) ,~ 2rr [ 1 + e-i  F ( p  = e, z)] 

mM mM mM 
[1 - K(p = e, z)] ~ 27r[1 + e -1 F ( p  = ~, z)  - K(p  = r z)] differs from the 

mM mM 
Euclidean value 27r if e- a F ( p  = e, z )  - K(p  = e, z)  4= 0 in the limit e -+ O. With 
the results (42) and (43), we get 

mM mM 
w ( z ) =  lim [e -1 F ( p = e , z )  - K(p  = c , z ) ]  

e--~O 

[ 4 m M  

I $2 ' 

= " r  

1 - - - ~  (1 - C), 

X 0 ,  

f o r R  < z < s  

for Izl ~<R 

otherwise 

(44) 

Israel [17] has provided a quite general analysis of  line singularities in general 
relativity. According to his classification, the "Weyl strut" between our two 
bodies is a simple line source of  conical type,  for which aline energy-momentum- 

s 
tensor TUv can be obtained. According to his formulas we have 

~ ~ ~ ( p )  
T t t =  TZz = -~n w(z )  - -  (45) 

P 

s 

with w (z) from equation (44), and all other components  of  TUv being zero. The 
field equation (7) then tells us that the strut does not contribute to the metric 
function U and therefore not to the overall mass of  the system, as was already 
stated earlier and as is true for all Weyl struts [17]. According to equation (6), 
there is also no contribution to the function K. There is however a contribution 
to the metric function F, because in the strut likewise as for the stresses in the 
mass shell, the canonical condition TPp + TZz = 0 is not valid. According to 

8 

equation (26), the additional contribution F fulf'flls the equation 

F,v p + F, zz = w(z)6(p)  

whose solution with correct asymptotic behavior is 
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1 s [-w(z),  for 0 = 0 
- F = [ (46)  
P 0, fo rp  > 0  

which then, together with (44), just repairs elementary flatness at p = 0. 
s 

Analyzing the stresses TZz, given by (45), we see that in the region R < z "< s 
between both bodies a positive stress in the z direction exists in the strut, which 
leads by virtue of 

f s f s mM F= df TZz = 27r dp p TZz = s2 

to the Newtonian force between the bodies [6]. Whether there exists also a strut 
within the mass shell, and what its properties are, depends on the constant C, 
and so by (23) and (24), is connected with the stresses in the mass shell: If a 

$ 

very stiffmaterial is used for the mass shell, the stress TZz = (mM/2rrs 2) [~ (O)/P], 
transferred through the outside strut, is totally taken up by the mass shell at the 
"upper pole" z = R(C = 1). For material of  other constitution, part of  the stress 
will be transferred through an inside strut to the "lower pole" point z = -R. 
However, in order to guarantee positive stress in all parts of  the strut and not to 
overcompensate the stress in the outside strut, the restriction [C[ ~< 1 seems ap- 
propriate for the constant C. 

It should be remarked, that the strut with positive stress in the region R < 
z < s can be substituted by wires with negative stresses, resp. tensions, in the 
outside regions z > s and z < -R, a configuration, which might even be preferred 
in view of our Gedanken experiment for installing the two-body system at the 
beginning of this section. Mathematically, this would be brought out by inte / 

m M  

grating equation (26) with the asymptotic condition F ~ -(4mM/s 2) r sin 0 
for r ~ oo (with the consequence that the metric is asymptotically no more Min- 
kowskian), and thus substituting the "strut function" w(z) from equation (44) by 

~ O, f o r R < z < s  

2ram 
~(z)  = { - - - - ~  (1 + C), for Izl ~<g 

| |  4raM 
~" ~ , f o r z > s a n d z < - R  

s 
This substitution has moreover the advantage that the energy density T tt 

s $ 

-T  t t = - T Z z ,  which is always negative for Weyl struts [ 17], becomes positive 
everywhere in the outside wires. 
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w (5): Discussion o f  the Shielding Effect 

With the metric functions U, K, and F known to order m M  from Section 4, 
we can now compare gravitational effects inside the mass shell, as they are pro- 
duced by the point mass m alone with the same effects produced by the (non- 
linearly) combined action of both masses m and M, and we can in this way see 
whether a reduction of some or all of these effects is caused by the mass shell. 
In order to guarantee that we study real physical effects and are not misled by 
coordinate effects, we should like to consider the curvature invariants. Since in- 
side the mass shell we have, apart from the strut on the axis, a vacuum field, the 
Riemann tensor RUVxK reduces to the Weyl tensor C"Vx~. We find it advanta- 
geous to use instead of the otherwise popular eigenvalues of CUVx~ the poly- 
nomial invariants of the Weyl tensor, given for instance by Weinberg [18]: 

