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Interval timing, the ability to perceive and estimate durations between events, is
essential for many animal behaviors. In mammals, it is linked to specific cortical
and sub-cortical brain regions, but its neural basis in birds remains unclear. We
trained two male carrion crows on a time estimation task using visual stimuli,
cueing them to wait for a minimum duration of 1500 ms, 3000 ms, or 6000 ms
before responding to receive a reward. During the task, we recorded activity
from single neurons in the nidopallium caudolaterale (NCL), the avian executive
telencephalon. Many neurons showed tuning to specific durations, suggesting
that time intervals are encoded as abstract magnitudes along an ordered scale.
Population-level decoding revealed that NCL activity predicted the crows’
intended wait time, independent of the sensory properties of the cues. These

findings show that abstract time estimation can emerge from neural archi-
tectures different from the mammalian neocortex.

The ability to accurately perceive time is critical for many complex
cognitive abilities in both human and non-human animal species.
While some cognitive abilities relate to time in a broad sense, such as
episodic-like memory (when an event happened) and future planning
(allocating time), others, such as delayed decision-making, require the
ability to flexibly apply temporal information for goal-directed beha-
vior. Among the latter behaviors are temporal discounting (the ten-
dency to favor immediate rewards over delayed ones, even when
waiting would yield a greater benefit)!, sunk-cost (continued invest-
ment in a task based on previously invested resources, e.g., time,
despite abandonment being more beneficial)?, and delayed gratifica-
tion behaviors (the ability to wait for improved, yet delayed
opportunities)’. For these behaviors, decision-making often depends
on internally monitoring time over a period of seconds or minutes, an
ability known as “interval timing”*.

Evidence from the mammalian brain suggests that both motor
and prefrontal regions encode time through a combination of ramping
activity and categorical representations. Neurons in motor areas fre-
quently exhibit ramping activity, reflecting either the time elapsed
toward an anticipated event or the time remaining until an action is
required® . However, motor regions can also display categorical tun-
ing to specific interval durations, suggesting that they contribute to
discrete representations of time’. Similarly, neurons in prefrontal

regions show sustained or phasic activity linked to abstract temporal
representations that underlie higher-order cognitive processes, but
these regions have also been found to exhibit ramping activity asso-
ciated with elapsed time'°™, This overlap indicates that both motor
and prefrontal areas engage in multiple forms of temporal encoding,
contributing to the flexible representation of time during different
behavioral tasks.

Birds have evolved a different pallium since they diverged from
the mammalian lineage 320 million years ago”. The bird pallium is
strikingly nuclear and lacks a layered cerebral cortex®. Despite this,
birds demonstrate sophisticated interval timing in their decision-
making behaviors. Hummingbirds, for example, use interval timing to
determine when nectar-depleted flowers and feeders are likely to be
replenished and are worth revisiting'*"*. Similarly, scrub jays use time
to determine whether previously cached perishable food items have
likely degraded past the point of being worth recovering®. Interval
timing is therefore accessible to birds and their differently evolved
telencephalon.

To date, there is limited research examining the neural mechan-
isms underlying interval timing in birds. A putative candidate region
for time estimation is the associative endbrain area termed “nido-
pallium caudolaterale” (NCL), which is linked to high-level cognition in
birds”** and is considered a putative avian analog of the mammalian
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prefrontal cortex (PFC)*?. Indeed, some working memory experi-
ments led to the hypothesis that neurons in the NCL are influenced by
the passive tracking of time”*, However, the neural foundation of
active time estimation in birds remains elusive. In the current experi-
ment, we assess wWhether the observed behavior aligns with scalar
expectancy (i.e., longer estimations resulting in more variation) and
then examine the neuronal representations of time intervals in the
NCL. The overarching hypothesis is that the uniquely developed avian
endbrain, despite lacking a layered pallium, has evolved physiological
mechanisms similar to those in mammals to address common com-
putational challenges involved in processing time intervals.

Results

Behavior

We trained two carrion crows on a time estimation task whereby two
sets of visual stimuli pseudo-randomly cued the crow on three mini-
mum wait durations (1500 ms, 3000 ms, and 6000 ms) required prior
to making a response (Fig. 1). Crows were rewarded only if their
response occurred after the minimum wait duration had elapsed. Crow
1and Crow 2 completed 71 and 32 sessions, respectively (Fig. 2). If the
crows worked under stimulus control, we would expect a normal dis-
tribution of reaction times (RTs) centered around a time point just
beyond the minimum time delay. To test this, we fitted Gaussian curves
to the RT histograms. For each target duration, RTs were binned into
200 ms intervals. To address the apparent opt-out behavior in the
6000 ms trials, the first two bins (400 ms) were excluded, as we
believe these responses did not reflect genuine estimates for the
6000 ms trials. To ensure stable and representative fits, the center of
the Gaussian was fixed to the peak of the response time histogram (i.e.,
the most frequently occurring bin), as this approach reduced the
influence of early, low-frequency responses and allowed for more
consistent estimation of distribution spread across durations. Fitting
resulted in high goodness of fits (%) averaging 0.99, 0.98, and 0.62 for
the 1500 (range for individual sessions: 0.98-0.99), 3000 (range:
0.97-0.99), and 6000 ms (range: 0.36-0.7) wait periods, respectively.
The means of the Gaussian curves were 1722, 3201, and 6117 ms, for the
1500 (range: 1795-1930), 3000 (range: 3304-3404), and 6000 ms
(range: 6062-6254) wait intervals. As expected for magnitude esti-
mation, the variation in time estimations—measured as the standard
deviation (sigma of the Gauss fit)—systematically increased as the
target time increased from 299, 642, and 1260 ms for the 1500 (range:
264-381), 3000 (range: 588-780), and 6000 ms (range: 1131-1402)
wait periods, respectively (Fig. 2B inset).

Time preference neurons

We recorded the activity of 409 single units (Crow 1: 265 neurons;
Crow 2: 144 neurons) from the NCL (Fig. 3) while crows completed the
time estimation task. Based on the inclusion criterion (see “Methods”),
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92.36%, 86.72%, and 62.36% of the 1500, 3000, and 6000 ms trials,
respectively, were included for further analyses.

To identify absolute timing neurons, we performed a two-way
ANOVA on firing rates with stimulus type and target duration as factors
(significance threshold of a=0.01), separately for each period of
interest for correct trials only. The alignment of the period of interest
(1200 ms interval; see “Methods”) was either relative to cue offset as a
starting point of the analysis window, or relative to response onset as
the endpoint of the analysis window. Overall, we found 238 neurons
(58.19%; alignment to cue offset: 178 neurons, 43.52%; alignment to
response onset: 135 neurons, 33.01%) with a significant main effect of
time but no significant main effect of stimulus protocol or significant
interaction term. These neurons were labeled “time” neurons. Of these,
75 neurons (31.51% of time neurons) were significant during both the
cue offset and response onset aligned periods. For the alignment to
cue offset, we found a further 28 neurons (6.85%) that showed a sig-
nificant effect of cue modality and 17 (4.16%) with a significant cue
modality and wait duration interaction. For the alignment to response
onset, we found 12 neurons (2.93%) and 5 (1.22%) with a significant cue
modality or cue modality and wait duration interaction, respectively.
Of the 75 neurons that showed a significant effect of time in both the
cue offset and response onset alignment, only 25 changed their pre-
ference across the two periods of interest.

