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Corvids, readily adaptable across social and ecological con-
texts, successfully inhabit almost the entire world. They are
seen as highly intelligent birds, and current research examines
their cognitive abilities. Despite being songbirds with a com-
plete ‘song system’, corvids have historically received less
attention in studies of song production, learning, and percep-
tion compared to non-corvid songbirds. However, recent
neurobiological studies have demonstrated that songbird vocal
production and its neuronal representations are regularly
influenced by environmental and cognitive factors. This opinion
article discusses the literature on ‘corvid song’ before intro-
ducing other flexible vocal behaviors of corvids in both the wild
and controlled laboratory studies. We suggest corvids with
their flexible vocal control as promising model species to study
the links between brain networks for cognition and vocaliza-
tion. Studying corvid vocal flexibility and associated cognitive
processes in both ecological and lab settings offers comple-
mentary insights, crucial for bridging the fields of cognition and
birdsong.
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Traditional segregation of corvid cognition
from birdsong
Corvids (crows, ravens, rooks, magpies, jackdaws, and
jays) belong to the family Corvidae within the order
Passeriformes, which includes all songbirds (oscines,
Figure 1a). Despite their kin, corvids are not tradition-
ally subjects in studies focusing on birdsong. Instead,
corvids are lauded for their ever-expanding list of
www.sciencedirect.com
cognitive achievements [1]. Different species of corvids
show a sense of number [2e4], flexibly categorize [5,6],
learn abstract concepts [7,8], and use tools [9].

In contrast, research on non-corvid songbirds such as
finches, canaries, and starlings has traditionally focused
on complex, typically species-specific and learned vocal
sequences called ‘song’. The well-structured courtship

song of zebra finches (Taeniopygia guttata), the most
extensively studied songbird, is learned by juveniles
from an adult male tutor and perfected after thousands
of iterations [10]. Their stereotyped adult song is
leveraged to study the neurobiology of the ‘song system’
e an easily-mapped circuit of discrete and well-defined
brain nuclei dedicated to hearing, learning, and pro-
ducing songs [10,11].

Corvids, too, are songbirds with a fully developed song
system and, as such, provide an opportunity to bridge the

fields of cognition and birdsong (Figure 1b [12,13]).
Though what immediately comes to mind when
prompted with crow vocalizations is not beautiful song
but raucous cawing, prior studies have described Amer-
ican crows (Corvus brachyrhynchos) producing a ‘quiet
song’. These descriptions consist of rattles, growls,
clicks, cooing, bowing, and nuzzling at their mate and has
been hypothesized to promote social cohesion [14].
Rooks (Corvus frugilegus) are reported to perch alone to
‘sing’ softly which may function as ‘vocal practice’ to
maintain their individual repertoires [15,16]. Beyond

‘song’, corvids are capable of additional vocal flexibility as
open-ended learners and vocal mimics. While there are
few experimental studies in corvids demonstrating adult
plasticity in vocal imitation learning, much anecdotal
evidence exists of vocal mimicry of heterospecific vo-
calizations and even of human speech sounds
[14,15,17e21]. It has been hypothesized that one of the
main functions of mimicry is to establish and strengthen
social bonds either to mates or other members of the
flock. Indeed, elements of vocalizations are shared be-
tween pairs and group members, suggesting social

transmission as adults [19,22e25]. Moreover, vocal
flexibility in adult crows, such as instructed changes in
the number of vocalizations [3], has clearly been
demonstrated in laboratory settings.