C 1 = C'UVpaCPalav, C 2 = C#VpaCPa~.~:CXKl~ v 
(47) 

C3 = g- 1/2e"VPaCXKpaC#vx., Ca = g- 1/2eUVPoCXKpoCr~xKC.v~g 

For our metric (1), the nonvanishing components of  the Weyl tensor can be 
calculated to be 

ctPto = CZCbzO = e2(U-K)(-U, oo - 2U, o 2 + U z  2 + U, oK,o - U, zK, z) 

ctZtz = CPeap(~ = e2(U-K)(-Uzz + Up 2 - 2 U  J - U, pK,p + U z K , z )  
(48) 

c t O t r  = COZoz = - ( c t P t p  + c t Z t z  ) 

CWtz = -COOzr = e2(U-K)(-U p z - 3U pU z + U pK, z + U zK, p ) 

We see that the metric function F cancels out of all components, in agreement 
with the general statement by Weyl [4] that in vacuum the metric can be re- 
duced to the "canonical" form. We see further that in all nonvanishing compo- 
nents of C"Ux~ the index t (and equally the index ~) occurs either in both the 
upper and lower pair or in no pair. Since however in the totally antisymmetric 
tensor e "vp~ the index t can occur only once, the invariants 6'3 and C4 are iden- 
tically zero. 

If we now look for the expansion of the components CttUxK of equations 
(48) in powers of  m and M, it is clear that inside the mass sheU no term of order 
M can be present. In detail, we get, by using the vacuum field equations 

) tn m 
CWtp = CZCz4~ ,~ -Upp + 2U+ 'PP 

U, pp 
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m M 
c t Z t z  = CPC~pr ~ - < z z  + 2U+ zz (49) 

z z  

m M 
CtOtz = -CP4Ozr ~- U,p z + 2U+ oz 

Uoz 

These results show, that in our approximation also the function K cancels out 
and with it all dependence on the integration constant C. By inserting the ex- 
pressions (49) into the invariants (47), we get by tedious but straightforward 
calculations: 

C 1 = 1 6 ( 1 + 4 U )  ,oz 2 - U p o U z z + - ~ U  o 

m m m M ~  [ m  m M  mM m rnM 1 U p U p )  ( 5 0 )  
+ 16~U, pp U,o o + U,z z U, zz + 2g,  oz Uoz + -'~ , , 

M l rn m m m i'm m M  

= _ _ U,o z ) -  c= -48(1+6u) Vp(uopu= 2 4a~upp=g, pp 
p 

m m M  1 m m M  1 m m M  2 rn m m M  
+ u, =2 u, = + 7 x  u p  2 u,p - -o U'pz2 u p  - -~ v p U p z  u , , ~ ]  (Sl) 

m M 

Inserting the expressions (12) for U and U, again using the vacuum field equa- 
m M  

tions for U, and going over to the entitles D1 = (C1/48) y2 and D2 = (C2/96) 1/3, 
which in contrast to C1 and 6"2, begin with order rn terms, we find that in our 
approximation within the mass shell the relation D 1 = D2 =: D is valid, which 
expresses a kind of approximate symmetry beyond the time and axial symmetries, 
and which in the following will make its geometrical appearance in curves within 
the mass shell, on which the shielding factor 77 is constant�9 The invariant D has 
now the following form: 

2M [p 2 "Jr (Z - S )2 ]  1/2 

D = m [ p 2  + ( z -  s)2] -3/2 1 R 2m 

m M  m M  m M  I 
�9 (p2 Up ~ + (z - s) 2 U, zz + 2p(z  - s) U p z ) l  (52) 

mM 
Inserting our results (32), (33), (35), and (36) for U, we can (again by quite 
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rnM 

tedious calculation) evaluate the derivatives of  U, with the result 

D = m [ p  2 + (z - s)2]-3/2r/ 

with the shielding factor 

5M M 15M 
= 1 - - -  - - +  - - ( r  2 -  2rscosO +s2~ 1/2" 

2R 2s 2Rs J 

Pt(cosO) @ ) l  

s (2 /+  1) (2 /+  3 ) (2 /+  5) l=0  

A reasonable write-up of  the shielding factor is 

(53) 

with 

(54) 

and 

(r/' 
f , = - 2 - - c o s 0 +  (57) 

s t=o (2 /+  1)(21+ 3 ) (2 t+  5) 

