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Abstract

■ In everyday situations, quantitative rules, such as “greater than/
less than,” need to be applied to a multitude of magnitude com-
parisons, be they sensory, spatial, temporal, or numerical.Wehave
previously shown that rules applied to different magnitudes are
encoded in the lateral PFC. To investigate if and how other frontal
lobe areas also contribute to the encoding of quantitative rules
applied to multiple magnitudes, we trained monkeys to switch
between “greater than/ less than” rules applied to either line
lengths (spatial magnitudes) or dot numerosities (discrete numer-
ical magnitudes). We recorded single-cell activity from the dorsal
premotor cortex (dPMC) and cingulate motor cortex (CMA) and
compared it with PFC activity. We found the largest proportion of

quantitative rule-selective cells in PFC (24% of randomly selected
cells), whereas neurons in dPMC andCMA rarely encoded the rule
(6% of the cells). In addition, rule selectivity of individual cells was
highest in PFC neurons compared with dPMC and CMA neurons.
Rule-selective neurons that simultaneously represented the
“greater than/less than” rules applied to line lengths and nume-
rosities (“rule generalists”) were exclusively present in PFC. In
dPMC and CMA, however, neurons primarily encoded rules
applied to only one of the twomagnitude types (“rule specialists”).
Our data suggest a special involvement of PFC in representing
quantitative rules at an abstract level, both in terms of the propor-
tion of neurons engaged and the coding capacities. ■

INTRODUCTION

Relating objects as larger or smaller, or more or less than
other objects based on the property “magnitude” is a
comparison we use in everyday life to arrive at informed
decisions. We process relations between magnitudes
such as size or number flexibly by applying “greater
than/ less than” quantitative rules. For instance, when
hungry, we follow a “greater than” rule applied to an in-
numerable magnitude when choosing the size of a slice
of pizza. We also use a “greater than” strategy when we
are faced with countable magnitudes, for example when
negotiating the number of dollar bills of our salary. But
how are such quantitative rules neuronally encoded
when applied to different abstract magnitude types?

The PFC is a key area in representing cognitive com-
ponents required for abstract goal-oriented behavior.
PFC neurons encode multiple categories (Pan & Sakagami,
2012; Cromer, Roy, & Miller, 2010; Roy, Riesenhuber,
Poggio, & Miller, 2010) and abstract numerical information
(Nieder, 2013; Viswanathan & Nieder, 2013; Genovesio,
Tsujimoto, & Wise, 2011; Tudusciuc & Nieder, 2007, 2009;
Nieder, Freedman, & Miller, 2002) in combination with
abstract rules (Kamigaki, Fukushima, Tamura, & Miyashita,
2012; Vallentin, Bongard, & Nieder, 2012; Bongard &
Nieder, 2010; Stoet & Snyder, 2009; Genovesio, Brasted,

Mitz, & Wise, 2005; Wallis, Anderson, & Miller, 2001; White
& Wise, 1999). PFC is therefore ideally positioned to rep-
resent rules applied to multiple magnitude types.
In a recent study, we recorded from PFC neurons while

monkeys switched between “greater than/less than” rules
applied to spatial and numerical magnitudes. We found
that PFC neurons not only encoded quantitative rules as
independent principles (i.e., rules only applied to a single
magnitude type), but more neurons than expected by
chance also responded to the overarching concept “magni-
tude rules,” signaling quantitative rules irrespective of mag-
nitude types (Eiselt & Nieder, 2013). Thus, besides rule-
specialized neurons (“specialists”) also rule-generalizing
cells (“generalists”) were involved in selecting magnitudes
based on rules.
However, PFC does not operate in isolation, but rather

is part of a wider frontal lobe network. The outputs of
PFC are sent to motor-related areas (Miyachi et al.,
2005; Bates & Goldman-Rakic, 1993; Barbas & Pandya,
1987) and different studies suggested that such pre-
motor areas convey even stronger abstract rule activity
(Vallentin et al., 2012; Muhammad, Wallis, & Miller,
2006; Wallis & Miller, 2003). For example, Muhammad
et al. (2006) and Wallis and Miller (2003) found stronger
rule-related activity in a same/different task and report
that these signals appeared earlier in premotor cortex
(PMC) compared with PFC. This suggests a more pro-
nounced role of the PMC in encoding abstract rules.University of Tübingen
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Further evidence for the important role of PMC in rule
following comes from Vallentin et al. (2012). They report
a similar fraction of neurons in PFC and dorsal PMC
(dPMC) representing numerical “greater than/less than”
rules and that this rule-related activity was also stronger
in dPMC neurons. Besides PMC, also other frontal areas,
like the ACC or cingulate motor areas (CMAs), are
thought to be critically engaged in rule-guided behavior
(Womelsdorf, Johnston, Vinck, & Everling, 2010; Buckley
et al., 2009; Johnston, Levin, Koval, & Everling, 2007),
action selection (Paus, 2001; Shima & Tanji, 1998), and
abstract decision-making (Merten&Nieder, 2013) and have
been recently found to also represent numerical quantita-
tive rules, although to a much lesser extent (Vallentin
et al., 2012). In the current study, we thus compared the
roles of three different brain areas in the frontal lobe, the
PFC, dPMC, and CMA, in representing multiple abstract
rules.

METHODS

Subjects

We recorded neural activity from two macaque monkeys
(Macaca mulatta, Monkey O: 8 kg, male; Monkey E:
4 kg, male) that were cared for in accordance with the
guidelines for animal experimentation approved by the
Regierungspraesidium Tübingen, Germany. Both mon-
keys were trained first on the numerosity comparison fol-
lowed by the line length comparison. Recordings from
PFC of Monkeys O and E are described in Eiselt and
Nieder (2013).

