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SUMMARY
The number zero holds a special status among numbers, indispensable for developing a comprehensive
number theory.1–4 Despite its importance in mathematics, the neuronal foundation of zero in the human brain
is unknown.We conducted single-neuron recordings in neurosurgical patients5–7 while theymade judgments
involving nonsymbolic number representations (dot numerosity), including the empty set, and symbolic
numbers (Arabic numerals), including numeral zero. Neurons showed responsiveness to either the empty
set or numeral zero, but not both. Neuronal activity to zero in both nonsymbolic and symbolic formats ex-
hibited a numerical distance effect, indicating that zero representations are integrated together with count-
able numerosities and positive integers at the low end of the number line.8,9 A boundary in neuronal coding
existed between the nonsymbolic empty set and small numerosities, correlating with the relative difficulty in
discriminating numerosity zero behaviorally. Conversely, no such boundary was found for symbolic zero ac-
tivity, suggesting that symbolic representations integrate zero with other numerals along the number line,
reconciling its outlier role. The status of zero as a special nonsymbolic numerical quantity is reflected in
the activity of neurons in the human brain, which seems to serve as a scaffold for more advanced represen-
tations of zero as a symbolic number.
RESULTS

The neural representation of numbers has been deciphered in

some detail.10,11 Neuroimaging studies in humans12–15 and elec-

trophysiology in nonhuman primates16 have identified cortical

brain areas encoding nonsymbolic countable numerosity,

serving as a developmental and evolutionary scaffold for sym-

bolic number representations such as Arabic numerals and num-

ber words.10,11,17 In recent years, intracranial neuron studies

in patients have revealed cells tuned to specific numerical

values.5–7 However, the representation of ‘‘zero,’’ pivotal for

number theory, remains unclear.

Zero’s emergence unfolds gradually across four stages in hu-

man history, ontogeny, evolution, and brain processing.9 Initially,

the absence of a stimulus reflects a neural resting state lacking a

specific signature. In the second stage, ‘‘nothing’’ is recognized

as a meaningful behavioral category contrasting ‘‘something’’

but still lacks quantitative relevance. In ancient cultures, zero

was employed as a placeholder, ‘‘nothing’’ devoid of its numer-

ical identity in positional notation systems.1–4

As the third stage, absence gains quantitative significance,

depicted as an ‘‘empty set’’ at the numerical continuum’s lower

end. Around the age of four, children begin to integrate a
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nonsymbolic understanding of nothing as an empty set into their

mental ‘‘number line,’’ demonstrated by a tendency to confuse it

more frequently with numerosity 1 than with the more distant nu-

merosity 2, showcasing a ‘‘numerical distance effect.’’8 Thus, if

neurons encoding empty sets represent them as the smallest

quantity in the numerical continuum, they would display a

neuronal numerical distance effect by exhibiting diminishing re-

sponses to increasingly higher numerosities. Without such

a neuronal distance effect, neurons would simply represent a

nothing category devoid of numerical meaning.

Finally, the empty set representation progresses into the

number zero, a crucial part of the numerical symbol system

used in mathematics. By the seventh century, zero is fully

recognized as a symbolic number, leading to the adoption of

the decimal positional number system in the West.3,4 Children

typically understand zero as the smallest number in the series

of positive integers around age six, long after learning to

count.18 Even in adulthood, zero stands out on the mental num-

ber line, as shown by reaction time (RT) and performance var-

iations in behavioral studies,19–22 highlighting its unique nature

among integers. Despite zero being part of the number line, its

neuronal representation may therefore be distinct compared to

positive integers.
uthor(s). Published by Elsevier Inc.
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Here, we investigated zero representations through single-

neuron recordings in the medial temporal lobe (MTL) of

neurosurgical patient volunteers. We revisited and analyzed

the dataset that constituted the basis of our previous analysis.7

We presented numerical values ranging from 0 to 9 on a com-

puter screen and asked the participants to judge the parity

(even vs. odd) of numbers.23,24 In each trial, a number stimulus

was presented after a short fixation period, followed by a brief

delay during which the number stimulus was removed (Fig-

ure 1A). Afterward, participants decided whether the number

had been even or odd by pressing the left or right arrow key,

respectively, on the keyboard as indicated on the response

screen. The keys associated with the respective response

were switched block-wise to control for potential motor bias.

The parity judgments were a means to ensure that the partici-

pants actively processed the numerical values.7 The simple

parity task was suited to test a broad range of explicit number

representations devoid of other cognitive factors (such as

working memory) and in short time for the patients.

Numbers were presented in a nonsymbolic format as dot nu-

merosities, as well as symbolically as Arabic numerals.

Different protocols per format were used to control for non-nu-

merical visual parameters: dot numerosities were shown in a

standard (variable dot size and arrangement) and two control

displays (constant total dot area and dot density across numer-

osities, and linear arrangement); Arabic numerals were shown

in four different font types (standard and three controls)

(Figures 1B and 1C). The number format and the protocols of

the stimuli varied randomly and in equal proportions from trial

to trial.