Because of  the denominator (2l  + 1)(2l + 3 ) (2 /+  5) and the factor (r/s) t, the 
series in fconverges  quite well, and to reach 1% precision, one has to sum at 
most until l = 12. In this way one finds that in the extreme case r/s --- 1 (mass m 
sitting on the top of  the shell M, invariant D taken just under the shell)fvaries 
between f = 0 (for 0 = 0) and f ~ 1.78 (for 0 -- lr); for the other extreme case 
r/s -+ 0 (m infinitely far from M or D taken at the origin) we have f = 1 indepen- 
dent o f  0, and therefore ~" = 1 + (1/4)(R/s)  and r /= 1 - 2M/R - M/2s, so that in 
any case ~ lies in the region 1 - 3M/R <. rl < 1 - 2M/R.  For s = R and s = 2R,  a 
pictorial presentation of  the shielding factor ~7, resp. ~', is given by drawing lines 
o f  constant ~" in the figures 1 and 2. The lines of  constant ~" are not exactly 
(Euclidean) circles around the point mass m, but are a little bit prolate: The 
point where a curve ~" = const meets the axis has a somewhat larger (Euclidean) 
distance from rn than the points where the same curve meets the mass shell. 

It is worthwhile to figure out from what physical effects the different con- 
tributions to the shielding factor, say, r in (56), are coming: The main contri- 
bution ~'1 = 1, which also survives in the limit s ~ 0% is due to the factor e 2u in 
the components of  the Weyl tensor in (48), and as such it is a typically nonlinear 
effect of  Einstein's theory of  gravitation. All other contributions are generated 

m M  
by the correction term U in the "Newtonian potential"  U, and in detail a con- 

5 1 R  1 ( t o )  
~'= 4-+ 4 s 4 f ' (56) 

2M 
77 = 1 - - -g -  ~ (55) 
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= . 

=1.055 

Fig. 1. The lines of constant shielding factor rT, resp. f, in the case s = R. 

M m  m M  
t r ibu t ion  ~'2 = -R/s comes  f rom UTtt  in equa t ion  (25), ~'3 = - ( 1 / 5 ) f  f rom UTtt,  

rnM rnM 
~4 = (5/4)(R/s) f rom the  t e rm Ttt, ~'5 = 1/4 - ( 1 / 2 0 ) f f r o m  the stresses TOo + 
mM mM Mm mM mM 
TZz + T~(o. The "po ten t i a l  energies" UTtt,  UTtt and Ttt and the stresses are 

o f  course also present  in Newton ian  t heo ry  o f  gravitat ion,  but  there  they  do no t  

play the role o f  sources for gravitat ional  fields, and therefore  no shielding is in- 

m l  

i= 1.24 

0 

[=1.023 

Fig. 2. The lines of constant shielding factor r~, resp. ~', in the case s = 2R. 
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duced by them. We see also that only the term ~'4 depends on the constant/3, in- 
troduced in connection with the overall energy of  our system at the beginning 
of  Section 4. For general/3, we would have ~'4 =/3R/2s, and therefore ~" = 5/4 - 
( 1 /4 ) f  + (/3/2 - 1)(R/s), which leads to 7/= 1 - 2M/R for s ~ 0% independent of  13. 

The shielding factor ~ is of  course relevant not only for a point mass m but 
for arbitrary mass distributions at distance s from the center of  the shell, and for 
mass distributions at varying distances from the shell the factor r/varies only be- 
tween 1 - 2M/R and 1 - 3M/R. In a similar way we can substitute for the in- 
finitesimally thin mass shell an arbitrary spherical mass distribution with a hole 
at the center. Looking at such mass distributions as built up of  appropriate con- 
centric mass shells, we get the shielding factor by integrating r/(r = 0) = 1 - 
2M/R - 114/2 s over R, e.g., for a homogeneous sphere of  mass M and radius R 
we have 

3M M 
= 1 R 2 s (58) 

From all these expressions for 7/it can be read off that total shielding (~/~ 0) 
seems possible only for the hypothetical case where the Schwarzschild radius 
r M = MG/2c 2, corresponding to the mass M, is of  the same order of  magnitude as 
the spatial dimension R of  this mass distribution. This result, for which our ex- 
pansion in powers ofMG/Rc 2 of  course breaks down, might also have been ex- 
pected on dimensional reasons, and it shows close analogy to the result o f  Brill 
and Cohen [ 11 ] that there is complete frame dragging inside a slowly rotating 
mass shell with radius R =MG/2c 2. 

As far as more realistic examples of  this nonlinear shielding phenomenon are 
concerned, it has to be said that-disregarding all problems with the strut, hold- 
ing both  bodies in equilibrium-in all cases the shielding factor r~ differs from 
unity only by an unmeasurably small amount:  For a small hole in the center of  
a sphere of  lead of  radius R = 10m, we get 1 - r / ~  10 -2~ and even for a hypo- 
thetical hole in the center of  the earth we have only 1 - ~ ~ 10 -9 .  