Behavioral Task and Stimuli

We trained two monkeys to perform a “greater than” and
“less than” comparison and to flexibly switch between
two different magnitude types (or categories): the length
of a line (spatial magnitude) and the number of dots in a
set (numerosity, discrete magnitude), which both were
presented in three different sample values with cor-
responding match and nonmatch values (for details,
see Eiselt & Nieder, 2013). To initiate a trial, the monkeys
had to grasp a response bar and fixate a central fixation
target (Figure 1A, B). Eye movements were monitored
with an infrared eye-tracking system (ISCAN, Burlington,
MA), and the monkeys were required to keep their gaze
within 1.75° of the fixation target throughout the trial
until the test stimulus appeared. After 500 msec of fixa-
tion, a sample stimulus (500 msec) indicated the reference
magnitude value, which the monkeys had to remember
until the end of the trial. Next, after a 1000-msec Delay 1
period, a rule cue (500-msec duration) instructed the
monkeys to apply either the “greater than” rule or the “less
than” rule. During a second delay (Delay 2, 1000-msec
duration), the monkeys had to remember the type and
value of the sample stimulus and the cued rule, to then

respond in the Test 1 phase (1200 msec). In this period,
the monkeys were required to release the response bar
if the “less than” rule had been cued and the displayed
magnitude value of the Test 1 display was shorter/smaller
than the reference value shown in the sample phase. They
had to keep holding the response bar if the Test 1 display
was longer/ larger than the reference magnitude value
when the “less than” rule was cued. Conversely, if the
“greater than” rule had been cued, the monkeys were
required to respond when the test value was longer/larger
and to withhold the response when the test value was
shorter/smaller than the sample value. In 50% of the trials
(match trials), the magnitude value in the Test 1 period

Figure 1. Behavioral task. Two rule-guided magnitude comparison
tasks, one based on the length of lines (A) and the other based on
the number of dots (B), were presented during each session. (A) Rule-
based discrimination task applied to magnitude “line length.” After
grabbing a response bar and maintaining fixation, a sample line length
was presented followed by Delay 1 phase. Next, a rule cue instructed
the monkey to apply the appropriate rule (“greater than” or “less
than”). Then, after a second delay (Delay 2), a test line length (Test 1)
was presented. If the test line length was longer than the sample length
and the “greater than” rule was cued, the monkey had to release the bar
to be rewarded. If the “less than” rule was cued, the monkey was
required to keep holding the bar until in Test 2 phase a shorter line was
displayed. Vice versa for the “greater than” rule. Three different sample
lengths were shown. (B) Same rule-based discrimination task as in (A),
but applied to magnitude “numerosity.” Monkeys had to judge whether
the test numerosity is smaller or larger than the sample numerosity
based on the rule. Three different sample numerosities were shown.
(C) Rule cue stimuli. Each rule was indicated by cues of two different
sensory modalities. A red circle or white circle with water instructed
the “greater than” rule. A blue circle or white circle without water
instructed the “less than” rule.
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matched the cued rule; in the other half of the trials (non-
match trials), the magnitude value did not match the cued
rule; hence, the monkeys needed to wait and only release
the response bar when the second test display (Test 2) was
presented. All relevant features (e.g., spatial and numerical
magnitude, “greater than” and “less than” rule, rule cue
modality, sample magnitude values) were randomized
and balanced across trials.

We tested line length stimuli with line lengths of 1.2° of
visual angle (shorter test line length = 0.75°, longer test
line length = 2°), 2° (1.2°, 3.2°), and 3.2° (2°, 5°) and sam-
ple numerosities 3 (smaller test numerosity = 1, larger
test numerosity = 6), 6 (3, 12), and 12 (6, 24). The size
and position of each line/dot was randomized, and all
stimuli were generated anew for each recording session
using MATLAB (MathWorks, Natick, MA). We used con-
trol magnitude stimuli (dot density and total pixel area
controlled) and generalization trials to ensure that the
monkeys solved the task based on the relevant quantita-
tive information and followed an abstract “greater than/
less than” principle, irrespective of the individual mag-
nitude types and values (for details, see Eiselt & Nieder,
2013). The rule cues were presented in two different sen-
sory modalities (Figure 1C) to dissociate the rule-related
cellular responses from responses to solely sensory fea-
tures of the rule cue. A red circle or a white circle deliv-
ered with a drop of water indicated the “greater than”
rule, whereas a blue circle or a white circle delivered with
no water cued the “less than” rule.

Electrophysiological Recordings

We recorded extracellular single-cell activity in monkeys
equipped with two recording chambers from three areas
simultaneously: the right PFC, the left dPMC, and in the
left cingulate sulcus from parts of the dorsal CMA (CMAd)
and rostral CMA (CMAr). PFC recordings were centered
around the principle sulcus. In Monkey E, recording sites
were located ventral to the principal sulcus (correspond-
ing to area 9/46v), whereas the majority of recording sites
of Monkey O were located dorsal to the principal sulcus
(corresponding to areas 9/46d and 45; Petrides & Pandya,
1999). The CMA recordings were made just below the
dPMC recording sites at depth ranging from 7.5 to 10.5 mm
below cortical surface. We recorded from two behaving
rhesus monkeys using two arrays of eight glass-coated
tungsten microelectrodes of 1-MΩ impedance (Alpha
Omega). Electrodes were inserted each recording day by
using a grid with 1-mm spacing. Neurons were selected
at random; there was no attempt to preselect neurons
according to task-related activity. To access the respective
cortex structures, recording chambers were implanted
according to stereotaxic coordinates and were recon-
structed using MRI images of both monkeys. Signals were
amplified, filtered, digitized, and stored for off-line sorting
using a Multichannel Acquisition Processor (Plexon, Dallas,
TX). Spike sorting was performed off-line and mainly

based on PCA and close visual inspection of the entire
waveform for each cell (Off Line Sorter, Plexon).