Behavior
Small countable numerosities from 1 to 4 were effortlessly

judged with few errors (Figure S1A) and short RTs (Figure S1B),

which is indicative of subitizing for small numerosities, whereas

numbers 5 and higher were associated with noticeably

increasing error rates and RTs as expected for number estima-

tion.25–27 However, among the small numbers, judgment of the

empty set stood out by showing significantly higher error rates

(Figure S1A) and longer RTs (Figure S1B). For symbolic nu-

merals, the participants’ performance showed flat response

curves (Figure S1A) and RT functions (Figure S1B) suggestive

of a unified symbol system for representing small and large

numbers. As an exception, numeral zero was judged with the

lowest accuracy of all numbers (Figure S1A). These behavioral

data suggest that numerosity zero and number zero have a spe-

cial status on the mental number line.20–22 The patients’ behav-

ioral performances were replicated in healthy subjects with

shorter trials to gain insights into the enumeration process

involved. The control subjects exhibited similar behavioral pat-

terns (Figures S1C and S1D), indicating that the patients had a

good grasp of the concept of zero and were not counting the

dots symbolically.

Neuronal coding of nonsymbolic visual dot numerosities
We analyzed 801 single neurons in the MTL of 17 neurosurgical

patients performing the parity judgment task with dot numeros-

ities (for details on anatomical differences, see Table S1; for

details on recordings per participant, see Table S2)
(parahippocampal cortex, PHC: 109 units; entorhinal cortex,

EC: 262 units; hippocampus, HIPP: 275 units; amygdala, AMY:

155 units). As previously reported,5,7 the firing rates of many

units were systematically modulated by the numerical value of

the numerosity stimulus, responding strongest to a preferred nu-

merosity and decreasing their activity progressively with

increasing numerical distance. Here, we also found neurons

tuned to the empty set (Figures 1E and 1F). Tuning can not

only arise due to excitation relative to some baseline activity

but also as a result of suppression or inhibition to nonpreferred

numbers; the latter scenario is depicted in Figures 1E and 1F.

We analyzed these sideband suppression effects in our previous

study on countable numerosities and found them to be specific

to small numbers.7 The new finding here is that neurons were

not only tuned to countable numerosities (1–9) but also to the

empty set, despite it containing no countable item.

We combined a 2-factor ANOVA with factors ‘‘numerical

value’’ (0–9) 3 ‘‘protocol’’ (standard vs. control) to statistically

identify selective neurons, and a separate Mann-Whitney

U-test with factor ‘‘parity’’ (even vs. odd) to exclude those neu-

rons responsive to parity judgments (both evaluated at a =

0.01; see STAR Methods). A significant proportion of 15.1% of

all units across MTL regions (121/801; p < 0.001, binomial test

with pchance = 0.01) showed a significant main effect for the factor

numerical value but no main effect for factors protocol or parity

and were thus identified as exclusively empty-set and numeros-

ity-selective neurons (Figure S2). These neurons responded in-

variantly to the appearance of the dot patterns. The highest frac-

tion of numerosity-selective neurons was found in the PHC (24/

109; 22%; p < 0.01, binomial test with pchance = 0.01, Bonfer-

roni-corrected for multiple comparisons across brain regions,

n = 4), followed by EC (41/262; 15%; p < 0.01), HIPP (42/275;

15%; p < 0.01), and AMY (14/155; 9%; p < 0.01) (Figure S2).

Of those, neurons tuned to the empty set constituted the largest

proportion of selective neurons (25/121; 20%) andwere overrep-

resented by a factor of approximately two compared to all other

numerosities (Figure 1G). Cross-validation analyses of numeros-

ity tuning functions confirmed tuning to numerical values

(Figures S3A and S3C). Preferred numerosities from one-half of

the trials were significantly correlated with preferred numerosi-

ties from the other half for numerosity-selective neurons.

As a control, we repeated the entire sliding-window analysis,

replacing the ANOVA with a linear mixed-effects (LME) regres-

sion model. Figure S4A shows the significant overlap of numer-

osity-selective neurons detected with the two alternative

methods, indicating robust numerosity coding. The following an-

alyses are therefore based on the population of ANOVA-selec-

tive neurons.

We analyzed the tuning characteristics of selective neurons

and calculated population tuning functions of exclusively numer-

osity-selective units by averaging normalized activity across

neurons that preferred a given numerical value. Such neurons’

preferred numerosity and tuning curves are reliable and robust,

as evidenced by cross-correlation analyses performed in our

previous studies with numerosity-selective neurons in the MTL

of humans5 and the prefrontal cortex ofmonkeys.28 The resulting

overlapping tuning curves showed progressively reduced

discharge rates as distance from the preferred number

increased (Figure 1H), also for empty-set neurons, reflecting
Current Biology 34, 4794–4802, October 21, 2024 4795



Figure 1. Behavioral task, example stimuli,

and neural responses of single neurons

tuned to dot numerosities

(A) Experimental design of the parity judgment task

(sequence top to bottom).