We should like to add some remarks concerning the gravitational field resp. 
M 

its invariants C 1 and C~ outside the mass shell. Since there U is no more constant, 
the expressions (49) for the approximate components of  the Weyl tensor get 
more complicated: 

m M m M  M m  r n M  

CtPto = C Z ~  =-(Uop + Upp + Uop + 2UUpp + 2UUoo 

m M m M 

+ 4U, pU o - 2 U z U z )  

m M m M  M r n  m M  

CtZtz = CP4~o4~ = - (Uzz  + Uzz + Uzz + 2UUzz + 2UUzz  

(59) 
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rn M m M 

+ 4U, zU, z - 2 U o U o )  

m M m M  M m  m M 

c t O t z  = -CPqJzga = - ( U , p  z + U p  z + f , t~  z + 2UU,  oz + 2UU,  o= 

m M M rn 

+ 3Vouz  + 3u, ouz)  

Again, the function K cancels out in our approximation. At first we want to con- 
centrate on the lowest order terms in (59). Inserting these into the invariants (47) 

m M 

and making use of the vacuum field equations and of the abbreviation V = U + U, 

we reach 

C 1 ~  1 V 2 
16 -~- V'~ , p z  - V,,opVzz (60) 

C__22 ~ 1 Vo(Voz 2 _ VppV, zz) (61) 
48 p 

m M 

Inserting finally the explicit expressions (12) for U and U in the region r > R, the 
invariants have in lowest order the form 

C-AL ~ {M(o 2 + z2) -3/2 + m [ p  2 + (z - s) 2] -3/2}2 
48 

- 3mMo2s2 (O  2 + z 2 ) - s / 2 [ 0 2  + (z - s) 2] -s/2 (62) 

C2_2 ~ {M(o 2 + z2)_3/2 + re[p2 + (z - s)2] -3/2} 
96 

�9 ({3/(02 + z2) -3/2 + m [ p  2 + (z - s)2]-3/2} 2 
/ 

m M p 2 s 2 ( o  = + z 2 ) - s / 2 [ 0 2  + (z - s) 2] -s/2) (63) 9 
2 

from which it can be seen that, in contrast to the interior region r < R, outside 
the mass shell the invariants C~ and 6"2 are independent functions of P and z. 

As a last point we want to show that the nonlinearities of Einstein's theory 
of gravitation induce a R dependence of the field outside the mass shell so that, 
in contrast to Newton's theory, the spherical body M does not act like a point 
mass at the origin. It suffices to exemplify this effect with the invariant C 1. [The 
invariant C 2 would show a similar behavior.] Going back to the expressions (59) 
for the Weyl tensor, we see that an R dependence is only contained in the terms 
m M  m M  m M  m M  rnM 

UOp, U z z  and U, oz,  and since U (1) and U (2) from equations (32) and (33) 
m M  

are R independent, we are even confined to U (3) from equation (35). Expansion 
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m M  

of U (3) with respect to R results in 

m M  2mM 
U(3) = _ 

sr  

PFISTER AND KONRAD 

m M  zR 2 
+ O(R 6) (64) 

3 s2r 3 

Omitting herefrom the R-independent term and neglecting terms of order R 6, we 
can for our purposes set 

c %  = c " , z  = = - O r ,  = - C " %  =-a,,,z 

with 

mM zR 2 
U= V -  W = V -  3 s2r 3 (65) 

Calculating with these expressions the invariant C1, we get 

- -  ~ K p  2 + - K p o K z  16 ,oz 

- ( ~  Epwo + 2Vpzwpz - Eoow,= - E=wpp)  (66) 

and explicitly 

Cl Cl (R = 0) + mMR2s-2(p 2 + z2)-s/2 
48 48 

�9 (2z{M(p 2 + z2) -3/2 + m[p 2 + (z - s)2] -3/2} 

+ mp2s(2p2 + 2z 2 _ 5sz)(p2 + z2)-1 [02 + (z - s) 2] -s/2) (67) 

where for C1 (R = 0)/48 the expression (62) can be taken in our approximation. 
Since this expression is quite tedious to handle in general, we specialize to posi- 
tions at the axis p = 0 and z near +R, and to values s ~ R, where the maximal 
contribution of the R-dependent terms relative to the R-independent terms can 
be expected (as can be proven in detail). Assuming m < M ,  as is consistent with 
the fact that m has been handled as point mass, we get for z ~- +R 

CI(R)~Cx(R  =O) ~ + ~ -)  (68) 

that means a small amplification of the curvature due to the R-dependent terms 
in the region between the bodies and a small reduction in the region "behind" 
the mass shell. 
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