Data Analysis

We used MATLAB (MathWorks, Natick, MA) for all analy-
ses and statistical tests. Because we were interested in the
neural activity corresponding to the different magnitude
rules, we analyzed the neural activity during the second
delay (Delay 2; see Figure 1A, B). In this period, the mon-
keys are informed about the rule to apply but cannot yet
prepare a motor response. Thus, all neural data analysis
used a 700-msec time window starting 500 msec after
rule cue offset (see Eiselt & Nieder, 2013), except where
stated otherwise. The discharge rates were analyzed
separately for the two different magnitude types using a
three-way ANOVA ( p < .01) with main factors Rule
(“greater than” or “less than”), Rule Cue Modality (visual
or tactile), and Sample Magnitude Value (smallest, me-
dian, or largest value per magnitude type). We defined
rule-selective neurons as cells that showed a significant
effect for main factor Rule to one of the two magnitude
types (separately tested for each magnitude type, p <
.01) and had no interaction with the other main factors.
We only included neurons with mean firing rates above
1 Hz.
To investigate the effect size of rule selectivity in each

brain area, we calculated omega-squared percent explained
variance (ω2 PEV) for each single neuron using a factorial
two-way design including the interaction term. The ω2 PEV
calculates howmuch variability in the neural firing rates can
be explained by a specific group membership or variable
(e.g., rule) and represents the ratio of the variance between
groups and the total variance (Hentschke & Stuettgen,
2011). It is advantageous in that it estimates the population
effect size at small sample sizes. Values of zero indicate that
the variability of the neural data contains no information
about the selected factors. We calculated the time course
of ω2 PEV with a sliding window (100 msec in 20-msec
steps) starting at the onset of the rule cue until 100 msec
after Delay 2 offset, using the MES toolbox for MATLAB
(Hentschke & Stuettgen, 2011) for the variables Rule Cue
Modality and Rule. This calculation was based on all
recorded neurons separately and then averaged across
neurons in each area. Next, we compared the ω2 PEV of
the factor Rule in a time window of 400 msec in the
second half of the Delay 2 period (starting 700 msec after
rule cue offset) with rule information contained during
the fixation period (baseline). The factor Modality was
compared either within the same 400 msec time window
in the second delay or during the rule cue period (400-msec
duration, 100 msec offset after rule cue onset) with the
baseline ω2 PEV during fixation. Values of ω2 PEVʼs greater
than three standard deviations from baseline ω2 PEV were
considered significant.
Assuming bothmagnitude types (line length, numerosity)

as independent, we used a binomial test to investigate
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whether the observed probability of rule-selective neurons
that encoded the quantitative rules applied to both mag-
nitude types simultaneously, occurred more often than
expected by chance. We then tested, whether each rule
generalizing cell (called “generalists”) showed rule prefer-
ence congruency (i.e., preferred the same rule for both
quantity types). To estimate the coding quality of rule-
selective neurons in each area, we used a receiver operat-
ing characteristic (ROC) analysis (Green & Swets, 1966)
and calculated the area under the ROC curve (AUROC).
The AUROC value determines how well a given neuron
discriminates based on discharge rates between the two
rules; an AUROC of 0.5 indicates no discrimination, a value
of 1 signifies complete discrimination. The temporal evolu-
tion of individual neuronsʼ rule selectivity was computed
using a sliding window ROC analysis with a 100-msec
window moved in 20-msec steps across the rule cue,
Delay 2, and beginning of Test 1 period either pooled

for each area or for both magnitude types within each
area. A permutation test for each individual neuron de-
termined the cellsʼ rule latency: In a sliding window
analysis, we calculated the null distribution by shuffling
the distribution of firing rates for the “greater than/less
than” conditions for each individual neuron (with 1000
repetitions, p < .05) and assigned them anew to either
category (“greater than” vs. “less than”). If three consec-
utive time windows showed significant p values and
thus exceeded the 95% upper threshold of the null dis-
tribution, the neuronʼs rule latency was determined as
the time point of the first significant analysis window. Rule
latency could not be determined in four PFC cells (for
details, see Eiselt & Nieder, 2013). To compare mean
AUROC values between generalists and specialists, we
averaged the mean of the generalistsʼ AUROC values
of both magnitudes to obtain one AUROC value for each
cell.

Figure 2. Anatomical locations of recording sites of two monkeys. The middle panel shows lateral (left) and medial (middle) views of a monkey
brain, together with a frontal section at the level of the CMA (right). The general locations of recordings are color shaded. (A–C) Recording sites
and location of rule-selective cells (color-coded) during the Delay 2 phase for Monkey E and Monkey O in the (A) dPMC, (B) CMA, and (C) pFC.
Dotted line indicates the genu of the arcuate sulcus. (D) Recording sites and distribution of generalists and specialists in the pFC for both monkeys.
One hundred percent generalists correspond to zero percent specialists and vice versa. AS = arcuate sulcus; CC = corpus callosum; CgS =
cingulate sulcus; CS = central sulcus; iAS = inferior limb of AS; LS = lateral sulcus; MTL = medial-temporal lobe; PS = principal sulcus; sAS =
superior limb of AS; spcd = superior precentral dimple; STS = superior temporal sulcus.
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To investigate the firing properties of rule-selective
neurons in trials displaying the preferred and antipre-
ferred rule, we calculated the normalized firing rate of
the preferred and antipreferred rule for which the neuron
was selective (e.g., numerosity). We then computed the
normalized firing rate of the mean of the nonselective
“greater than” and “less than” rules (e.g., line length) as
the comparison value. This computation was only valid
for specialists, because they obtain a nonselective magni-
tude type (as opposed to generalists, which are selective
for both magnitude types). Normalized activity was
derived by subtracting theminimum firing rate and dividing
through the sum of the maximum andminimum firing rate
for each condition. We then plotted the mean activity of the
nonselective magnitude type (“greater than”/“less than” ac-
tivity of, for example, line length) against the preferred or
antipreferred activity to evaluate whether rule-related neu-
ral firing rate was elevated, suppressed, or unmodulated.