(B) Standard and control protocols for nonsymbolic

numerosity format, exemplary for numerical values

‘‘3’’ and ‘‘7.’’

(C) Standard and control protocols for symbolic

numeral format.

(D) Empty set stimulus and numeral 0 stimuli.

(E) Exemplary neuron tuned to numerosity 0. Large

top panels show dot-raster histograms with each

row indicating one trial and each dot representing

one action potential. Below are correspondingmean

instantaneous firing rates as spike-density histo-

grams obtained by averaging responses to each

numerosity (smoothed by a 150 ms Gaussian

kernel). Colors correspond to the numerical values of

the sample stimulus. Gray shaded areas represent

significant number-discrimination periods (color-

coded p values above each panel). Small bottom left

panels depict a density plot of the recorded action

potentials, color darkness indicating the number of

overlapping wave forms according to the color scale

below. Bottom right panels show the number-tuning

functions in the significant trial interval.

(F) Second exemplary neuron tuned to numerosity 0.

Layout as in (E).

(G) Proportion of exclusively number-selective neu-

rons tuned to different preferred numerosities.

(H) Normalized average tuning curves of neurons

tuned to the ten numerosities.

(I) Average empty set tuning curve (red), compared

to random tuning of artificial units (gray). Asterisks

represent significant differences between responses

to adjacent numerical distances (*p < 0.05,

**p < 0.01, ***p < 0.001). Error bars denote SEM.

See also Figures S1–S4 and Tables S1 and S2.
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the well-known numerical distance effect.16 This finding was

confirmed when detecting numerosity-selective neurons via an

LME regression model (Figure S4B).

To explore if empty-set neurons encoded the empty set as a

quantity adjacent to—and in line with—the smallest countable

numerosities, we investigated how empty-set neurons repre-

sented countable numerosities 1 and 2. If empty-set neurons

represent empty sets as the smallest quantity of the numerical

continuum (or number line), such neurons should exhibit a

neuronal numerical distance effect by responding systematically

less for increasingly higher numerosities. The lack of a neuronal

distance effect would be evidence that such neurons simply

encode the absence of items as a non-numerical category.9

Indeed, empty-set selective neurons showed a significantly

higher discharge to numerosity 1 than numerosity 2 (p < 0.05,

Wilcoxon signed-rank test) and thus responded to the numerical

value adjacent to zero (i.e., 1) more strongly than more remote

values (Figure 1I). (For neurons tuned to numerosity 2, a distance

effect from numerosity 1 to 0 did not reach statistical
4796 Current Biology 34, 4794–4802, October 21, 2024
significance, likely due to the few neurons

tuned to numerosity 2 resulting in a lack of

statistical power). A numerical distance ef-
fect evidenced by a progressive decay of firing rates with dis-

tance from numerosity zero was also observed for empty-set

neurons detected via an LME regression model (Figure S4C).

The presence of a neuronal numerical distance effect in neurons

tuned to sets without elements suggests that the empty set was

not encoded as the category nothing as opposed to something,

but as quantity zero that is continuous with progressively higher

numerical values on the number line.

To analyze the coding dynamics of the population of numeros-

ity-selective neurons, we conducted a multi-dimensional state-

space analysis. Each dimension within the neural state space

represents the activity of a single neuron (n = 121). Trajectories

that traverse this space then reflect the time-varying activity of

the neuronal population in response to different number condi-

tions (Figure 2A).

Calculating the Euclidean distance between pairs of trajec-

tories revealed that numbers were represented with increasing

spatial gaps according to ordinal numerical distances during

the sample and delay phases (Figures 2B and 2C). This trend



Figure 2. Population dynamics for numerosity-selective neurons based on state-space analysis and k-means clustering

(A) Averaged state-space trajectories of numerosity-selective neurons (n = 121) for all number conditions, reduced to the three principal dimensions for visu-

alization. Each trajectory depicts the temporal evolution in the time window �300 to 1,200 ms (stimulus onset to 100 ms after delay offset). Circles indicate

boundaries between experimental periods (Fix., fixation; Smpl., sample; Del., delay; Resp., response).

(B) Intertrajectory distances between countable numbers 1–9, averaged across pairs of trajectories with the same numerical distance.

(C) Intertrajectory distances relative to the empty set.

(D) Neural states, reduced to the two principal dimensions, after averaging firing rates per trial across the sample period. Different colors correspond to different

number conditions. Each dot represents one trial; squares and ellipses indicate condition mean and covariance ellipse per condition, respectively. The lower

panel depicts neural states only for small numbers 0–4 subjected to a k-means clustering analysis. The colors of the dot outlines (black for empty set or white for

countable number) indicate the class label assigned by the k-means classifier. The black and white crosses show the centroids of each class.

(E) Evaluation of different numbers of clusters for the k-means clustering using the Cali�nski-Harabasz criterion (blue) and the gap criterion (orange), which is also

defined for clustering solutions containing only one cluster. Data are presented asmean values; error bars denote SEMof cross-validations. Asterisks indicate the

optimal number of clusters.