The target duration eliciting the highest firing rate in the period of
interest per neuron was defined as the neuron’s preferred target
duration. Figure 3A-C shows three example neurons with a preference
for the 1500 (A), 3000 (B), or 6000 ms (C) target duration when the
analysis window was aligned to response onset. Of the time neurons
whose selectivity was aligned to cue offset, 42 (10.27% of all neurons),
35 (8.56%), and 101 (24.69%) neurons preferred the 1500, 3000, and
6000 ms interval targets, respectively (Fig. 4A). Of the time neurons
whose selectivity was aligned to response onset, 69 (16.87%), 24
(5.87%), and 42 (10.27%) neurons preferred the 1500, 3000, and
6000 ms targets, respectively (Fig. 4D). Rather than firing at a steady
rate throughout the wait period, time neurons peaked at distinct times
during the wait periods, suggesting that ensembles of time neurons
form dynamic sequences over time (Fig. 3E, F).

To quantify the difference in firing rates between the preferred
and non-preferred target durations, we created tuning curves with
normalized activity by setting the maximum activity to the most pre-
ferred target time as 100% and activity to the least preferred target
time as 0%. The average tuning curves for cue offset and response
onset time preference neurons are shown in Fig. 4B, E. For both the cue
offset-aligned and response onset-aligned activity, time neurons
showed decreased normalized activity for non-preferred wait dura-
tions, indicating a clear differentiation between the three wait dura-
tions. This is true for both birds (Supplementary Fig. 1). We found a
highly significant increase in tuning width with an increase in target

Target Cues
1500 (@)
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6000
Wait . +
1500 1500

Ready Pre-cue
Time (ms)

Fig. 1| Behavioral protocol. A Crows were trained on a delayed-response task
whereby visual stimuli (B) cued the crow to estimate 1500, 3000, or 6000 ms. Each
trial began with a “Ready” period (up to 5000 ms) in which the subject moved into
position using a light barrier. Moving into position triggered a 300 ms pre-cue
period and then 600 ms cue period. Colored squares and shapes served as the cues

and instructed the subject on the minimum wait time required before (“Wait”
period), leaving the light barrier (“Go” period). Importantly, the “Wait” and “Go”
periods matched in duration to account for the increased variance in response
time with longer estimates. Here, we present an example of a 1500 ms trial.
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Fig. 2 | Behavioral results. Average frequency of reaction times per target
estimation (1500, 3000, and 6000 ms) for Crow 1 (A; 71 sessions) and Crow 2
(B; 32 sessions). The x-axis represents the subject’s time estimation, measured

as time since cue offset. Variation in time estimations (Sigma of Gauss fit) as a
function of the Gaussian centers for Crow 1 and Crow 2 (B insert).

duration (Fig. 4C, F; T;7=5.54, p < 0.001 for the cue offset alignment;
T)r=3.87, p<0.001 for the response onset alignment; Jonckheere-
Terpstra trend test). When searching for monotonicity tuning for
1500 ms and 6000 ms neurons, we found only two (4.76%) and one
(0.99%) neuron(s) with non-monotonic activity for 1500 ms and
6000 ms cue offset aligned time neurons, respectively. For the
response onset time neurons, we found only six (8.7%) and one (2.38%)
neuron(s) with non-monotonic activity for 1500 ms and 6000 ms time
neurons, respectively. Taken together, these findings indicate that
time intervals were represented as related temporal magnitude on an
ordered time scale.

Neuronal correlates of time estimation
We first searched for indications that single units in the NCL encode
the passage of time by systematically increasing firing rates as a

function of time. To that end, we selected neurons in which peak
neuronal activity occurred in the 600 ms prior to the response onset
and were significantly different from the 600 ms of activity aligned to
the cue offset (“increasing” neurons), and fitted linear, exponential,
and sigmoidal models. We identified 59 increasing neurons. Of these
neurons, only 20 (4.89% of all neurons), 21 (5.89%), and three (0.73%)
neurons showed a linear, exponential, or sigmoidal fit significantly
better than chance. Importantly, the neurons that showed a significant
linear increase also showed a significant exponential increase, meaning
the populations overlapped entirely. Therefore, we found very little
evidence to suggest single units in the NCL encode the passage of time
via ramping activity.

Another way to investigate whether the passage of time is enco-
ded in NCL neurons is to test the temporal scalability of neuronal
activity. If activity scales over time, neuronal activity during longer wait
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Fig. 3 | NCL single-unit recordings. A-C Responses of three example NCL neurons
selective to target interval of 1500 ms (A), 3000 ms (B), and 6000 ms (C) during the
final 1200 ms of the wait period (alignment to response onset; as indicated by the
gray shading). Top: dot-raster histograms with each dot representing one action
potential; Bottom: averaged spike density function (activity averaged and
smoothed by a 300 ms Gaussian kernel). Time O indicates the crow’s response
onset for each of the three wait intervals. D Lateral schematic of a crow brain with a
coronal section at the posterior end showing the telencephalic NCLd (yellow). A
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arcopallium; N nidopallium. E, F Time entries in the wait period during which
neurons with a preference for the 1500, 3000, or 6000 ms target duration (each
panel) for activity aligned to the cue offset (E) or response onset (F). Each line
represents one neuron showing a significant main effect of time in either cue-offset
or response-onset aligned analysis (n = 220). Surface color indicates normalized
firing rate, with O corresponding to the minimum and 1 to the maximum firing rate
per neuron across the aligned time window.

periods is expected to be a stretched version of shorter wait periods,
or vice versa. Here we searched for temporal scaling between trial
types (e.g., from 6000 ms trials to 3000 and 1500 ms trials) using
methods reported by Xu and colleagues® (see “Methods”). As 3000 ms
trials are twice as long as 1500 ms trials, and half as long as 6000 ms
trials, the optimal scaling factors for 3000-1500 ms trials and
6000-3000 ms trials should be around 0.5. Similarly, 6000 ms trials

are four times as long as 1500 ms trials and, therefore, should have an
optimal scaling factor of around 0.25.

We found that the overall optimal scaling factors for
3000-1500 ms trials and 6000-3000 ms trials were 0.53 and 0.32,
respectively (Supplementary Fig. 2). For 6000-1500 ms scaling, the
overall optimal scaling factor was 0.23. Despite these seemingly fitting
values, these average scaling factors obscured the fact that they
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Fig. 4 | Target wait preference and population tuning curves. A, D Incidence of
neurons preferring either the 1500, 3000, or 6000 ms target duration, a

1200 ms period aligned to either after the cue offset (A) or prior to response
onset (D). B, E Population tuning curves for neuronal activity aligned to after the
cue offset (B, n=178) and prior to response onset (E, n =135). Curves were
obtained by averaging the normalized tuning curves of all single units selec-
tively preferring either the 1500, 3000, or 6000 ms wait duration from (A) and

Wait Duration (ms)

Wait Duration (ms)

(D). Error bars show the standard error of the mean. C, F Weighted standard
deviation quantifying the width of tuning functions for the population of neu-
rons with a target duration preference when aligned to the cue offset (C, n=178)
and to the response onset (F, n=135). The line within each box represents the
median; the box spans the interquartile range (25th to 75th percentile), and the
whiskers extend to the minimum and maximum values.

resulted from very diverse scaling factors of individual neurons, giving
rise to very broad factor distributions. Indeed, we found that only 27
(8.79% of neurons), 41 (13.36%), and 18 (5.86%) neurons fell within a10%
window of the scaling factors for 3000-1500, 6000-3000, and
6000-1500 ms scales, respectively, but only two neurons fell within
the 10% window for all three scaling schemes. Thus, the evaluation of
scaling factors suggests that most neurons do not scale their temporal
activity profiles.