RESULTS

We trained two monkeys to switch between “greater
than/less than” rules applied to line length (innumerable
spatial magnitude) and numerosity (countable numerical
magnitude; Figure 1) while recording the activity of ran-
domly selected single cells in different cortical areas: the
PFC, the dPMC, and the CMA. Both monkeys successfully
learned to apply the quantitative “greater than” and “less
than” rules to the two different magnitude types and
were able to flexibly choose the smaller or larger magni-
tude value for either the spatial or numerical magnitude.
All performance rates for the line length and numerosity
stimuli were significantly above chance level ( p < .001,
binomial test; mean performance across conditions was
above 90% for both monkeys) and comparable for the

two rules (greater than vs. less than), two rule cue mod-
alities (red/blue vs. water/no water), and the two mag-
nitude types (line length vs. numerosity; for detailed
behavioral results and generalization trials, see Eiselt &
Nieder, 2013).
Overall, we recorded and analyzed 729 neurons from

both monkeys: 284 neurons from PFC, 289 neurons from
dPMC, and 156 neurons from the CMA. A detailed ana-
tomical map of the recording sites for each monkey
and each area is shown in Figure 2. The anatomical loca-
tions of the recordings sites from the lateral PFC were
slightly different between monkeys (see Methods;
Petrides & Pandya, 1999); however, the proportions of
rule-selective neurons in PFC of both monkeys were
comparable (chi-square test, p > .05), and thus, we
pooled the data. Recording sites in dPMC were lateral
to the medial wall; the most anterior recording sites in
dPMC of Monkey E might overlap with the supplementary
eye field. In CMA of Monkey O, we recorded approximately
half of the neurons anterior (CMAr) and the other half
posterior (CMAd) to the level of the genu of the arcuate
sulcus (Figure 2B, dotted line), whereas only CMAr
neurons were sampled in Monkey E. The number of rule-
selective neurons in CMAr and CMAd was indifferent (chi-
square test, p> .05), so we pooled all neurons in this area.

Selectivity to Quantitative Rules

To investigate potential rule selectivity at the level of the
entire populations of neurons in the respective areas, we
calculated the omega-squared percent explained variance
(ω2 PEV) statistic for all recorded neurons in each area
(Figure 3) for the factors “rule cue modality” and “rule.”
In PFC, there was an initial increase in explained vari-
ance of the rule cue modality after rule cue presentation

Figure 3. Average percent explained variance (ω2 PEV) of neuronal discharges in all recorded neurons explained by rule cue modality and rule.
Average variability explained by Rule Cue Modality (blue), Rule (red), or Rule Cue Modality × Rule interaction (green) during the rule cue and
Delay 2 period for all recorded neurons in (A) pFC, (B) dPMC, and (C) CMA. 2000 msec corresponds to onset of rule cue; baseline activity is plotted
for 500 msec before the onset of the rule cue (during the second half of delay 1 period). Asterisks indicate average percent explained variance
greater than three standard deviations above baseline ω2 PEV (separately calculated during the fixation period for either rule cue modality, rule,
or their interaction).
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(Figure 3A). During the second part of the Delay 2, how-
ever, the variance explained by the rule exceeded that of
the rule cue modality, indicating that rule information
evolves particularly in the late Delay 2 period. This in-
crease in rule coding information was significant com-
pared with rule information contained in the baseline
period (exceeded three times the standard deviation of
baseline ω2 PEV; see Data Analysis for details). However,

in dPMC no significant rule information was present
during the Delay 2 phase, that is, no variance in the
neuronʼs firing rates was explained by the rule in the
Delay 2 period; only significant cue modality information
during the cue period was observed (Figure 3B). In CMA,
there was neither significant rule cue modality informa-
tion in the rule cue period nor rule information in the
second delay (Figure 3C).

Table 1. Percentage and Number (in Parenthesis) of Task-related Neurons Sorted by Main Factors and Interactions for Each
Recorded Area

Numerosity Specialists Line Length Specialists Generalists All

PFC (n = 284)

Rule 6% (17) 10.9% (31) 8.4% (24) 25.4% (72)

Sample 2.8% (8) 5.3% (15) 0.7% (2) 8.8% (25)

Modality 4.6% (13) 3.5% (10) 1.8% (5) 9.9% (28)

Sample × Rule 2.1% (6) 1.1% (3) 0% (0) 3.2% (9)

Sample × Modality 2.5% (7) 1.1% (3) 0% (0) 3.5% (10)

Rule × Modality 2.8% (8) 2.1% (6) 0.7% (2) 5.6% (16)

Sample × Rule × Modality 1.8% (5) 1.8% (5) 0% (0) 3.5% (10)

Rule-selective cells without any
interaction with main factors

4.9% (14) 10.9% (31) 8.1% (23) 23.9% (68)

dPMC (n = 289)

Rule 4.8% (14) 2.8% (8) 1.7% (5) 9.3% (27)

Sample 2.1% (6) 1.7% (5) 0% (0) 3.8% (11)

Modality 4.2% (12) 3.8% (11) 0.7% (2) 8.7% (25)

Sample × Rule 1% (3) 1.4% (4) 0% (0) 2.4% (7)

Sample × Modality 1.4% (4) 1.4% (4) 0% (0) 2.8% (8)

Rule × Modality 3.1% (9) 2.8% (8) 1.7% (5) 7.6% (22)