(F) Proportions of trials per small number condition labeled as belonging to class ‘‘empty set’’ (black) or class ‘‘countable numbers’’ (white). Data are presented as

mean values; error bars denote SEM of cross-validations.
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was observed not only for countable numbers 1–9 (Figure 2B) but

also for the empty set (Figure 2C), again suggesting that the zero

quantity was represented as the smallest element on the number

line. As this analysis involves smoothing of firing rates, the time

course of the dynamics is blurred (Figure 2B). Note that visual

response latencies of MTL neurons are generally in the range

of 400 ms,29 suggesting that the divergence of number trajec-

tories relates to number representations during the sample

period.

We had previously demonstrated that small numbers up to 4

within the subitizing range and large numbers 5 to 9 were

spatially segregated from each other within this state space.7

As a new discovery, the current analysis shows an additional
significant gap between the empty set and countable numbers

1 to 4. We statistically quantified this graphical grouping effect

between the empty set and small numerosities 1 to 4 by per-

forming an unsupervised clustering analysis using the average

firing rates of numerosity 0 to 4 trials during the sample period.

Figure 2D depicts the two most meaningful dimensions of this

neural state space, obtained via principal component analysis.

We determined the optimal number of clusters that divide our

data best into distinct categories using the Cali�nski-Harabasz

(or variance ratio) criterion defined for clustering solutions con-

taining two or more clusters, as well as the gap criterion that is

defined for one or more clusters. Both measures indicated two

clusters as the optimal cluster number (Figure 2E). Based on
Current Biology 34, 4794–4802, October 21, 2024 4797



Figure 3. Neural responses of single neurons tuned to symbolic numerals

(A) Exemplary neuron tuned to Arabic numeral 0. Large panels show dot-raster histograms and corresponding mean instantaneous firing rates. Gray shaded

areas represent significant number-discrimination periods (color-coded p values above each panel). Small bottom left panels depict a density plot of the recorded

action potentials. Bottom right panels show the number-tuning functions. Same conventions as in Figures 1E and 1F.

(B) Second exemplary neuron tuned to numeral 0. Layout as in (A).

(C) Proportion of neurons tuned to different preferred numerals.

(D) Normalized average tuning curves of units tuned to the ten numerals.

(E) Average ‘‘zero’’ numeral tuning curve (red), compared with random tuning (gray). Asterisks represent significant differences between responses to adjacent

numerical distances (*p < 0.05, **p < 0.01, ***p < 0.001). Error bars denote SEM.

See also Figures S1, S3, S5, and S6.
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this, the algorithm partitioned the state space into one cluster

comprising the empty set trials and a second one containing

trials of countable numbers 1 to 4. This objectively determined

boundary in neuronal population activity argues for distinct rep-

resentation of the empty set (or numerosity zero) among small

numerosities.

Neuronal coding of symbolic visual Arabic numerals
We repeated the same neuronal analyses using ANOVAs when

participants judged the parity of symbolic Arabic numerals.

Significantly more MTL neurons than expected by chance

were selectively responsive to symbolic numerical values of

the sample stimulus (15/801; 1.8%; p < 0.05, binomial test

with pchance = 0.01; Figure S3), including neurons that were

tuned to numeral 0 (Figures 3A and 3B). These neurons re-

sponded invariantly to the font type of the numerals. Indeed,

the highest fraction of units was tuned to the numeral 0 (6/15;

40%) (Figure 3C). Cross-validation analyses of numeral tuning

functions confirmed that preferred numbers from one-half of

the trials were significantly correlated with preferred numerosi-

ties from the other half across individual numeral-selective neu-

rons (Figures S3B and S3D).
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Similar counts of numeral-selective neurons were obtained

when using an LME regression model, with overlaps between

ANOVA- and LME-determined selective neurons (Figure S6A).

Figure 3D displays the average normalized tuning functions

of numeral 0-selective neurons in comparison to other nu-

meral-selective neurons. Similar population tuning functions

were obtained when detecting numerosity-selective neurons

via an LME regression model (Figure S6B). The following ana-

lyses are based on the population of ANOVA-selective

neurons.

When we analyzed the tuning functions of neurons tuned to

numeral 0 (in the sameway as for the empty-set neurons before),

we again observed a gradual decay of normalized activity with

increasing numerical distances toward numeral 1 and 2

(p < 0.05, Wilcoxon signed-rank test; Figure 3E). A comparable

decay of activity from zero to higher numerals was seenwhen us-

ing the LME model but without significant differences due to the

low number of zero neurons (Figure S6C). This reflects a mild

neuronal numerical distance effect in neurons tuned to numeral

0 and shows that symbolic representation of zero is represented

as a number value at the low end of the symbolic number line.

This alignswith human discrimination behavior, where a distance



Figure 4. Population dynamics for numeral-selective neurons based on state-space analysis and k-means clustering

(A) Averaged state-space trajectories of numeral-selective neurons (n = 15) for all number conditions, reduced to the three principal dimensions for visualization.

Same conventions as in Figure 2A.