For a final analysis for determining whether neuronal activity
could decode elapsed time, we binned activity of all timing neurons
into 20 equal bins (see Methods for a detailed description) for the
three wait durations separately and tested whether SVM classifiers
trained on 80% of the observations could predict the bin (i.e., elapsed
time) of the remaining 20% of observations. We found that the clas-
sifier performance was highly accurate in predicting the elapsed time
of binned activity (Fig. 5) for all three wait durations for both the cue
offset-aligned and response onset-aligned activity. Elapsed time during
6000 ms trials was particularly well estimated, likely due to larger
binned periods comprising of larger estimation windows. Therefore,

the subpopulation of timing-selective NCL neurons encoded elapsed
time. The same holds true when all neurons irrespective of neuronal
selectivity (n=409) were included (Supplementary Fig. 3).

Target duration decoding

To test whether the population of NCL neurons contained information
regarding the current target duration, we trained and tested linear
multiclass SVM classifiers on the firing rates of all recorded neurons,
irrespective of time tuning (see “Methods”). We used two different
classification approaches. First, a within-protocol approach (training
on color cue trials and testing on color cue trials, and the same pro-
cedure for shape cue trials) was used to determine whether the neu-
ronal population carried information about the target duration within
(color or shape) protocols. Second, in a cross-protocol analysis
(training on color cue trials and testing on shape cue trials, and vice
versa), we explored whether the neurons contained abstract, cue-
independent information about the target wait duration. Specifically,
we asked for the cue offset-aligned and the response onset-aligned
periods, whether SVM models trained on color stimuli could predict
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4800 ms of the 6000 ms trials (240 ms; n=236; C). This period represents the
earliest response that was considered correct. The dot represents the median, and
the bar represents the interquartile range.

the target duration of shape trials and vice versa (wait duration and
stimulus protocol).

We started this analysis with firing rates from cue offset to
1200 ms after cue offset. For within-protocol classification, we found
that classifier performance was well above chance of 33% (color:
92.33%; shape: 95.36%; Fig. 6A). For across-protocol classification, we
observed similarly robust classifier performance (color-to-shape:
89.24%; shape-to-color: 89.33%; Fig. 6A). Similar stable decoding was
seen for classifier analyses aligned to the time before the crows’
responses, i.e., from 1200 ms before waiting period offset to waiting
period offset. Within-protocol classification resulted in highly accurate
performance for both cue types (color: 80.76%; shape: 80.86%;
Fig. 6C). Cross-protocol classification showed almost equally high
decoding performance (color-to-shape: 74.71%; shape-to-color:
77.79%; Fig. 6C). All findings were consistent across both crows (Sup-
plementary Fig. 4). This demonstrates that the neuronal activity of NCL
neurons encodes the target duration abstractly, independent of the
sensory properties of the cue. This code allowed the classifier to pre-
dict the crows’ waiting times. With trials now pooled across cue pro-
tocol, we trained new SVM classifiers to discriminate target duration
based on the activity for the 1200 ms periods aligned separately to the
cue offset and response onset, respectively. Once again, the tested
SVM model offered the predicted class labels for the test subset of
trials as the output. Together with the true class labels for this test
subset, a confusion matrix can be constructed (Fig. 6B, D). Values on
the diagonal of these confusion matrices, divided by the absolute sum
of classifications, yield a percentage measure for decoding accuracy.
The resulting confusion matrices in Fig. 6B, D show that the SVM
classifiers performed much better than chance (33.33%) for the three
target durations (1-3) for both the cue offset (B) and response onset(D)
aligned activity; accuracy was at 97% for cue offset aligned activity and
at 87.8% for response onset aligned activity. Therefore, neural activity
from NCL neurons clearly distinguishes between the three target
durations during time estimation.

Next, we explored whether the neuronal activity of time neurons
was relevant to the correct time estimation by the crows. To that aim,
we trained and tested SVM classifiers on neuronal activity from the first
1200 ms of the wait period of correct trials for time neurons with at
least one late error trial for both the 1500 ms and 3000 ms trials. We
then tested the model with neuronal activity from previously unseen
correct and late error trials (i.e., trials in which the animal failed to
respond within the allotted response window despite remaining
engaged). We found that the classification of correct trials was nearly
perfect (94.4%) for both 1500 ms and 3000 ms trials (Fig. 7A, B). The
accuracy of classifiers trained on correct trials was considerably lower
when tested on late error trials (54.2%) and below the 99" percentile of
shuffled label classifier performance when predicting late-error trials
(dashed lines in Fig. 7A, C). This indicates that the population code

during late-error trials differs fundamentally from the population
activity observed during correct time estimation, even at the very
onset of the crows’ timing behavior.

Temporal dynamics across the population. We explored the
population-level temporal dynamics using three time-resolved neuronal
analyses. First, we performed a w? percent explained variance analysis
(PEV) analysis (see “Methods” for details). The PEV quantifies the amount
of information about different task factors carried by neuronal popula-
tions. We found that neurons represented all factors of the instruction
stimulus, that is, the target duration, but also the stimulus protocol, and
the interaction between both factors (Fig. 8A). Information related to
cue properties declined shortly after cue offset, while representation of
the target duration remained highly persistent throughout the early wait
period. This indicates that the target duration was the most prominently
encoded and behaviorally relevant factor.

Next, we trained SVM classifiers on the firing rates from any given
time point and tested them during any other time points of new trials.
Accuracy was plotted in a confusion matrix spanning the trial times of
classifier training against the trial times of classifier testing (Fig. 8B).
The classifier was at chance prior to cue onset, but highly accurate
throughout the cue and wait periods. This indicates that the wait
duration is encoded during both the cue presentation and while the
crow is estimating time. Neurons may encode a specific target duration
during the wait period and sustain this representation over extended
time intervals through persistent firing. This form of coding, referred
to as static coding, allows a decoder trained on neuronal activity at one
moment in the trial to generalize effectively to other time points. In
contrast, dynamic coding involves sparse neuronal firing with rapid
changes in tuning over time, meaning that a decoder trained at one
moment cannot generalize to subsequent moments in the trial. Our
analysis revealed evidence for both coding strategies. Static coding
was demonstrated by significant cross-temporal generalization (i.e.,
square-like pattern), which persisted from the beginning of the cue
period through the initial 1800 ms of the wait period. However, a
dynamic code based on transiently active neurons along the diagonal
pattern is also evident.