Sample × Rule × Modality 1.4% (4) 1% (3) 0% (0) 2.4% (7)

Rule-selective cells without any
interaction with main factors

4.2% (12) 1.7% (5) 0.7% (2) 6.6% (19)

CMA (n = 156)

Rule 1.9% (3) 3.8% (6) 0.6% (1) 6.4% (10)

Sample 1.3% (2) 0% (0) 0% (0) 1.3% (2)

Modality 4.5% (7) 1.9% (3) 0.6% (1) 7.1% (11)

Sample × Rule 2.6% (4) 1.3% (2) 0% (0) 3.8% (6)

Sample × Modality 0.6% (1) 1.9% (3) 0% (0) 2.6% (4)

Rule × Modality 0.6% (1) 3.2% (5) 0% (0) 3.8% (6)

Sample × Rule × Modality 1.9% (3) 1.3% (2) 0% (0) 3.2% (5)

Rule-selective cells without any
interaction with main factors

1.9% (3) 3.2% (5) 0.6% (1) 5.8% (9)

Table 1 groups neurons based on their main factors and interactions in the three-way ANOVA ( p < .01) during the analysis interval. Proportions are
based on all recorded neurons in each area. Note that for all reported analyses we used rule-selective neurons that had no interaction with the
Sample or Rule Cue Modality (in bold).

Eiselt and Nieder 1005



Next, we analyzed rule selectivity at the level of dis-
charge rates of single neurons. Rule-selective neurons
showed significant higher firing rates to either the “less
than” or “greater than” rule and had no interaction with

the other main factors Sample and Rule Cue Modality in
the second half of the Delay 2 period (three-way ANOVA,
p < .01). Thus, these rule-selective cells were abstractly
encoding quantity rules and were independent of any
other sample or rule cue effect in the analyzed time win-
dow. A detailed summary of the results obtained by the
three-way ANOVA is listed in Table 1. We previously re-
ported that 23.9% of all recorded PFC neurons (68/284)
showed significant rule coding (Eiselt & Nieder, 2013).
Such rule-selective neurons had a significant effect of
the factor rule, but no interaction with the factors sample
or rule cue modality. In dPMC, however, only 6.6% of all
recorded neurons (19/289) encoded the rule and a simi-
lar fraction of CMA neurons, 5.8% (9/156), was rule selec-
tive. A similar number of rule-selective neurons was
found (dPMC: 22 cells; CMA: 11 cells) when calculating
a three-factor ANOVA with main factors Magnitude Type
(numerosity, line length), Rule (greater than, less than),
and Cue Modality (visual, tactile) in all recorded neurons
in dPMC and CMA. Thus, significantly more rule-selective
neurons were present in PFC (24%) compared with
dPMC (6.6%) and CMA (5.8%; p < .01, chi-square test).

Rule Coding of Multiple Magnitude Types

Of all recorded cells in PFC, a proportion of 19% (54/284)
was significantly selective to the rules applied to line
length and 13% of all recorded neurons (37/284) re-
sponded to the rules related to numerosity. In dPMC,
only 2.4% of all recorded neurons (7/289) were selective
for line length rules and 4.8% (14/289) were selective for
numerosity rules. A similar fraction of 3.8% of all re-
corded neurons in CMA (6/156) responded significantly
to rules applied to line length and 2.6% (4/156) to rules
applied to numerosity stimuli. In all three recorded
areas, the number of neurons responsive to rules ap-
plied to either numerosity or line length did not differ
( p > .05, chi-square test). Approximately half of the rule-
selective neurons preferred the “greater than” rule (PFC:
34/54 for line length, 19/37 for numerosity; dPMC: 3/7 for
line length, 6/14 for numerosity; CMA: 3/6 for line length,
3/4 for numerosity), whereas the other half preferred
the “less than” rule ( p > .05, binomial test). The re-
sponses of example rule-selective neurons from each of
the three recorded areas that encode the rule for line

Figure 4. Examples of rule-selective cells fromdifferent frontal brain areas.
(A) Example of a pFC rule specialist. A neuron encoding the rule only for
line lengths (left), but not for numerosities (right). Raster displays show
spike times (each dot represents an action potential, spike trains are sorted
and color-coded according to the rules and rule cues) with spike density
averages below (activity averaged over all trials and smoothed by a 150-msec
Gaussian kernel). Top panel depicts the whole trial; bottom panel depicts
rule cue, Delay 2, and beginning of Test 1 phase. (B) A dPMC rule specialist
encoding the rule only for line length stimuli (left) and not for numerosities
(right). (C) A CMA rule specialist that was rule selective when the rule
was applied to line length, but notwhen the rule was applied to numerosity.
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length stimuli are shown in Figure 4A–C. Each cell signifi-
cantly differentiated between the “greater than/less than”
rule after the rule cue was given, but only did so for the line
length magnitude, not when numerosity stimuli were
shown. Thus, these neurons were specialists, preferring
either the less than (Figure 4A, B) or greater than rule (Fig-
ure 4C) only when line length stimuli were presented.

Rule Generalists versus Rule Specialists

In PFC, we previously found with separate ANOVAs
applied to numerosity and line length responses that a
significant proportion of 34% of all rule-selective cells
(23/68) encoded quantitative rules applied to both mag-
nitude types (line length and numerosity). The number
of so-called “rule generalists” was higher than expected
by chance ( p < .001, binomial test). In addition, “greater
than/less than” rule activity was congruent for both mag-
nitudes in almost all “rule generalist” neurons (22/23, p<
.001, binomial test; Eiselt & Nieder, 2013). In other
words, a neuron discharging higher to the “greater than”
rule in the numerosity protocol also preferred the “greater
than” rule in the line length task. Almost the same number
of “rule generalists” was found (n = 21) when calculating

an additional three-factor ANOVA across magnitude types
(main factors Magnitude Type, Rule, and Cue Modality)
for all rule-selective cells. The other 66% (45/68) of the
68 rule-selective cells in PFC encoded only rules to one spe-
cific magnitude type (applied either to line length or nu-
merosity) but were indifferent for the other magnitude.
We called such rule-selective neurons “rule specialists.”