Collectively, this brief overview suggests that studying
corvid vocalizations provides promising directions for
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Figure 1

Crows are corvid songbirds with characteristic ‘song system’ nuclei. (a) Phylogenetic tree of select songbird and non-oscine species with bolded
species mentioned in current article. Corvids belong to the family ‘Corvidae’ as part of the large suborder of songbirds (Oscines or Passeri). Horizontal
lines do not indicate phylogenetic distance; tree constructed from data from Refs. [26,96,97] (b) Schematic of the crow brain (side view) showing the
position of the main nuclei of the song motor pathway (SMP) and the anterior forebrain pathway (AFP). (c) Histological slice of a carrion crow brain (side
view at about 5.0 mm lateral from the midline, anterior is left). A myelin stain reveals song system structures indicated by white (SMP) and black (AFP)
arrowheads. The red arrowheads indicate massive fiber bundles that descend from the song premotor nucleus HVC to the motor nucleus RA. Arrows
around LMAN indicate the extent of both LMAN core and shell. Note that individual nuclei do not appear at their largest extent in this example slice. (d)
The crow’s brain also exhibits the song system’s thalamic nuclei DLM and Uva (combined myelin and Nissl stain). (e) The crow’s syringeal nucleus (nXll,
Nissl stain). Abbreviations: DLM, nucleus dorsolateralis anterior, pars medialis; HVC, proper name; LMAN, lateral magnocellular nucleus of the anterior
nidopallium; nXII, tracheosyringeal nucleus; PAm, nucleus parambiguus; RA, robust nucleus of the arcopallium; RAm, nucleus retroambiguus; Uva,
nucleus uvaeformis; X, area X. Histological images are published and unpublished material from Ref. [12].
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bridging the fields of cognition and birdsong. For
example, a recent cross-species study revealed that

vocal learning complexity correlated with problem-
solving abilities [26]. Although bird vocalizations are
traditionally classified as ‘calls’ and ‘songs’, we use ‘vo-
calizations’ throughout because no characteristic e be it
sexual dimorphism, seasonality, complexity, degree of
learning e can consistently delineate ‘song’ from other
forms of vocal communication across species [27,28]. For
example, though often called innate, ‘calls’ can also be
learned and flexibly modulated depending on social
context. During development, brood parasite chicks can
flexibility adjust their begging ‘calls’ to be host-specific

[29]. Zebra finches exchange thousands of short contact
‘calls’ per day that acoustically converge during pair
formation [30]. Many such examples advocate that we
Current Opinion in Neurobiology 2025, 90:102965
extend ‘vocal learning’ beyond its classical definition of
‘song imitation’ learning [27,31,32].
Corvids show sophisticated vocal
behaviors
Corvids use their vocalizations to navigate social
relationships
Corvids have complex social lives [33e36] with social
structures that can vary widely between or even within
species. American crows are cooperative breeders where
chicks receive care from not only paretnts, but also from
other group members whereas the closely-related Eu-
ropean carrion crows (Corvus corone) form pairs and are
largely territorial. However, in harsh environments, a
population of carrion crows has been found to engage in
cooperative breeding [35]. This diversity in corvid social
www.sciencedirect.com
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Corvids for cognition and birdsong Liao et al. 3
structures can help disentangle influences of breeding
strategies, developmental trajectories, and prosociality
on cognition and vocal flexibility [26,36e38].

Corvids use their vocalizations to manage social re-
lationships by signaling and negotiating identity, re-
lationships, and dominance status [16,34,39]. For
example, crows can differentiate between the calls of

known and unknown conspecifics [40] and link vocali-
zations to visual features of the vocalizer [41]. Beyond
identifying the individual, vocalizations can signal group
belonging [42] and these socially (‘culturally’) trans-
mitted group signatures are a likely by-product of vocal
learning [19]. Vocal discrimination of individuals and
their group belonging is critical to many adaptive be-
haviors e such as the decision to mob a predator
(Figure 2a [4,34,43], and to distinguish between the
trusted warning vocalizations of group members or the
sometimes deceptive vocalizations of neighbors [43].

Ravens (Corvus corax) can even infer dominance re-
lationships and violations of dominance predictions from
hearing vocal interactions alone (thirdeparty relation-
ships [44]). Therefore, cognitive capabilities such as
‘transitive inference’, the capability to deduce relations
between objects that have not been explicitly compared
before, or recognizing embedded structures in se-
quences are proposed to be involved in processing
complex corvid hierarchical structures [37,45,46].