Finally, we explored the stability of time selectivity in “time” neu-
rons. To that end, we divided the neuronal activity during the wait per-
iods into 20 equally sized bins for each of the three wait durations. SVM
classifiers were then trained on the firing rates from individual bins using
a subset of trials and tested on firing rates from previously unseen trials.
As with the previous SVM classifier, accuracy was visualized in a confu-
sion matrix, with the trial times of classifier training plotted against the
trial times of classifier testing (Fig. 8C). High accuracy along the diagonal
reflects a stable encoding of time throughout the wait periods. This
finding demonstrates that time selectivity was maintained in a stable and
consistent manner across the wait period.
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To explore the temporal dynamics of how temporal information
might be encoded in NCL neurons, we performed a multidimensional
state-space analysis. Here, at any moment in time, the activity of n
neurons is represented by an n-dimensional vector in n-dimensional
state space. For graphical depiction, the dimensions are reduced to the
three dimensions that capture most of the variance of the data. This
gives rise to trajectories meandering through state space. While the
absolute positions of the trajectories in space are meaningless, the

distance between the trajectories signifies coding differences (i.e.,
discriminability of time intervals) of the population of neurons. The
trajectories for each target duration are presented in Fig. 9A. The
1500 ms trajectory diverges noticeably from the 3000 and 6000 ms
trajectories immediately following cue onset, whereas divergence
between the 3000 and 6000 ms trajectories begins later in the cue
period. To quantify the divergence, we calculated the Euclidean dis-
tances between each pair of target durations (1500 vs 3000 ms; 1500
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Fig. 7 | Population decoding of correct and late error trials. Linear multiclass
support vector machine (SVM) classifiers using 1200 ms of neuronal activity from
1500 ms and 3000 ms aligned to the cue offset (A-C). Accuracy of classifier pre-
diction performance trained on correct trials and tested on new correct or late
error trials (A, n=76). Dashed lines represent the 99" percentile of shuffled label
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classifier performance. Error bars indicate the standard error of the mean. Per-
formance of SVM classifiers for correct (B) and incorrect (C) trials. Top panels show
classification performance, and bottom panels depict the confusion matrices
(averaged over 10-fold cross-validation and 1000 resamples).

vs 3000 ms; and 3000 vs 6000 ms) for the trajectories. As shown in
Fig. 9B, comparisons to the 1500 ms trajectory result in the largest
Euclidean distances (note that the differences in Euclidean distances
start after - 600 ms, which is the onset of the cue that the crows
associated with different wait times and thus affected state space
trajectories). Notably, the difference between 1500 ms and 3000 ms
trials is larger than the difference between 3000 ms and 6000 ms
trials, even though the absolute difference in time of comparisons is
smaller in the former (1500 ms and 3000 ms difference, respectively).
The neural trajectories showed a mild increase in amplitude for longer
target durations (Fig. 9C)*°. The trajectory velocity prior to wait onset
increased as a function of the lengths of the wait interval (Fig. 9D). This
analysis confirmed that NCL neurons categorically signal impending
waiting time intervals that can be read out right at the onset of the
waiting period from the combined activity of the crows’ NCL neurons.

Discussion

Crows’ behavioral time estimation

In the current experiment, we aimed to investigate the underlying
mechanisms of timing behavior in the crow brain using electro-
physiological recordings during a time estimation task. Here, crows
were trained to make a response after they had perceived 1500, 3000,
or 6000 ms had elapsed, as cued by visual stimuli. Overall, we found
that the crows’ behavioral estimations were centered close to the target
durations of 1500, 3000, and 6000 ms. That is, the crows had an
accurate concept of the target duration. In addition, we found the
estimation distributions were symmetrical, and variation in estimations
systematically increased as the target time increased, i.e., estimations
were less accurate for longer target times. These two behavioral
properties reflect the two key behavioral underpinnings of scalar
expectancy theory in animals®. However, we also observed that both
crows frequently aborted 6000 ms trials within the first second of the
wait period. One possible explanation is that the crows adopted a
strategic approach to optimize their overall reward rate. By responding
early and accepting the 4 s timeout penalty for an incorrect response,
the birds may have chosen to bypass the longer trials in favor of shorter
ones. Since trial types were randomized, there was a relatively high
probability that the subsequent trial would be either a 1500 ms or
3000 ms trial, requiring significantly less waiting time for a reward. This
behavior suggests that the crows dynamically adjusted their responses

based on the probabilistic structure of the task, potentially prioritizing
efficiency over strict adherence to each trial's demands.

Sequential encoding of time by NCL neuron ensembles

If neural activity in the NCL were encoding elapsed time, we might
expect neurons to resemble those previously reported as motor-tim-
ing, relative-timing, or time-accumulator neurons*”'>*2, Motor-timing
neurons are categorized as having stable activity that ramps shortly
prior to a motor action. Importantly, ramping begins at a similar time
point and changes at the same rate in preparation of the action,
regardless of the interval duration. Here, activity at the end of the wait
durations is the same regardless of the interval duration®. Relative-
timing neurons are similar to motor-timing neurons, however, the
onset and rate of ramping is scaled to the duration of the interval, such
that the slope of the ramping activity is steeper for shorter durations™.
In contrast to motor-timing and relative-timing, the ramping activity of
time-accumulator neurons increases at the same rate at the beginning
of an interval and continues to rise as a function of the interval dura-
tion. That is, longer durations have higher and later ramping peaks®.

In birds, relative-timing and time-accumulation ramping activity
has been reported in NCL neurons from crows” and pigeons®,
respectively. In these experiments, however, subjects were not
required to actively maintain timing information for successful task
completion. Therefore, time was only an implicit factor that may not
have been represented by NCL neurons involved in explicit
behavior®,

In the current study, in which timing was explicit, we found very
little evidence of systematic ramping activity (motor-timing, relative-
timing, or time-accumulation) in the NCL. At the individual level, only a
small number of neurons exhibited any form of increasing activity over
time, and none showed consistent ramping indicative of elapsed time
encoding. Instead, we found time neurons peaked at distinct times
during the wait periods, suggesting that ensembles of time neurons
form dynamic sequences over time* . In addition, we examined
whether neurons exhibited scaling across wait durations, a potential
indicator of elapsed time encoding, but found no evidence of scaling
from one duration to another. However, we did find that a classifier was
accurate in predicting the passage of time based on patterns of neural
activity of the subpopulation of timing neurons, which is in line with
findings by Merchant and Averbeck®®, who observed similar temporal
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encoding in the monkey medial premotor cortex during a
synchronization-continuation task.

At the level of the entire population, the classifiers had no diffi-
culty differentiating between the initial 12200 ms of data from the three
wait durations, which would be expected for time-accumulation neu-
rons. Instead, neural data right after cue offset was highly predictive of
the current target duration. Due to the same rationale, we would

Fig. 8 | Temporal dynamics and stability. Information (expressed as time-
resolved percent explained variance; solid lines) about factors target duration,
stimulus protocol, and their interaction carried by the neuronal population across
time (A). Dotted lines show the percent explained variance for shuffled trial labels,
shaded areas the SEM over resamples. B Time-resolved SVM classifier trained and
tested with 200 ms bins of neuronal activity for the entire population, starting from
pre-cue onset until 1200 ms after wait onset. Straight dashed lines mark the onset of
the instruction stimulus period and the start and end of the motor planning period.
The area outlined by the thick contour line corresponds to the temporal cluster of
time bins significantly above chance level (- 33%; cluster permutation test, see
Methods for details). Dashed contour lines indicate different levels of accuracy
(35-65% in steps of 10%). C Time-resolved SVM classifier trained and tested using
neuronal activity from the wait period of “time” neurons. Activity during the wait
period was split into 20 time equally-spaced time-bins (i.e., 20 bins of 60 ms activity
for 1500 ms trials, 120 ms bins for 3000 ms trials, and 240 ms bins for 6000 ms
trials). For each bin, an SVM model was trained on to distinguish the target dura-
tion, then used to predict the target duration of new activity in every other time bin.

expect to see clear overlaps in the state space analysis for this time
period if neurons were indeed encoding elapsed time. Conversely, if
neural activity had been encoding preparation for a motor response
(i.e., motor-timing and relative-timing neurons), we might expect
similar findings for the final 1200 ms, i.e., classifiers would have diffi-
culty differentiating activity immediately prior to the decision and
activity would overlap in the state-space analysis, as the motor
response code should reach a uniform threshold across wait durations.