In dPMC, only two of all rule-selective neurons (2/19,
11%) were rule generalists, whereas 89% of all rule-
selective cells (17/19) encoded the rule always in conjunc-
tion with a specific magnitude. Both of these generalists
in dPMC showed congruent rule preference for each
magnitude type. However, the binomial test to investi-
gate whether more dPMC neurons than expected by
chance were encoding the rules for both magnitude types
barely reached significance level ( p = .05, binomial test).
In light of the very small proportions of the rule-selective
neurons for the line length (7/289) and numerosity mag-
nitude (14/289), the conclusion that rule generalists are
more frequent than expected by chance in PMC would
be premature. Similarly, almost all rule-selective cells in
CMA were specialists (8/9, 89%), so the number of gen-
eralists (1/9, 11%) was indifferent from chance expecta-
tion ( p > .05, binomial test). Figure 5A summarizes the

Figure 5. Differences in rule selectivity between areas. (A) Percentage of rule-selective cells and distribution of generalists and specialists in all
three areas. Asterisks indicate p< .01. (B) Mean AUROC values for all rule-selective cells of each area. (C) Temporal evolution of mean AUROC values
in the rule cue and Delay 2 phase for all three areas using a sliding window AUROC analysis. (D) Temporal evolution of mean AUROC values in
the rule cue and Delay 2 period for cells rule-selective for line length (green) or numerosity stimuli (orange) in pFC (left), dPMC (middle), and
CMA (right). 2000 msec indicates onset of rule cue; baseline activity is plotted for 500 msec before the onset of the rule cue (during the second half
of Delay 1 period).
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percentage of rule-selective generalists and specialists in
the three areas.

Rule Coding Quality in Different Cortical Areas

Next, we characterized the quality of rule selectivity using
an ROC analysis in the same 700 msec time window at
the end of the Delay 2 phase as used for the ANOVA.
We calculated the area under the curve (AUROC) values
for each cell, which could range from 0.5 (indicating no
rule information) to 1 (which corresponds to perfect rule
discrimination). The coding quality (based on the mean
AUROC values) was significantly better in PFC (mean
AUROC = 0.68) compared with dPMC (0.65) and CMA
(0.64; p < .05, Mann–Whitney U test; Figure 5B). There
were no differences in AUROC values for “greater than”

and “less than” neurons for the line length (mean AUROC
PFC = 0.71 and 0.74, respectively; mean AUROC dPMC =
0.69 and 0.71, respectively; mean AUROC CMA= 0.73 and
0.63, respectively) and numerosity stimuli (PFC = 0.70
and 0.71, respectively; dPMC = 0.68 and 0.67, respec-
tively; CMA = 0.65 both; for all comparisons p > .05,
Mann–Whitney U test). This overall difference in AUROC
values between areas was especially present in the second
half of the Delay 2 phase as can be seen in Figure 5C,
which depicts the AUROC value as a function of time start-
ing at the second half of the Delay 1 period using a sliding
window ROC analysis.
A comparison of the value under the curve (i.e., inte-

gral) for each neuron showed that the temporal evolu-
tion of AUROC values for line length and numerosity
rule-selective cells (Figure 5D) were comparable within
each area ( p > .05, Mann–Whitney U test). To compare

Figure 6. Discriminability
between preferred and
antipreferred rules based of
firing rates. Comparison of
firing rates of each rule-selective
neuron for the preferred rule
(left) and antipreferred rule
(right) compared with the
nonselective magnitude type
(e.g., line length or numerosity)
for (A) pFC, (B) dPMC, and
(C) CMA. Values below diagonal
indicate elevation of firing rate
of selective rules (e.g., “greater
than” for line length) compared
with the firing rate during
nonselective rule presentation
(e.g., “greater than” and “less
than” rules for numerosity).
Values above diagonal indicate
suppression of firing rate for
selective rules compared
with the firing rate during
nonselective rules. Histograms
indicate number of neurons
above or below diagonal.
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rule latencies between and within areas, we calculated a
sliding window AUROC analysis and used a permutation
analysis ( p < .05, permutation test; see Data Analysis for
details). There were no latency differences between rule-
selective cells of the three areas nor between numerosity
and line length rule-selective cells within each area ( p >
.05, Mann–Whitney U test, latency could not be deter-
mined in four PFC neurons).
Because of the high performance rate of both monkeys,

we recorded only very few neurons with a sufficient num-
ber of error trials in PFC (n= 9), dPMC (n= 3), and CMA
(n = 1). A comparison of rule-selective activity in error
trials between these areas was therefore precluded.
Although the behavioral relevance of rule coding activity
in PFC is established (Eiselt & Nieder, 2013), the role of
dPMC and CMA cells in our study remains elusive.