Outside of long-term monogamous partnerships, some

species of corvids navigate complex fission-fusion dy-
namics with ontogenetic and seasonal changes in the
size and composition of social networks [33,36]. In
winter, corvids compete for access to unpredictable food
sources like carcasses with other scavengers and con-
specifics (Figure 2b). Ravens produce individually-
distinct vocalizations, ‘haa calls’, when discovering
food [33,34,47], particularly when that food is monop-
olized by others. Playbacks of these vocalizations attract
Figure 2

Corvid and non-corvid songbirds display vocal flexibility. (a) Crows mobb
Murray on Flickr (Creative commons license). (b) Foraging group of magpies s
Park Service, public domain. (c) Ongoing fight between two ravens where a b
from Ref. [33]. (d) Crow vocalizing to a visual cue in front of a touchscreen m
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other ravens, suggesting a recruitment function [47].
Typically less dominant ravens often seek social support
due to the competitive nature of foraging which some-
times results in conflicts. During these conflicts
(Figure 2c), appeasement vocalizations are strategically
used, with the victim adjusting their signals based on
present individuals - showing an audience effect
[33,48]. Victims increase vocalization rates when by-

standers are related kin but decrease rates when by-
standers are bonded partners of the aggressor, who
potentially intervene on behalf of the aggressor [48].
Flexibly adapting responses to conspecifics during vocal
interactions involves integrating diverse sensory stimuli
and internal states [34,49], often requiring a balance
between field and laboratory studies to disentangle their
respective contributions.

Carrion crows can flexibly control their vocalizations
Historically, animal vocalizations were thought to be
inextricably linked to internal states like arousal, where
an animal’s vocalizations would be driven by immediate
stimuli with inherent value or valence, such as a mating

partner, predator, or food item. From this historical
perspective, audience effects extend arousal-based ex-
planations. For example, Zebra finches sing more varia-
bly when alone (undirected) compared to when they
sing to females (directed) [50,51], with corresponding
context-dependent neurophysiological changes in song
nuclei. Acoustic changes in pitch, tempo, and entropy,
along with changes in brain temperature and presong
heart rate suggests that increased arousal upon seeing a
female drives differences in directed versus undirected
‘song’ [50,51].

For many animal vocalizations, arousal-based explana-
tions suffice, as they do for some non-linguistic human
vocalizations. However, even ‘innate’ vocalizations like
infant cries are influenced by native language, demon-
strating some vocal flexibility [52]. Adult human speech
ing a hawk. Mobbing behavior is elicited by recruitment. Photo from Tom
cavenging from a carcass in winter. Photo from Jim Peaco of the National
ystander is about to intervene on behalf of the victim or aggressor. Photo
onitor. Photo from Andreas Nieder.
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also has affective components [53]; Prosody reflects
internal states and can be more informative than
emotional lexical content. However, in addition to af-
fective influences, humans can deliberately produce
speech sounds. So, the question remains whether non-
human animals, like corvids, can also bring their vocali-
zations under cognitive control.

To test this, we trained crows to call on command in a
controlled laboratory environment (Figure 2d). When
carrion crows were trained to initiate or withhold vo-
calizations in response to visual cues (colored squares on
a computer monitor), they could volitionally do so
(Figure 3a [54]). The start of each trial was followed by a
Figure 3

Uncovering behavioral and neural mechanisms for flexible vocal producti
response. After a variable waiting period indicated by a white square, a blue s
produce a vocalization to receive a food reward. On the other 20 % of trials,
vocalizing. (b) Hit and false alarm rates across ten sessions for all 3 crows. Su
crows had to produce a defined number of 1–4 vocalizations. A visual or aud
izations. After producing the vocal sequence, the crow had to peck the screen (
three crows combined for visual (left) and auditory cues (right). Colored functio
when a specific target number (peak of the respective functions) was cued. Su
from crow NCL while a crow performed the task shown in A (Top, each dot re
increases (left) and decreases (right) neuronal activity during trials with volition
adapted from Ref. [80]. (f) Example number-selective neuron recorded from c
numeral the crow had learned to associate with a given numerical value as in
corresponding number of pecks. This example neuron showed highest activity
from Ref. [2].
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variable delay before either a Go cue prompted vocali-
zation or a No-Go cue prompted inhibiting a response.
They performed well above chance (Figure 3b).