(B) Intertrajectory distances between countable numbers 1–9, averaged across pairs of trajectories with the same numerical distance.

(C) Intertrajectory distances relative to the zero numeral.

(D) Neural states, reduced to the two principal dimensions, after averaging firing rates per trial across the sample period. Same conventions as in Figure 2D.

(E) Evaluation of different numbers of clusters for the k-means clustering. Same conventions as in Figure 2E.

(F) Proportions of trials per small number condition labeled as belonging to class ‘‘zero’’ (black) or class ‘‘countable number’’ (white). Same conventions as in

Figure 2F.
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effect persists for number symbols, albeit to a lesser extent

compared with nonsymbolic numerosities.30,31

Since both the nonsymbolic and numeral protocols were

tested in the same recording sessions, we could compare neu-

rons tuned to both formats. The product of the proportions of

neurons selective to each format (121/801 numerosity-selective

neurons and 15/801 numeral-selective neurons, pchance = 121/

801 3 15/801 = 0.0028) provides the probability that a given

neuron responds selectively to both formats. The number of neu-

rons selective to both formats (i.e., 5 out of 801 numeral-selec-

tive neurons were also numerosity selective) was not signifi-

cantly greater than chance (p = 0.0795, binomial test with

pchance = 0.0028). Importantly, only two out of these five neurons

showed identical preferred numerical values for both formats.

We repeated this analysis with all number-selective neurons, ir-

respective of additional main effects for protocol or parity in the

ANOVA (129/801 numerosity-selective and 21/801 numeral-se-

lective neurons), and found that 10 neurons responded to both
formats, more than expected by chance (p = 0.0025, binomial

test with pchance = 0.0042); however, only two out of these ten

neurons showed identical preferred numerical values for both

formats. Overall, it seems unlikely that format-independent num-

ber detectors exist in MTL.

In line with our investigations for the nonsymbolic format, we

conducted a multi-dimensional state-space analysis to delve

into the coding dynamics of the population of numeral-selective

neurons (n = 15). During fixation, when numerical information

was absent, trajectories were intermingled, but they notably

diverged during the sample period when numerals were pre-

sented (Figure 4A). For positive integers, trajectory distances

systematically increased with numerical distance, indicating a

clear numerical distance effect (Figure 4B). Remnants of this ef-

fect were also observed for distances relative to the numeral

0 (Figure 4C).

The ordinal representation of symbolic numerals is also

discernible in the neural state space during the sample period
Current Biology 34, 4794–4802, October 21, 2024 4799
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(Figure 4D). Although a notable gap between zero and countable

numbers suggests distinct categories, akin to what was

observed for small numerosities, the optimal cluster number

calculated for the clustering analysis was one (Figure 4E).

Consequently, trial labels vary unsystematically for all numbers

when the algorithm is forced to partition the data into two clus-

ters (Figure 4F). This suggests that symbolic numeral zero, as

the smallest element on the symbolic number line, neuronally

is fully integrated among other symbolic numerals. This corre-

sponds with the behavioral finding that judgments of symbolic

numeral zero and other symbolic integers are exact and rarely

mixed up.32

DISCUSSION

Our single-neuron recordings in the MTL of human participants

resulted in threemain findings. First, we observed neurons tuned

to both nonsymbolic and symbolic zero. This extends our previ-

ous findings that neurons in this brain region respond to nonsym-

bolic countable numerosities 1–97 and symbolic positive nu-

merals 1–5.5 In fact, the highest proportion of selective

neurons responded to zero values, both in the nonsymbolic

and in the symbolic format.

Second, these neuronal representations of zero number

values were integrated at the low-quantity end of the number

line. Selective neurons encoded the empty set and symbolic nu-

meral zero not as a distinct nothing category (i.e., the absence of

items) but as a quantity adjacent to countable positive integers

along the number line.8,9 This is evidenced by both empty-set

neurons and numeral-zero neurons exhibiting a neuronal numer-

ical distance effect, which is reflected both in single-neuron-tun-

ing curves as well as in neuronal population decoding analyses.

Empty-set neurons in the human brain mirror findings observed

in the prefrontal cortex and intraparietal sulcus of nonhuman pri-

mates33–35 as well as in the telencephalic nidopallium caudola-

terale of crows36 and deep learning neural networks.37 These

findings suggest an evolutionary predisposition of various brain

networks to represent nothingness as a numerical quantity,

serving as a potential evolutionary precursor for symbolic zero

representations unique to humans.9

Third, despite this clear integration of zero on the number line,

nonsymbolic empty-set representations remain distinctly en-

coded from other small numbers. This conclusion is based on

coding boundaries between numerosity zero and other small

numbers that we discovered when performing neuron popula-

tion decoding analyses. This representational boundary corre-

lated with the behavioral dichotomy between numerosity zero

and higher numerosities seen in the participants’ judgments.7

This latter finding suggests that symbolic number representa-

tions can reconcile the outlier role of number zero on the

number line.