Abstract temporal representations in NCL neurons. In primates,
neurons from both motor and prefrontal regions appear to be
important for a more general representation of time’ 2. For example,
in time discrimination tasks, where the to-be-compared event dura-
tions were unknown to the subject, Marcos and colleagues**° and
Genovesio and colleagues* show that neurons in prefrontal regions
represent time as either “short” or “long” at the time of discrimination
(i.e., after the conclusion of both events). In a more complex task
involving three durations, neurons exhibited preferences for “short,”
“medium,” or “long” durations at the time of discrimination, with the
fewest neurons preferring “medium” durations'®—a finding we also
report here. Similar to what we report in the current study, Yamoto and
colleagues** found that PFC neurons differentially fired with sustained
(rather than ramping) activity for the various estimation periods of
time-reproduction task, and Merchant and colleagues’ report neurons
in the medial premotor cortex tuned to specific intervals during single
and rhythmic time production tasks. Together, these findings suggest
that abstract representations of time are distributed across both
higher-order regions and downstream motor areas in the primate
brain, rather than being localized to a single cognitive hub for tem-
poral processing. A recent study by Beiran and colleagues* investi-
gated how recurrent neural network (RNN) models perform time
estimation tasks. The researchers discovered that sustained, tonic
inputs can modulate the overall input-output transformation of RNNs
by influencing their low-dimensional neural dynamics. This modula-
tion enables the networks to adapt to changing conditions and gen-
eralize to novel inputs. The duration-specific, tonic activity observed in
NCL neurons may serve a similar function, acting as an internal control
signal that supports flexible and adaptive temporal processing. This
finding aligns with evidence from monkey studies and corresponds
with the computational mechanisms described by Beiran and
colleagues®. It is not entirely unexpected that the NCL neuron in the
current experiment does not encode elapsed time. After all, this brain
region is associated with high-level cognition rather than motor
functions in birds”**, similar to the mammalian PFC>?°, Instead, the
neuronal data from our study is most in line with the idea that the NCL
is important for generating representations of time as an abstract
magnitude. We found that NCL neurons showed tuning to preferred
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B Divergence in trajectories was quantified as the Euclidean distance between each
pair of target durations (1500 vs 3000 ms; 1500 vs 3000 ms; and 3000 vs

6000 ms) for the trajectories. Time — 600 ms is the cue onset; time Oms is the end
of the cue and the onset of the wait period. C Trajectory amplitudes as a function of
time estimation. D Trajectory velocities as a function of time estimation. The y-axis
units in panels B and D are arbitrary units (a.U.).

wait duration, responded abstractly and irrespective of cue modality,
and were predictive of the current wait duration. This holds true
regardless of whether the activity was aligned to the cue offset (initial
1200 ms) or to the response (final 1200 ms) and was shown to be stable
across the entirety of the wait duration. Moreover, we show that
information related to cue properties declined shortly after cue offset,
while representation of the target duration remained highly persistent.
This indicates that the target duration was the most prominently
encoded and behaviorally relevant factor. Furthermore, population
activity during error trials differed from that observed during correct
time estimations, even at the onset of the crows’ timing behavior. This
suggests that neuronal activity in the NCL was not only predictive but
also functionally significant in guiding behavior. Such findings are
consistent with previous crow research using other abstract magni-
tudes, such as numerosity**** and line length*®. We speculate that
neurons encoding elapsed time would be found downstream from the
NCL, perhaps in premotor arcopallium.

Overall, our findings demonstrate that crows keep track of time in
the range of seconds, likely using a magnitude estimation system™®.
Moreover, we show that NCL neurons represent an accurate internal
representation of target durations during explicit timing behavior.
However, to establish a definitive causal link between NCL activity and
timing, additional studies involving lesion or optogenetic experiments
will be necessary. Further understanding such cognitive control over
timing behavior and the neural underpinnings will allow us to elucidate
how a species with a pallial organization distinct from the mammalian
neocortex nonetheless solves shared computational challenges in time
processing.

Methods

Subjects

Two hand-raised male carrion crows (Corvus corone corone; Crow 1 and
Crow 2, aged 3 and 7 years, respectively) served as subjects in the
current experiment. The crows had previous experience on various
match-to-sample and probability judgment tasks. Crows were socially
housed in indoor aviaries (see ref. 47 for details). During the experi-
ment, the crows were kept on a controlled feeding protocol and
earned food as a reward during training and recording sessions; if
necessary, food was supplemented after the daily sessions. Water was
provided ad libitum. All procedures were carried out in accordance
with European law, the Guidelines for the Care and Use of Laboratory
Animals from the National Institutes of Health, and were approved by
the responsible local and national authorities (Regierungsprasidium
Tiibingen).

Apparatus

Training and recording occurred in a darkened operant conditioning
chamber. Leather jesses were used to loosely strap the crow to a
wooden perch placed in front of a 15” touchscreen monitor (3M
Microtouch; 60 Hz refresh rate). The chamber was equipped with two
cameras (Body: FLIR CM3-U3-13y3M, Lens: Fujinon DF6HA-1B) to
monitor the crow’s head position (sampling rate 60 Hz). One camera
was fixed to the roof, the other one to the left wall of the chamber. Each
camera was accompanied by an infrared emitter (Kingbright BLO106-
15-28, 940 nm) to track a reflector attached to the crow’s head and
ensure the crow maintained a central head position in front of the
monitor. The headtracking was done using MATLAB (MATLAB
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R2017b). Birdseed pellets (Beo Special, Vitakraft) and mealworms
(Tenebrio melitor larvae) were delivered as reward via a custom-built
automated feeder located below the monitor. Loudspeakers (Visation
WBI0) for auditory feedback were also installed in the chamber. Pre-
sentation of stimuli and collection of behavioral responses was man-
aged by the CORTEX system (National Institute for Mental Health,
Bethesda, Maryland). Electrophysiological data was recorded in syn-
chrony with stimulus presentation and behavioral responses using a
PLEXON MAP system (Plexon Inc., Dallas, Texas).