Active Elevation and Suppression of
Rule Selective Activity

Next, we investigated the mechanism of how the discrim-
inability between preferred and antipreferred rules was
implemented based on the discharge rates. One possi-
bility is that the firing rate of a single neuron to the pre-
ferred magnitude rule (e.g., “greater than” line length
rule) is elevated above the mean firing rate of that neuron
to the nonselective magnitude rules (e.g., mean of “greater
than/less than” rules for numerosity). A second possibility
is that the antipreferred magnitude rule (e.g., “less than”
rule for line length stimuli) is suppressed below the mean
firing rate to the nonpreferred magnitude rules (e.g., mean
of “greater than/ less than” rules for numerosity). To
enlarge the firing rate difference between preferred and
antipreferred magnitude rule, it could also be both: an ele-
vation of firing rate of the preferred magnitude rule and a
suppression of firing rate to the antipreferred magnitude
rule. Figure 6 shows the normalized firing rate to the pre-
ferred magnitude rule (left) and antipreferred magnitude
rule (right) against the mean of the nonselective mag-
nitude rules for each cell in PFC (Figure 6A), dPMC (Fig-
ure 6B), and CMA (Figure 6C). Values above the diagonal
indicate lower firing rate compared with the nonselective
magnitude rules, whereas values below the diagonal indi-
cate higher firing rate compared with nonselective mag-
nitude rules. Histograms count the number of cells either
above or below the diagonal. For all areas, the elevation
(for the preferred rule) and suppression (for the anti-
preferred rule) of firing rates for all rule-selective specialists
(only specialists are shown, because generalists prefer
both numerosity and line length, so there are no non-
selective magnitude rules) was significantly different from
the diagonal ( p < .01, Wilcoxon signed rank test). This
indicates that the firing rate to the preferred rule was
elevated above the mean of the nonselective magnitude
rule firing and that the firing rate to the antipreferred rule
was suppressed below the mean of the nonselective mag-
nitude rule firing.

DISCUSSION

In this study, we compared abstract rule-related activity
in three different frontal areas of the cortex (lateral
PFC, dPMC, and CMA) while monkeys had to flexibly
switch between quantitative rules applied to two different
magnitude types. We found most rule-selective cells in
PFC (24%), whereas in dPMC and CMA only around 6%
of all recorded cells encoded the rule. Additionally, these
rule-selective neurons in PFC encoded the rule signifi-
cantly stronger compared with dPMC/CMA neurons.
Furthermore, rule generalists, which are encoding the rule
for line length and numerosity stimuli simultaneously,
were exclusively present in PFC with a proportion of 34%
of all rule-selective prefrontal cells. In dPMC and CMA,
however, we did not find more generalizing cells than
expected by chance. The rare rule-selective neurons in
dPMC and CMA were almost solely specialists, indicating
that generalizing/multitasking neurons are a unique feature
of PFC.

Role of PFC in a Frontal Network Encoding
Quantitative Rules

Many studies, including lesion and inactivation studies,
suggested a special role of PFC neurons in flexible,
rule-based decision-making (Kamigaki et al., 2012; Cromer,
Roy, Bushmann, & Miller, 2011; Kim, Johnson, Cilles, &
Gold, 2011; Roy et al., 2010; Mansouri, Buckley, & Tanaka,
2007; Hoshi, Shima, & Tanji, 2000; Rainer, Asaad, & Miller,
1998). Several neurophysiological studies indicated a
causal role of PFC activity in handling abstract infor-
mation (Badre, Hoffman, Cooney, & DʼEsposito, 2009;
Shallice & Evans, 1978; Milner, 1963), and it was shown
that PFC is critically involved in strategy-related (Tsujimoto,
Genovesio, & Wise, 2012; Tanji & Hoshi, 2008; Mansouri
et al., 2007; Genovesio et al., 2005) and rule-based tasks
(Kamigaki et al., 2012; Bongard & Nieder, 2010; Buckley
et al., 2009; Wallis et al., 2001; White & Wise, 1999).
Although different subregions of the lateral PFC have
different connectivity patterns and might also represent
different functions (e.g., Badre & DʼEsposito, 2009; Tanji &
Hoshi, 2008; Petrides & Pandya, 1999; Bates & Goldman-
Rakic, 1993), we did not observe any differences in coding
abstract rules between PFC areas ventral or dorsal to the
principal sulcus.

Albeit, PFC might not operate in isolation, and it has
been suggested that a wider frontal network is involved in
such rule-related tasks (Vallentin et al., 2012; Muhammad
et al., 2006; Wallis & Miller, 2003; Brass & von Cramon,
2002; Dove, Pollmann, Schubert, Wiggins, & von Cramon,
2000). Several studies support the view of a functional
cortical network involved in abstract rule guided behavior,
with variable contributions of different frontal areas. For
example, it has been shown that the PMC receives output
signals from the PFC through strong multisynaptic connec-
tions (Miyachi et al., 2005; Pandya & Yeterian, 1990; Barbas
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& Pandya, 1987, 1989), which suggest a vivid interac-
tion between these areas. Previous findings from our lab
(Vallentin et al., 2012) and from others (Muhammad
et al., 2006; Wallis & Miller, 2003) suggested that PMC ac-
tivity might contain even stronger rule signals compared
with PFC. However, in our study we find an outstanding
role of PFC activity when abstract rules had to be applied
to multiple magnitude types. We found almost four times
as many rule-related cells in PFC (24%) compared with
dPMC (6.6%). This rule-selective activity was also strongest
(i.e., highest ROC values) in PFC. Latency difference be-
tween PFC and dPMC were absent, which contrasts other
findings (Muhammad et al., 2006; Wallis & Miller, 2003).
Cromer et al. (2011), on the other hand, found stronger
category representation in a visual categorization task in
PFC compared with PMC; both the number of category
selective neurons and the strength of category sensitivity
were higher in PFC, which is in line with our results. The
authors also report no latency difference between these
areas, which opposes the results from Muhammad et al.
(2006) and Wallis and Miller (2003), who found that PMC
neurons not only encoded a same/different rule stronger
but also earlier than PFC neurons. Compared with the
“match/non-match” rule used by Wallis and Miller (2003)
and the “same/different” rules used by Muhammad et al.
(2006), our task design might comprise a greater task
complexity because it involves two rules (greater than, less
than) assigned by two different rule cues (rule cue modal-
ity) applied to two different magnitude types (line length
and numerosity). This could play a potential role in the
pronounced recruitment of PFC neurons. In tasks requir-
ing more and more abstract information-response map-
ping, fMRI activity shifted from dPMC to dorsolateral PFC
(Badre & DʼEsposito, 2007; Koechlin, Ody, & Kouneiher,
2003), indicating a distinction in the activation of different
frontal areas depending on the degree of abstraction of
representations or task demands. Thus, as rule-guided
behavior becomes more abstract or demanding, more
neurons from the lateral frontal lobe (like dorsolateral
PFC) might be recruited, which might explain the different
results. Besides task differences, PMC recording sites of
Muhammad et al. (2006) and Wallis and Miller (2003) were
more ventral ( just above the genu of the arcuate sulcus),
which is different from ours and Cromer et al.ʼs (2011)
recordings in the dorsal part of the PMC. Hence, another
possible explanation for these diverging results could be
that the dorsal part of the PMC is to a lesser extent involved
in rule following than the more ventral part of the PMC
(but see Hoshi & Tanji, 2007).