While the MTL, where we discovered numerosity- and nu-

meral-selective neurons, is classically not regarded as part of

the core number network, neuroimaging studies have increas-

ingly implicated the MTL in numerical information process-

ing.38,39 Additionally, a recent fMRI study identified map-like

representations for numerosities and numerals in the temporal-

occipital cortex.40 A region in the posterior inferior temporal

gyri, known as the ‘‘number form area,’’ has shown selectivity
4800 Current Biology 34, 4794–4802, October 21, 2024
to number symbols over letters and false fonts.41,42 These num-

ber representations in the temporal lobe are influenced by, or rely

on, their functional connectivity with classical number-related

areas in the parietal and frontal regions,43,44 even in the absence

of visual input,45 seemingly inheriting semantic number informa-

tion. Suggestive evidence of numerosity tuning also exists in the

macaque HIPP.46 Our study adds to mounting evidence of the

critical role of temporal regions in representing numerical infor-

mation, including concepts of zero.

Recently, neural correlates of zero in the human brain have

beenmeasured usingmagnetoencephalography (MEG),47 which

detects the collective magnetic fields generated by the synchro-

nized electrical activity of large groups of neurons. Similar to our

findings from single-neuron recordings, the MEG representa-

tions of zero were positioned along a graded neural number

line shared with other countable numbers. These representa-

tions of zero, which are format-independent and generalize

from empty sets to symbolic zero, were localized across the pos-

terior association cortex. This suggests that neuronal represen-

tations of zero are widely distributed within the broader number

network of the human brain.48
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Software and algorithms

Cheetah software Neuralynx Inc. https://neuralynx.com/software/cheetah

Pegasus software Neuralynx Inc. https://neuralynx.com/clinical-overview/clinical-products/

pegasus-software/

Combinato spike sorting software Niediek et al.49 https://github.com/jniediek/combinato

MATLAB R2017a MathWorks https://de.mathworks.com/

Psychtoolbox Psychophysics Toolbox Version 3 http://psychtoolbox.org/

Data and Code github.com https://github.com/EstherKutter/Single-Neuron-Representation-

Of-Nonsymbolic-And-Symbolic-Number-Zero-In-The-Human-MTL

Other

Behnke-Fried depth electrodes AD-TECH Medical Instrument Corp. https://adtechmedical.com/depth-electrodes

ATLAS neurophysiology system Neuralynx Inc. https://neuralynx.com/news/techtips/atlas-neurophysiology-

system-for-cogneuro-applications
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Seventeen human participants (five male, mean age 37.6 years) with medically refractory focal epilepsy undergoing invasive pre-sur-

gical seizure monitoring participated in the main study. A control experiment was performed with nineteen healthy volunteers (three

male, mean age 30.2 years). Informed written consent was obtained from each participant. All studies conformed to the guidelines of

theMedical Institutional ReviewBoard at theUniversity of Bonn, Germany. The studywas not preregistered and the analysis planwas

exploratory.

METHOD DETAILS

Experimental task and stimuli
Participants sat in bed and performed a parity judgment task on a laptop (display diagonal 11.7 in, resolution 1366x768 pixels) on

which stimuli were presented at a distance of approximately 50 cm.

Prior to the experiment, the task instruction was verbally explained by the experimenter and displayed on the screen, specifying

which numbers were ‘even’ and which ones ‘odd’. Additional training trials (excluded from all analyses) during which the experi-

menter emphasized, once more, that an empty gray circle represented the ‘number zero’ and that zero was an even number ensured

that participants were familiar with all stimuli. To exclude any bias, they were not informed about hypotheses or purposes of the

experiment.

Each trial started with a fixation period of 300 ms, followed by a number stimulus that was presented for 500 ms. After a delay

period displayed for 600 ms, participants had to decide whether the number had been even or odd by pressing the left or right arrow

key on the keyboard, respectively, as indicated on the response screen (‘gerade’ [even] or ‘ungerade’ [odd]). The keys associated

with the respective response were balanced and switched across blocks to control for potential motor bias. Participants responded

in a self-paced manner, but were asked to respond as fast and accurately as possible. The next trial started automatically after a

200 ms feedback display.

Three factors were varied systematically in this task: ‘numerical value’ (0–9), ‘format’ (nonsymbolic and symbolic numerals), and

‘protocol’ (standard and controls). A session was divided into four blocks, comprising all conditions in pseudo-random order. With

each number stimulus per format being presented 16 times, each session comprised 320 trials.

Stimuli were presented within a filled gray circle (diameter approximately 6� of visual angle) on a black background. A white fixation

spot was presented in the center of the gray area during fixation and delay phase. During stimulus presentation, the fixation spot was

removed to avoid confusion with nonsymbolic stimuli.

Numerical values of the stimuli ranged from 0 to 9, and were presented in two different ‘formats’, each using different ‘protocols’ to

control for low-level visual features. First, ‘nonsymbolic’ stimuli consisted of black dot arrays with the number of dots corresponding

to the respective numerical value (‘numerosities’). For the standard protocol, diameter and location of each dot varied randomly

within a given range (diameter 0.3� to 0.8� of visual angle). In the control displays, the total dot area and dot density (mean distances

between centers of the dots) across numerosities was equated. Additionally, in half of the control trials, the dots were linearly

arranged.
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We incorporated control stimuli to maintain constant total area and dot density across different numerosities. This ensured that the

neurons’ responses were not driven by features that would otherwise systematically change with an increase in the number of dots.