Behavioral protocol
Crows were trained on a delayed-response task whereby visual stimuli
cued the crow on the minimum wait duration required prior to making
a response (Fig. 1). Each trial was initiated when the crow moved its
head into the light barrier following the appearance of a ready stimulus
(white square) in the middle of the screen. Moving out of this position
before the end of the cue period terminated the trial; such trials were
excluded from analyses. The ready period was followed by a 300 ms
pre-cue period without visual stimulation. Next, one of six stimuli
(target cues) were presented in the center of the screen for 600 ms. We
used two stimulus protocols (colored squares and white shapes) for
each target duration (1500, 3000, and 6000 ms). Red and ring cues
indicated the crow must wait at least 1500 ms before responding, while
the blue and triangle cues indicated a minimum wait of 3000 ms, and
green and plus cues indicated a minimum wait of 6000 ms. In addition,
each cue was surrounded by an identical gray square border. During
the subsequent wait and go periods, the cue was removed, however,
the gray border remained on screen to signal to the crow that the trial
was ongoing. After the appropriate amount of time associated with the
cue had elapsed, the crow had the same amount of time to make a
response by leaving the light barrier (go period), e.g., once the crow
had waited 1500 ms after the presentation of the red or ring cue, they
had a further 1500 ms to leave the light barrier. Response windows
were scaled to accommodate greater variability in responses for larger
target estimations, aligning with the principles of scalar expectancy.
Trials in which the crow successfully waited until the go period
before leaving the light barrier initiated a positive feedback sound (a
ringing 300 ms-sound at approx. 70 dB SPL), as well as a light on the
automated feeder that simultaneously delivered a reward. Birdseed
pellets (Beo Special, Vitakraft) and mealworms (Tenebrio melitor lar-
vae) were used as rewards. If the crow left the light barrier during the
wait period, a negative feedback tone sounded (a squeaking 300 ms-
sound at approx. 70 dB SPL), a flash of the screen occurred, and a
4000 ms time-out period was initiated. Such trials were not rewarded.
A trial was also terminated with negative feedback (sound and light)
and a time-out with no reward if no response was made during the go
period. All trials were separated by a 500 ms inter-trial interval (ITI) in
which nothing was displayed on the black screen. Trial types (red, ring,
blue, triangle, green, plus) were randomly intermixed in blocks of 600
correct trials (100 per stimulus), with a delayed retry protocol, such
that incorrect trials (too early or too late in responding) were repeated
later. Each session consisted of approximately 420-480 correct trials
and lasted approximately 2.5 h. The average number of trials experi-
enced (correct and incorrect) in a session by Crow 1 was 129.83 red
trials (SD=10.84), 136.58 ring trials (SD=17.81), 156.59 blue trials
(SD=74.99), 147.85 triangle trials (SD=24.66), 151.65 green trials
(SD =29.44), and 151.17 plus trials (SD = 29.53). For Crow 2, the average
was 128.57 red trials (SD =7.70), 140.20 ring trials (SD =15.38), 184.52
blue trials (SD =110.70), 162.82 triangle trials (SD =18.75), 166.92 green
trials (SD=28.66), and 167.01 plus trials (SD =27.71). Crow 1 and 2
completed one session daily for 71 and 31 days, respectively.

Training protocol
Crows were initially trained on a delayed match-to-sample (MTS) go/
no-go task using the colored cues and a 600 ms delay period. As the

crows’ performance on the MTS task improved, the delay duration
increased until the point at which it matched the final wait duration
associated with the cue. Once the crows’ performance stabilized with
the 1500, 3000, and 6000 ms delay periods, non-match stimuli were
removed (i.e., only match trials occurred). Next, the match stimuli were
gradually faded until there was no visible comparison stimulus;
therefore, at the end of this training phase, the crows were completing
the time estimation task with the colored stimuli. Finally, the second
set of stimuli (shapes) were added. The new stimuli were first intro-
duced in color with the same instruction, e.g., the ring stimulus was
presented in red. Once the crows were accustomed to the shapes of
new stimuli, the color was faded out until the shape was
completely white.

Surgery and neuronal recordings

All surgeries were conducted with the animals under general anes-
thesia once the crows had learnt the task. The crows were anesthe-
tized using a ketamine/xylazine mixture as outlined by Ditz and
Nieder®. Following the procedure, analgesics were administered to
the crows*. The head was positioned in a stereotaxic holder custo-
mized for crows, with the anterior fixation point (i.e., beak-bar
position) set at 45° below the horizontal axis of the instrument. Using
stereotaxic coordinates (center of craniotomy: anterior-posterior
+5mm relative to the interaural line as zero; medial-lateral 13 mm
relative to the midline), we chronically implanted two microdrives
per implant, each containing four independent electrodes. Crow 1
received one implant on the left hemisphere. Crow 2 received one
implant on the right side and a second implant on the opposite
hemisphere at a later time. Thus, a maximum of eight electrodes were
implanted per hemisphere, depending on the implant configuration.
Crows were given three days to rest following surgery before
recording began. Crows were not sacrificed after the study. However,
the implantation coordinates were verified to lie within the NCL
based on histology in previous work?.

We used glass-coated tungsten microelectrodes with an impe-
dance of 2MQ (Alpha Omega). Each recording session began by
adjusting the electrodes until a clear neuronal signal (at least 3:1 signal-
to-noise ratio) was identified on at least one channel. Neurons were not
preselected for task involvement. Each microdrive had a range of
~6 mm, allowing recordings from the NCL at varying depths over
several weeks. Each microdrive moved all four electrodes simulta-
neously. On average, in Crow 1, the two microdrives were advanced
~93.6 um/day and -~ 67.4 um/day, while in Crow 2, the microdrives were
advanced -~ 91.7 ym/day and - 105.6 um/day.

During each session, the birds were placed in the recording
setup, and a head stage with an amplifier was attached to the
implanted connector on the bird’s head. This was connected to a
second amplifier/filter and the Plexon MAP box outside the setup
via a cable positioned above and behind the bird’s head (all com-
ponents from Plexon). Signal amplification, filtering, and digitiza-
tion of spike waveforms were handled by the Plexon system.
Spectral filtering was achieved through a combined preamplifier
filter (150 Hz-8 kHz, 1-pole low-cut, 3-pole high-cut) and a main
filter (250 Hz, 2-pole low-cut filter). Amplification levels were indi-
vidually set per channel, generally at around 20,000x gain. Spike
waveforms were sampled at 40 kHz (one entry every 25 us) over a
duration of 800us, yielding a 32-element vector. Spikes were
manually sorted into single-unit waveforms using Plexon’s Offline
Sorter, based on two-dimensional plots of waveform features such
as peak amplitude, trough, and the first two principal components
(PC1 and PC2). We only considered those clusters as single units
which were clearly separable (at least 3:1 signal-to-noise ratio) from
the noise throughout the sorting time window and had less than
0.1% refractory period violations (assuming a 1 ms refractory per-
iod) in their inter-spike intervals.

Nature Communications | (2025)16:8256


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63820-5

Neuronal analyses

All neuronal analyses were conducted in MATLAB (Version R2022b).
For analyses, we only included neurons that were recorded for at least
eight correct trials for each cue and had an average firing rate of at least
0.5 Hz during the combined pre-cue, cue, and first 1200 ms of the wait
period. Regardless of whether the crow was rewarded (for waiting
beyond the minimum time delay) or not, it is likely that at the time of
response, the subject perceived that the appropriate amount of time
had passed, as suggested by the response time distributions in Fig. 2.
Therefore, for neuronal analyses, we classified trials as “correct” if they
occurred after a time 20% earlier than the target time in a trial, i.e.,
from 1200 ms for target time 1500 ms trials, from 2400 ms for target
time 3000 ms, and from 4800 ms for 6000 ms target time trials. Trials
in which the crows waited at least 1200 ms but less than 2400 ms for
cued 3000 ms trials, and 4800 ms for cued 6000 ms trials were clas-
sified as “early error” trials. Additionally, trials in which the crows did
not answer within the response period (i.e., within 1500 ms, 3000 ms,
or 6000 ms) were classified as “late error trials”. Unless stated other-
wise, analyses were conducted using “correct” trials only.