Inspired by studies in black-capped chickadees (Poecile
atricapilla) who scale the number of ‘dee’ notes in their
alarm calls with the size of the predator, thereby
conveying the magnitude of perceived threat [55], we

extended this work to evaluate if crows could control not
only the initiation but also the number of vocalizations
[3]. We trained three carrion crows to flexibly produce 1
to 4 vocalizations in response to arbitrary stimuli
(Figure 3c). They successfully controlled the number of
vocalizations, reflecting signatures of the approximate
on in crows. (a) Visual Go-No Go detection task requiring the crow’s vocal
quare (i.e. the GO cue) appeared on 80 % of trials prompting the crow to
the white square remained (catch trials) and the crow refrained from
bplots A&B are adapted from Ref. [54]. (c) Vocal production task in which
itory cue instructed the crow to produce an associated number of vocal-
‘enter key’) to report it was done. (d) Behavioral performance curves of the
ns show how often the crows produced a specific number of vocalizations
bplots C&D are adapted from Ref. [3]. (e) Two example neurons recorded
presents an action potential; Bottom, spike-density function). This neuron
al vocalizations (Hit) compared to trials without vocalization (Miss). Subplot
row NCL during a non-vocal task. The crow saw either a dot array or a
struction stimuli. After a delay, the crow translated the cue into the
for instructed number 1 for both dot and sign protocols. Subplot adapted

www.sciencedirect.com
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number system, such as numerical distance and size
effects (Figure 3d). Longer reaction times were noted
for higher numbers, and the acoustic features of the first
vocalization predicted the sequence’s total number,
suggesting vocal planning. This study demonstrates that
crows can control an abstract, cognitive feature of a
vocalizationdits number. These results indicate that
evolution has enabled corvids to bring vocalizations

under cognitive control, a skill previously only demon-
strated in nonhuman primates with their vastly distinct
brain anatomy [11]. In summary, while animal vocali-
zations are presumably often driven by arousal states,
the ability to volitionally control vocalizations suggests a
more complex interplay between affect and cogni-
tion [56].
Vocal flexibility in non-corvid songbirds
relies on their brain’s song system
Corvids are not the only songbirds exhibiting vocal
flexibility. Different non-corvid species can adjust the
timing, pitch, sequence, or length of repetitions of their
vocalizations, vocal flexibility that has been shown to
rely on a special set of song-related brain nuclei, the
‘song system’. The two pathways of the song system

[10] both extend from the vocal premotor nucleus HVC
(proper name): (1) The song motor pathway (SMP),
driving vocal production in a moment-to-moment
fashion via the robust nucleus of the arcopallium (RA)
[10,57], which drives vocal brainstem motoneurons
directly and via a vocal midbrain structure: the dorso-
medial nucleus of the intercollicular complex (DM
[10,58]. (2) The anterior forebrain pathway (AFP),
enabling vocal motor exploration and, therefore, vocal
learning [59,60] (Figure 1b). HVC receives sensory in-
formation from multiple modalities, including auditory,
visual, and somatosensory inputs [61,62]. This suggests

that song system dynamics can be influenced by envi-
ronmental cues resulting in cases of vocal flexibility that
we briefly discuss below.

