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Abstract. We present an exact solution describing a black hole surrounded by a massive 
shell. Energy conditions for the material of the shell are examined and yield its minimum 
radius. 

1. Introduction 

The Penrose process allows the mining of energy from a rotating black hole; it would 
also be an excellent way of waste disposal; cf [l, p 9081. Of course, one would have 
to build structures near the black hole and the question is how close this could be 
done. A rope can be hung right down to the horizon of a Schwarzschild black hole 
[ 2 , 3 ]  if it is made of extremely stiff material, i.e. has equation of state p = IpI. This 
result, however, does not tell anything about how close one can build a shell around 
a black hole, which is what would be about the minimum requirement for the exploita- 
tion of the Penrose process. 

In this paper we shall therefore study an exact solution of Einstein’s equations 
which describes a static black hole surrounded by a concentric spherical massive shell. 
We confine ourselves to a static situation because for a Kerr black hole an exact shell 
source is not known, even though Babala [4] has given such a solution in terms of an 
expansion in the angular momentum. 

2. The solution 

To find the global solution which describes the situation we wish to study, we divide 
spacetime into two regions separated by the shell. In both regions the metric being 
spherically symmetric and static assumes the Schwarzschild form 

d 7’ 
1-2mlP  

d s  =I dr2  
1 - 2 M / r  

+ P2( d a ’  + sin2 d dQ2) - ( 1 - 2m/ P )  d I’ 

+ r2(d6’+sin2 6 dp2)  - ( 1  - 2 M / r )  dt2  

inside the shell 

outside the shell 

M is the total mass of the system, m the one of the black hole. In order to use the 
same coordinate system inside and outside the shell and to make the metric continuous 
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across the shell-which we assume to be described by an equation like r=const,  
respectively f = const-we transform coordinates such that 

8 - 8  + = c p  i= ( a M / a , ) t  Y(  r)  such that P( R )  = R 
( d f / d r ) ( R )  = am/aM 

a,v = ( 1 - 2 M / R ) a,, = (1 -2m/R)”’. 

The shell is located at r = R. Of course m, M < 4R. 

3. The shell 

To calculate the energy-momentum tensor of the shell we use a well known method 
[ l ,  p 5511. Let K,  and KO be the second fundamental forms of the two different 
imbeddings of the shell, g the metric on the shell and y = K,,- K , .  The surface 
energy-momentum tensor is then given by 

s= (1/8n-)(Y -g tr(7)).  
It turns out that the pressure is isotropic which was to be expected anyway 
symmetry considerations. Velocity, energy density and pressure are given by 

from 

1 

Given p we can define the Inass of the shell in the static reference frame given by U 
by integrating the energy density over the shell at constant time. Hence 

M,=4rR2p  = R(a ,  - L Y M ) .  

Solving this for the total mass yields 

M = m + M,(am - M,/2R).  

This expression reflects the non-linearity of general relativity; the masses of the black 
hole and shell do not add up to the total mass. For R >> m we have a ,  = 1 - m / R ,  
and the above expression shows that the total mass is diminished by the binding energy 
of the shell and its gravitational self-energy. 

We now impose the following energy conditions [ 5 ]  on the material of the shell. 
I. Weak energy condition: 
11. Dominant energy condition: IPI P 
111. Timelike convergence condition: 

OG p, 0 6  p + p  

0 6  p + 2 p .  
The usual condition O s p L 3 p  had to be replaced by I11 due to the two spatial 
dimensions of the shell. 

The energy density has to be positive by I which requires m 6 M. It can then easily 
be verified that the pressure is positive for any value of R. The only condition remaining 
to be satisfied is thus 11. 

The equation p - p  = 0 to be solved for R yields the minimum radius at which the 
shell can be built. Using M, m this gives a quadratic equation whose larger solution 
has to be taken; expressed in terms of M,,  m the equation is of third order. The 
minimum radius is given by 

R,,, = $ [ M  + m S  ( M 2 +  m2-gMm)”2] .  



A shell around a black hole 5 87 

It is easy to show that Rmi, > 2M, the shell is thus outside the Schwarzschild radius 
of the system. Indeed, for M,<< m we find approximately 

Rmi, =sm +:Msa, .  

A light shell can thus be built inside the circular photon orbit but is bounded away 
from the horizon. For m = 0, i.e. no black hole inside the shell, we get as the minimum 
radius 

R,,, = S M .  

This should be compared with the minimum radius of a fluid ball which is $M [ 6 ] .  A 
shell can thus be more compact than a fluid ball of the same mass. 
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