Single-unit analyses

When searching for categorical representations of time at the single-
unit level, we examined neuronal data from 1200 ms (minimum time
for correct response for 1500 ms trials) windows aligned to two peri-
ods of interest—first, after the cue offset (0-1200 ms of wait period)
and second, prior to crow’s response onset (1200-0 ms prior to the
response)—to account for the varying length of estimation times. For
each period of interest, we performed a two-way ANOVA with stimulus
protocol (color and shape) and target time (1500, 3000, and 6000 ms)
as factors, with a significance threshold of a = 0.01. A significant main
effect of time, but no significant main effect of stimulus protocol or
significant interaction term, were labeled “time” neurons. To quantify
the difference in firing rates between the preferred and non-preferred
target durations, we created tuning curves with normalized activity by
setting the maximum activity to the most preferred target time as
100% and activity to the least preferred target time as 0%. We calcu-
lated the weighted standard deviation of each tuning curve as a mea-
sure of tuning width. For each curve, we calculated the weighted
standard deviation of its x-values, where the corresponding normal-
ized response values (y-values) served as weights. We used a
Jonckheere-Terpstra trend test (a = 0.05) to determine whether tuning
curve widths increased across the increasing target durations and to
search for monotonicity of the tuning curves of target durations
1500 ms and 6000 ms.

To determine whether the time neurons form neural sequences
(i.e., show a progressive pattern of activation filling time intervals), we
generated surface plots for cue offset and response onset aligned
activity. Here, the activity of each time neuron was smoothed (200 ms
Gauss window) and normalized to its peak activity across all three wait
periods (1200 ms, 2400 ms, 4800 ms, respectively).

We also explored the possibility that neuronal activity encapsu-
lated a correlate of elapsed time. First, we searched for systematic
changes in neuronal activity during the wait period. Here, we took each
neuron that reached the aforementioned neuronal analyses inclusion
criteria (n =409) and compared the initial 600 ms of cue offset-aligned
activity to the final 600 ms of activity aligned to the response onset
(i.e., initial and final 600 ms of wait period) using a paired ttest
(0 =0.05). If peak activity occurred in the 600 ms prior to the response
onset and was significantly different from the 600 ms of activity
aligned to the cue offset, neuronal activity increased and the neuron
was classified as a “increasing”. To determine whether activity changed
systematically across the wait period, we first normalized activity
binned in 100 ms time bins between the minimum and maximum firing
rate and then fit each neuron with linear, exponential, and sigmoidal
models. We evaluated the goodness of fit (r2) compared to the

distribution of r? values from 1000 shuffled label fits for each cell and
each of the fitted functions (i.e., 59,000 shuffled values from 59 neu-
rons for each of the three functions).

Second, we set out to determine whether neuronal activity from
longer wait durations scales down to shorter wait durations using each
neuron that reached the aforementioned neuronal analyses inclusion
criteria (n=409). Here we compressed the first 4800 ms of activity
(i.e., cue offset aligned) from 6000 ms trials to either 2400 and
1200 ms (i.e., to 1500 and 3000 ms trial activity). In addition, we scaled
the first 2400 ms of activity from 3000 ms trials to 1200 ms. Data was
organized into 10 ms bins and scaling was done using various scaling
factors (0.3-3 in steps of 0.25) and calculated the associated mean
squared error. The optimal scaling factor was that with the smallest
difference (mean squared error) between the scaled and scaled-to
activity, with larger scaling factors indicating less scaling.

Population analyses

For all population analyses, we pooled data across sessions. On the
subpopulation of timing-selective neurons, we trained and tested lin-
ear multiclass support vector machine (SVM) classifiers using neural
activity of timing neurons during correct trials to determine whether
neural activity could accurately predict elapsed time. We conducted
this analysis separately for each target duration (1500 ms, 3000 ms,
and 6000 ms), and included only timing-selective neurons with at least
20 correct trials for that duration (n=238, 238, and 236 neurons,
respectively). For each duration, we extracted the first 1200 ms,
2400 ms, and 4800 ms of cue offset-aligned neural activity of all
timing-selective neurons, respectively, and divided it into 20 equal-
duration time bins (i.e., 60 ms, 120 ms, and 240 ms per bin for 1500 ms,
3000 ms, and 6000 ms trials, respectively). Each combination of trial
and bin was considered an observation, resulting in 400 (20 trials x 20
time bins) observations for each neuron. Next, we calculated the
average normalized firing rate per observation, which served as the
feature for classification. We then z-scored each neuron'’s firing rates
using the mean and standard deviation of the training set. Each SVM
classifier was trained to predict the elapsed time bin (i.e., one of 20
time classes) from the neurons’ binned activities. The category (class)
label for each observation was the bin number (1-20), representing
elapsed time. Each model was trained on 80% of the observations (i.e.,
320 observations) to predict the bin (i.e., elapsed time) of the
remaining 20% of (80) observations. To account for multiclass classi-
fication arising from the 20 classes, we used one-vs.-one transforma-
tion to binary classification provided by the used models. This analysis
allowed us to assess whether elapsed time could be reliably decoded
from the subpopulation of timing-selective NCL neurons, without
assuming any specific functional form of firing over time. Five-fold
cross-validation was performed, resulting in 320 trials for training and
80 trials for testing. The procedure was repeated 1000 times, with a
new set of randomly drawn observations and new cross-validation
splits each time. The tested SVM models output the predicted class
labels for the test subset of observations, i.e., a list of predicted bins
(predicted elapsed time) for all 80 observations in the test set. These
80 observations contain activity from each of the 20 time bins exactly
four times. From this output, we accumulated separately for all 20 bins
the number of times each elapsed time bin was predicted by the
models, over all cross-validation runs and repeats. This results in one
distribution of predicted elapsed times for each of the 20 bins, con-
taining 20,000 values (1000 repeats * 5 cross-validation runs * 4
observations per bin) each. These distributions are visualized as
median and interquartile ranges in Fig. 5.

We trained and tested SVM classifiers on the entire population of
recorded neurons (n=409) to test whether the NCL contained infor-
mation regarding the target duration. First, we used an SVM classifier
to first test whether SVM models trained on color stimuli could predict
the target duration of shape trials and vice versa to determine whether
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neuronal activity represents an abstract and instruction-specific cod-
ing of the target duration irrespective of the sensory properties of the
cue. For this SVM classifier analysis, the category (class) label was the
target duration of a trial, and the average firing rate in the specified
time window and trial category (correct or incorrect) was the feature
used for classification. We only included neurons with at least 15 trials
per class (target durations) in this analysis. The classifier models used
one-versus-one classification to deal with three classes (1500, 3000,
and 6000 ms target durations). Five-fold cross-validation was per-
formed, resulting in 12 trials for training and three trials for testing per
class. Trial firing rates were z-scored within each cross-validation
repetition. Only the training trials were used for deriving z-scores. The
procedure was repeated 1000 times, with a new set of randomly drawn
trials for each cell and new cross-validation splits each time. We tested
the chance-level performance of the classifier by repeating the pro-
cedure with shuffled label assignments. The tested SVM model offers
the predicted class labels for the test subset of trials as the output. We
trained a second SVM classifier to discriminate target duration based
on the activity for the 1200 ms periods aligned separately to the cue
offset and response onset. Class labels, SVM training and testing pro-
cedures were the same as the initial classifier, except for the inclusion
criteria and cross-validation. Here, we used all neurons with at least 30
trials per target duration, which allowed us to use a ten-fold cross-
validation, resulting in 27 trials for training and three trials for testing
per class.