Flexibility in ‘song’: pitch, sequence, repetition, and
timing of vocalizations
Even though the adult zebra finch’s single courtship
‘song’ remains stable throughout the bird’s life, indi-
vidual vocal elements (i.e. syllables’) can be altered
experimentally by targeting them with distorted audi-
tory feedback (DAF), such as short bursts of white noise
[63,64]. Here, birds learn to adjust the pitch of specific
syllables to evade disruptive feedback and this ability

builds on a mechanism for active song maintenance that
relies on an intact AFP [64]. In Bengalese finches
(Lonchura striata domestica), not only the acoustic fea-
tures but also the sequencing of syllables can be modi-
fied experimentally with aversive DAFor a social reward
(i.e. a video of a conspecific) [63,65]. These experi-
ments leverage the spontaneously occurring variable
syllable transitions in the Bengalese finch’s song, which
www.sciencedirect.com
are also a feature observed in canaries [66,67]. In both
species, HVC neurons reflect sequence variations by
encoding not only syllable identity but also their
sequential position relative to previous or following
syllables [66,67]. Additionally, manipulations of
different song nuclei can increase or decrease sequence
variability such as the number of syllable repetitions,
highlighting the causal involvement of the song system

in the flexible modulation of ‘song’ con-
tent [51,65,68,69].

This vocal flexibility is present in other social contexts.
Tracking the development of affiliative ‘stack’ and ‘tet’
interactions between newly formed zebra finch pairs
reveals that over days, acoustic features of these vocal-
izations converge as they become tightly-coupled ex-
changes [30]. Playback regimes demonstrate that both
male and female birds can dynamically adjust their
vocalization timing to prevent overlap [30]. This flexi-

bility in timing declined with RA lesions and is
controlled by inhibition in HVC [70]. Interestingly, the
female zebra finches’ ability to flexibly adjust the timing
of their vocalizations was on par or exceeded those of
males, suggesting that their anatomically smaller ‘song
system’ is sufficient for the temporal coordination of
vocalizations [30]. While the song system in carrion
crows is essentially the same as in other songbirds, in
carrion crows, unlike in female zebra finches, the sexual
dimorphism is absent, making the song system nuclei in
female crows indistinguishable in size from those in

males [12]. Females ‘sing’ in over 70 % of songbird
species suggesting that female vocal learning is ancestral
[71] and should be studied more [27,28]. For example,
pairs of white-browed sparrow-weavers (Plocepasser
mahali) synchronize their duets using the auditory
feedback generated by the vocalizations of the duet
partner to alter ongoing HVC activity locked to each
individual’s own vocalizations [72]. Taken together,
these studies provide important insights into how the
‘song system’ contributes to vocal flexibility at the level
of the neural circuit. However, it remains unclear how
neuronal dynamics enable ultra-flexible vocal behavior,

such as the common nightingale’s (Luscinia megarhynchos)
ability to immediately imitate vocal elements of
conspecific rivals or of a whistling human experi-
menter [73].
Neural circuits bridging cognitive and
‘song’ functions
Cognition without a neocortex
Many of the cognitive abilities observed in corvids were
traditionally believed to be exclusive to primates, which
have a layered ‘cerebral cortex’ in the telencephalon [1].
However, birds don’t have a layered cerebral cortex.
Instead, since diverging from their common ancestor
with mammals approximately 320 million years ago, they
have evolved the pallium into distinctly different
Current Opinion in Neurobiology 2025, 90:102965
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integration centers, known for their nuclear organization
[1]. The corvids’ pallium is tightly packed with neurons,
so much that its neuronal densities substantially exceed
those found in mammals [74]. Remarkably, ravens have
the same number of pallial neurons as a capuchin
monkey, even though the capuchin’s brain is four times
as heavy. As neurons are the processing units of the
brain, this unusually high neuron count likely contrib-

utes to corvid intelligence [75].