However, controlling for total area results in smaller dots with increasing numerosities. To address this, we implemented the standard

protocol where the average dot size remained consistent across numerosities. Furthermore, we introduced a control condition where

all dots were arranged linearly to rule out the possibility that neurons were responding to shape configurations (e.g., three dots form-

ing a triangle, four dots forming a quadrilateral, etc.). Standard and control protocols for the nonsymbolic stimuli were shown with

equal probability of 50 %.

Second, ‘numerals’ were presented as black Arabic digits in the center of the gray area. For standard and control protocols, four

different font types were used (Arial, DS-Digital, TimesNewRoman andCourier New; all 45 pt), each protocol type being equally likely

to occur (25 %). For single digit numerals, including the numeral 0, there is no systematic variation in luminance, area, or density

because each numeral comprises a single shape. Hence, there is no requirement for incorporating control stimuli to address low-level

feature variations. However, we introduced different font types to ensure that neurons generalized their responses from specific nu-

meral shapes to their associated numerical values.

To ensure that subjects had a good grasp of the concept of zero, we performed a control experiment on 19 healthy volunteers,

recording behavioral measures in a simplified version of the parity judgment task. Trials started with a fixation period of 300 ms, fol-

lowed by a number stimulus presented for 500 ms.

To prevent counting and covert decisions, the delay period was excluded from the control experiment. Instead, subjects were

asked to indicate the parity of the stimulus as fast and accurately as possible after stimulus offset and onset of the response screen,

by pressing the left or right arrow key on the keyboard, respectively. As in the main experiment, key presses made before the pre-

sentation of the response cueswere not registered. RTsweremeasured relative to the onset of the response cues. Verbal instructions

and familiarization trials prior to the experiment, aswell as all stimuli and factor variations (numerical value, format, and protocol) were

analogous to the main study.

Neurophysiological recording
To localize the seizure-onset zone for possible neurosurgical resection, participants were implanted bilaterally with chronic intrace-

rebral depth electrodes in theMTL. The implantation site and number of the electrodes was determined exclusively by clinical criteria

and varied across participants. Neuronal signals were recorded using 9–10 clinical Behnke-Fried depth electrodes (AD-TechMedical

Instrument Corp., Racine, WI). Each of these electrodes contained a bundle of platinum-iridium micro-wires; eight high-impedance

active recording channels, and one low-impedance reference wire that protruded from the tip of the electrode by approximately

4 mm.We used a 256-channel ATLAS neurophysiology system (Neuralynx Inc., Bozeman, MT) for recording differential neuronal sig-

nals (recording range ±3200 mV), filtering (bandwidth 0.1–9,000 Hz), amplification and digitization (sampling rate 32768 Hz). The

Cheetah and Pegasus software (Neuralynx Inc., Bozeman, MT) was used to synchronize recorded spikes and behavioral data via

8-bit timestamps.

After band-pass filtering the signals (bandwidth 300–3,000 Hz), action potentials were automatically detected and pre-sorted using

our Combinato software.49 We manually corrected the automated clustering and classified resulting units as artifact, multi- or single

unit, based on spike shape and its variance, inter-spike-interval distribution per cluster and the presence of a plausible refractory

period. Only units that responded with an average firing rate of > 1 Hz during stimulus presentation for any stimulus format

were included in the analyses. Across 28 recording sessions from all 17 participants, a total of 801 single units were identified in

the parahippocampal cortex (PHC; 109 units), entorhinal cortex (EC; 262 units), hippocampus (HIPP; 275 units) and amygdala

(AMY; 155 units).

QUANTIFICATION AND STATISTICAL ANALYSIS

In a previous study, we showed that different stimulus formats are represented by distinct groups of neurons.5 Thus, all analyseswere

carried out separately for trials of each format. Overall behavioral performance was high across all participants (mean ± standard

deviation: 86.4 % ±3.1 %). We therefore decided to include both correct and incorrect trials into the analyses.

Sliding-window ANOVA analysis
For each unit, spike trains were smoothed trial-wise (Gaussian kernel with s = 150 ms) within the trial window -300–1200 ms (fixation

onset to 100 ms after delay offset). To detect tuning to numerical values, instantaneous firing rates were subjected to a sliding-win-

dow (window size 300 ms; step size 20 ms) 2-factor analysis of variance (ANOVA) with factors ‘numerical value’ (0–9) and ‘protocol’