To assess the behavioral relevance of time neurons, we compared
their activity between correct trials and late error trials. We focused
specifically on late errors, as these reliably reflect failures in timing
behavior, whereas early errors may result from intentional trial abortion
or ambiguous causes, making their interpretation less consistent. Late
errors were defined as trials in which the crow failed to respond within
the allowed response window, despite remaining behaviorally engaged
in the task. Engagement was confirmed by the fact that crows had to
maintain a specific posture in front of the screen throughout the wait and
response period, ruling out non-engagement as a cause. Due to the
relatively low number of late errors—and the near absence of such errors
for the third wait duration (as this would require waiting over 12 s)—we
limited the analysis to neurons with at least one late error trial for both
the 1500 ms and 3000 ms cued wait intervals (n = 76). An SVM classifier
was trained on cue offset-aligned activity (0-1200 ms after cue offset)
from correct trials. The trained model was then tested to determine the
class (i.e., 1500 ms or 3000 ms trial) of previously unseen activity, ori-
ginating from correct trials or late error trials. The analysis was per-
formed using 10-fold cross-validation and repeated 1000 times, with
correct and late error trials resampled for each iteration. All other pro-
cedures followed those used in the earlier classifier analyses.

To quantify the amount of information about target duration
carried by neurons throughout the trial, we conducted a percent
explained variance (PEV) analysis. The PEV measures the extent to
which the variance in neuronal firing rates can be explained by task-
related factors (i.e., target duration, stimulus protocol), regardless of
selectivity. For this analysis, we included all recorded neurons that had
a minimum of 15 trials per wait duration for each of the two stimulus
protocols (n =374). We applied two-way (target duration and stimulus
protocol) sliding-window ANOVAs, using a 200 ms window that
advanced in 20 ms steps, starting from pre-cue onset and extending to
1800 ms after cue offset. The variance attributed to wait duration,
stimulus protocol, and their interaction over time was calculated as w?
using the formula:

2 _ Ssterm — dfx MSerror x100 (1)

W
Sstotal +M, Serror

where SS..;, is the sum-of-squares for the factor of interest (target
duration, stimulus protocol), SS;,.4 is the total sum-of-squares, dfis the

degrees of freedom, and MS,,,,, is the mean squared error. To extract
the population-level PEV over time for the term of interest, we
averaged the w? values across all neurons. This procedure was
repeated 20 times, each time using a new set of randomly drawn
trials. The mean PEV and standard error of the mean (SEM) were then
calculated across the resamples. To establish a baseline PEV, we
repeated the same analysis with shuffled trial labels in the ANOVAs. For
each resample, trial labels were shuffled 50 times, resulting in a total of
1000 reshuffles (20 resamples x 50 shuffles). The baseline PEV was
derived from this shuffled data to compare against the actual PEV
values.

To investigate dynamic coding at the population level, we per-
formed a cross-temporal SVM classifier analysis. For this analysis, we
included all neurons with at least 20 correct trials per target duration
(n=404). We applied a sliding-window approach (200 ms window
length, advancing in 20 ms steps), starting from pre-cue onset and
continuing until 1800 ms after cue offset. In each time window, we
trained a linear multi-class SVM model. Using a 10-fold cross-validation
framework, the data were divided into 10 equal parts. Specifically,
firing rates from 18 trials per class within the respective time window
were used to train the model, while the remaining 2 trials per class were
used to test the model against firing rates from all other time windows.
This process generated a two-dimensional accuracy matrix, where the
first dimension corresponds to the time bins used for training the
classifier and the second dimension to the time bins used for testing.
The training and testing procedures were repeated 10 times, with a
different split of trials for each iteration. As with previous SVM classi-
fiers, and firing rates were z-scored prior to training and testing. The
entire procedure was repeated 20 times, each time using a new subset
of randomly sampled trials. As with previous SVM classifiers, the
category (class) label was the target duration of a trial, and the average
firing rate in the specified time window was the feature used for clas-
sification. To evaluate chance-level accuracy for the cross-temporal
classifier, we conducted a cluster permutation test. This involved
repeating the entire procedure (including 10-fold cross-validation and
z-scoring) using permuted trial labels, with 50 shuffles per resample
(resulting in 50 shuffles x 20 resamples =1000 reshuffles to estimate
chance-level accuracy). We then compared the mean of the true
accuracy values (averaged over resamples) to the distribution of ran-
domized values at each time bin (corresponding to each pixel in the 2D
accuracy matrix; Ocuscer = 1%). This process was repeated for all 1000
permuted accuracy matrices. Next, neighboring pixels that exceeded
the initial significance threshold were grouped into “candidate clus-
ters.” The size of each cluster—determined by the number of adjacent
significant pixels—was measured for both the true data and shuffled
data. These cluster sizes formed a distribution that allowed us to assess
the significance of the true accuracy clusters (&;ank =1%).

We further assessed the stability of time selectivity in the popu-
lation of time-selective neurons using an SVM classifier. Only time-
selective neurons with at least 20 correct trials per target duration
were included (n =236). Neuronal activity during the wait period was
divided into 20 equally spaced, non-overlapping time bins for each
target duration separately: 60 ms bins for the first 1200 ms of 1500 ms
trials, 120 ms bins for the first 2400 ms of 3000 ms trials, and 240 ms
bins for the first 4800 ms of 6000 ms trials. For each time bin, an SVM
model was trained to classify the cued time interval (1500, 3000, or
6000 ms) as the class label, and the trained model was then used to
predict the cued interval using neuronal activity as the feature from
every other time bin. This procedure employed five-fold cross-valida-
tion and was repeated 1000 times, each time with newly drawn trials.
To determine chance-level performance, the entire analysis was
repeated using shuffled trial labels across 1000 permutations. The
resulting accuracy matrix reflects how well a classifier trained on
activity from time bin y can predict the cued interval in time bin x, with
each pixel representing the corresponding classification accuracy.
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To explore the temporal dynamics of how temporal information
might be encoded in NCL neurons, we performed a multidimensional
state-space analysis on the population of recorded neurons. At each
point in time, the activity of the population of neurons is defined by a
point in n-dimensional space. Dimensionality reduction to the first
three dimensions (using a principal component analysis) results in
trajectories for different neuronal states, i.e., the target durations. The
trajectories reflect the instantaneous firing rates of the respective
neuronal population as they evolve over time. For the population state-
space analysis, we selected neurons that fired during a window
beginning - 900 ms prior to cue onset until 1200, 2400, and 4800 ms
into the wait period for the three target durations, resulting in win-
dows of 2100, 4700, and 5700 ms, respectively, and had at least 30
trials per target duration (n =380). For each neuron, spike trains were
averaged across trials for each duration, smoothed (200 ms, in 20 ms
steps), and neuron-wise z-scored before calculating the principal
components to prevent the state-space dynamics representing only a
few highly discriminative neurons. In addition, we measured the
amplitude and speed of the state-space trajectories. Amplitude was
calculated as the Euclidean distance of each point in the neural (3D)
trajectory to the point of cue onset of the trajectory. Velocity was
determined by calculating the change in position along the trajectory—
specifically, the Euclidean distance between consecutive points—divi-
ded by the time step between them (in seconds). For visualization,
speed was smoothed over time using a 5-bin boxcar window.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the
corresponding author upon request. The data can only be made
available from the authors on request because the data awaits further
analysis. Source data are provided with this paper.

Code availability

The code that supports the findings of this study is available from the
corresponding author upon request. Only customarily available code
was used.
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