A third important frontal region that might be involved
in rule-guided decisions is the cingulate cortex, which also
shows strong connections to the PFC (Luppino, Rozzi,
Calzavara, & Matelli, 2003; Barbas & Pandya, 1989). Electro-
physiological studies suggest that this region is critical
for voluntary (Kennerley, Walton, Behrens, Buckley, &
Rushworth, 2006) and even rule-based decision-making
(Vallentin et al., 2012; Womelsdorf et al., 2010; Buckley

et al., 2009). Recently, using tract-tracing experiments,
Takahara et al. (2012) mapped massive connections be-
tween the dorsolateral PFC, dPMC, and rostral cingulated
motor areas, which suggests that these areas might share
task-related representations.
In the current study, we report a rather small fraction

of 5.8% of all recorded cingulate motor neurons that
were representing the quantitative rules. However, this
proportion of rule-selective neurons in CMA is compar-
able with Vallentin et al. (2012), who found 7% of all
recorded CMA neurons to represent numerical “greater
than/less than” rules. Overall, the most prominent rule
representation was found in PFC. In dPMC and CMA,
quantitative rules applied to two different magnitude
types were encoded by a rather small number of neurons
and to a weaker extent compared with PFC.

Rule Generalists versus Specialists in
Different Frontal Areas

There is ample evidence that PFC plays a particular
important role in categorization, rule following, and gen-
eralizing these rules and categories (e.g., Pan & Sakagami,
2012; Cromer et al., 2010; Buckley et al., 2009; Shima, Isoda,
Mushiake, & Tanji, 2007; Rougier, Noelle, Braver, Cohen, &
OʼReilly, 2005; Miller, Nieder, Freedman, & Wallis, 2003).
Recent studies (Cromer et al., 2010; Roy et al., 2010; Seger
& Miller, 2010) suggest that rather than a hardwired neural
network involved in category representation and gen-
eralization, the brain might recruit different neural connec-
tions to fulfill different functions depending on task
demands and context and that PFC neurons might be
especially involved when “multitasking” is required.
In our study, we found 34% of all rule-selective neurons

in PFC generalizing across magnitude type, which is much
more than what would be expected by chance. In dPMC
and CMA, however, only very few of such generalists were
recorded (2/19 and 1/9 generalist of all rule-selective cells
in dPMC and CMA, respectively). Overall, the number of
rule-selective cells in these areas encoding the rule either
as specialists or by representing the overarching concept of
“magnitude rule” (generalists) was so little that any con-
clusion about the existence of rule generalists in premotor
and cingulate motor cortex areas would be premature.
Our data indicate that the PFC might be particularly in-
volved in the process of abstraction and generalization,
whereas the dPMC and CMA, on the other hand, might
not have the potential flexibility to represent quantitative
rules applied to multiple magnitude types simultaneously.

Quantitative Rules Applied to Multiple Magnitudes

It has been shown that quantity information is represented
most abstractly in the PFC (Nieder, 2009, 2012, 2013;
Diester & Nieder, 2007; Nieder et al., 2002). Here we
show that abstract rules applied to continuous and discrete
quantity information are predominantly represented in
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PFC. Within each brain area, magnitude rules applied to
either line length or numerosity stimuli were represented
indifferent from each other, that is, equally strong and with
equal temporal evolution of the coding signal. Hence, the
main difference in rule coding applied to multiple magni-
tude types was between areas (with the largest proportion
and strongest rule-selective neurons situated in PFC), as de-
scribed above. Common to all three brain areas was theme-
chanism underlying the discriminability of preferred and
antipreferred rules. In all three areas, the firing rate for
the preferred magnitude rule of one neuron was elevated
above the mean response to the nonselective magnitude
type of this neuron. The firing rate for the antipreferred
magnitude rule, however, was decreased below the mean
response to the nonselective magnitude type. This mecha-
nism might enhance the discriminability between the pre-
ferred and antipreferred rule. It was present in all three
areas and thus seems to be independent of rule coding
strength as measured as AUROC values, which were signifi-
cantly different between areas.

Conclusion

Taken together, the current results suggest that flexibly
operating with abstract quantity information might be a
unique characteristic of the PFC. In our task, monkeys
had to switch between different rules (greater than/less
than) and different magnitude types (line length, nume-
rosity). The results suggest that rule switching between
“greater than/less than” rules and magnitude types re-
cruited especially the PFC, where we found more and
stronger rule-selective cells. In addition, PFC seems to
be the only area harboring generalists, which were absent
in dPMC and CMA, where rule-selective cells were almost
exclusively specialized to a particular magnitude type.
Thus, PFC might play a special role in applying quantita-
tive rules to multiple magnitude types, which would favor
the idea of PFC as the cardinal processing stage for
abstract principles applied to multiple stimulus types.
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