(standard vs. control), and a separateMann-Whitney U-test with factor ‘parity’ (even vs. odd). This resulted in a temporal sequence of

p-values for each of the three factors. Time intervals of significant number encoding were then identified using a cluster-permutation

test (aclus = 0.01; prank = 0.01; nperm = 100).50 A neuron was then termed ‘exclusively number-selective’ (NUM-ONLY) if a significant

time window for the factor ‘numerical value’ was observed between 0–1000 ms (stimulus onset to 100 ms before delay offset) and if

there were no overlapping significant intervals for the factors ‘protocol’ or ‘parity’. Proportions of these number units were deter-

mined separately for each MTL region. To evaluate whether the observed proportions were higher than expected by chance, we

applied a binomial test (pchance = 0.01), Bonferroni-corrected for multiple comparisons across brain regions (n = 4).
e2 Current Biology 34, 4794–4802.e1–e3, October 21, 2024



ll
OPEN ACCESSReport
In single-cell neurophysiology, the firing of a single neuron is typically regarded as independent from other neurons, thanks to the

concept of neuronal autonomy. This principle suggests that an individual neuron’s activity is mainly governed by its intrinsic prop-

erties and the inputs it receives, rather than being influenced by the activity of other neurons in the network. In addition, single trial

recordings are treated as statistically independent observations in single-neuron studies because each trial represents a distinct

instance of neuronal activity, influenced by stochastic processes and variability in the system. Due to the concept of neuronal auton-

omy, many studies, including ours, have assessed the selectivity of single neurons based on their individual firing rates in response to

parametric variations of numerosity. ANOVA analyses have emerged as a common and widely accepted method for determining

whether a neuron selectively responds to specific stimulus features.

As a control, we repeated the entire sliding-window analysis replacing the ANOVA with a linear mixed-effects (LME) regression

model of the form FRs � NUM + PROT + PAR (Wilkinson notation), thus testing for the main effects of numerical value, protocol

and parity, including a fixed effect for the intercept. Time intervals of significant number encoding were then identified based on a

cluster-permutation test analogous to the one described above. Proportions of exclusively number-selective neurons were then

compared with the ones obtained via the ANOVA using Venn diagrams.

Tuning characteristics
Tuning functions were calculated for each number neuron by averaging the firing rates across trials for different numerical values

during the significant time window. The numerical value eliciting the maximum response was defined as ‘preferred number’. Func-

tions were then normalized by setting the lowest response rate to 0 %, and the highest response rate (to the preferred number) to

100 %. Population tuning functions were then obtained by averaging across all units that preferred the same number.

To estimate the reliability of the preferred number assessment, we split the data of each selective neuron into two halves (odd and

even trials), calculated the preferred number for the two datasets and quantified the relationship calculating Pearson’s linear corre-

lation coefficient.

Activity of all neurons preferring the numerical value ‘0’ was considered as a function of numerical distance from the preferred num-

ber. Pairs of response activity to adjacent numerical values were then separately compared usingWilcoxon signed-rank tests. More-

over, we used a permutation test (nperm = 1000) to generate response patterns to be expected in case of random tuning (repeating the

analysis with shuffled labels) and tested whether the true response obtained for a specific numerical distance differed significantly

from chance.

Population state-space analysis
To analyze activity of a neuronal population, we calculated the trajectories for the ten different number conditions that traverse the

neuronal state-space over time. In this n-dimensional space (in our case, 121-dimensional for the subpopulation of numerosity-se-

lective neurons, and 15-dimensional for the subpopulation of numeral-selective cells) each axis represents the instantaneous firing

rate of one neuron. These were obtained by averaging, normalizing (z-scoring) and smoothing spike trains per condition (Gaussian

kernel with s = 150ms) for each unit. Solely for visualization, trajectories were reduced to the top 3 dimensions (in terms of covariance

explained) using a Gaussian-process factor analysis.51

To evaluate population tuning in terms of numerical distances, we calculated the Euclidean distances between all adjacent pairs of

trajectories. For countable numbers, we then averaged all trajectory pairs with the same numerical distance.

Next, we calculated the neuronal population state for all trials by averaging firing rates across the sample period (window size

500 ms; shifted by 200 ms to account for response latency). The state space was then orthonormalized using principal component

analysis. Solely for visualization, only the top 2 dimensions were depicted.

To investigate the status of the ‘zero’ quantity within the range of small numbers, we subjected all trials for small numbers 0–4 to an

unsupervised k-means clustering algorithm.52 In a first step, we determined the optimal number of clusters that would partition the

data best into k non-overlapping, distinct clusters applying two different criteria. First, the Cali�nski-Harabasz criterion (or variance

ratio criterion, VRC) according to which the optimal number of clusters corresponds to the solution with the highest ratio between

overall between-cluster variance and overall within-cluster variance.53 As a second and even more important criterion, as it is

also defined for solutions containing only one cluster, we calculated the gap criterion which estimates the heuristic ‘elbow’ location

at the most dramatic decrease in error measurement that indicates the optimal number of clusters.54 The k-means clustering was

then performed using the squared Euclidean distance (between all elements of a cluster and every cluster’s centroid) as a distance

metric, and repeating the algorithm 50 times with new randomly chosen initial cluster centroid positions. For cross-validation, the

analysis was repeated 50 times, each time using only 75 % randomly selected trials per condition.
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