NCL as a cognitive integration center involved in
volitional vocal production
Within the avian pallium resides a highelevel associa-
tion area termed ‘nidopallium caudolaterale (NCL)’.
The NCL has all the anatomical features the brain’s
central executive requires: input from (secondary)
sensory areas, connections with hippocampal structures
to support long-term memory and spatial cognition,
links with limbic structures representing internal states,
and direct outputs to motor areas permitting goal-
directed actions [76,77]. Reflecting its complex con-
nectivity, a recent multitude of studies has demon-

strated the involvement of NCL neurons in various
higher cognitive functions [78,79]. Among these func-
tions, the representation of quantity is a particularly
interesting example (Figure 3f) [2,6,8] given the crows’
ability to flexibly control the number of their calls
(Figure 3c,d [3]). Together, these findings prompt the
question of whether NCL activity can affect vocal
Figure 4

Parallel descending and ascending connections of the vocal premotor nu
structures of the crow’s general motor system [83]. Light blue: continuity of NCL
[77,82]. Orange: Select nuclei of the crow’s song system [12]. Connections b
demonstrated in other songbird species [10]. Abbreviations: A, arcopallium; A
caudolaterale; DLM, nucleus dorsolateralis anterior, pars medialis; HVC, prope
nucleus of the anterior nidopallium; MMAN, medial magnocellular nucleus of th
Uva, nucleus uvaeformis; X, area X. Figure adapted from Ref. [82].

Current Opinion in Neurobiology 2025, 90:102965
production through direct or indirect connections to any
of the song system’s nuclei.

As a first step to investigate whether theNCL is involved
in vocal production, we recorded singleeneuron activity
from the NCL in crows while they vocalized upon com-
mand in a controlled experimental setup. Activity of
NCL neurons could predict whether crows would pro-

duce an instructed vocalization or not (Figure 3e [80]).
Importantly, the neuronal activity observed during the
preparation of volitional vocalizations differed from the
activity preceding spontaneous vocalizations; these
neurons signaled the voluntary initiation of vocalizations,
rather than just any vocal output. However, it remains
unclear how this signal may reach the ‘song’ system,
which drives all vocalizations through brainstem vocal
and respiratory nuclei (Figure 1b [10]).

NCL in the context of the song system
In crows and other songbirds, NCL is located directly
lateral and posterior to the song premotor nucleus HVC
in the caudal nidopallium [81] (Figure 4). Like NCL,

HVC sits at the interface of ascending multisensory
inputs and descending premotor outputs [61,77].
Although NCL is likely not monosynaptically connected
to its neighbor HVC, its local connectivity extends
medially invading the secondary auditory structure
‘HVC-shelf ’, which, in turn, sends very sparse pro-
jections into HVC [82]. Although sparse, these fibers
cleus HVC and the general premotor nucleus NCL. Dark blue: Selected
’s local connectivity extending to the direct vicinity of HVC (i.e., HVC-shelf)
etween those nuclei (dashed lines) are inferred from and have been
Id, dorsal intermediate arcopallium; N, nidopallium; NCL, nidopallium
r name; LMANco and LMANsh, core and shell of the lateral magnocellular
e anterior nidopallium; RA, robust nucleus of the arcopallium; S, striatum;

www.sciencedirect.com
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could potentially route NCL signals to HVC and future
studies will determine whether this input is relevant for
flexible vocal production.

NCL is an integral part of the ‘general motor pathway’
[83] (Figure 4), which can control movements of the
head, neck, and jaw [83,84]. Several related hypotheses
on the evolutionary origin of the song system suggest

that HVC is a specialized part of the NCL that could
have diverged from NCL via pathway duplication
[82e85]. In these frameworks, the ‘general motor
pathway’ is seen as the evolutionary precursor of the
entire song motor pathway (cf. Figures. 1 and 4)
[82e85]. This scenario has functional implications for
structures like the HVC-shelf (which engulfs HVC and
appears to be continuous with NCL) or its downstream
target RA-cup, which have been interpreted as accessory
structures to the song system [81]. However, as aptly
stated by Michael A. Farries (2001) [83]: “These accessory
structures may be nothing more than the oscine equivalents of the
non-oscine regions [i.e., the general motor pathway] from
which the song system emerged, structures that were literally
pushed aside by the growth of specialized subdomains within them
that became the song system.” Following this argument, the
vocal domain and the ‘general motor’ domain of the
songbird brain may function largely independently.

Indeed, recent evidence strongly supports the idea of
two parallel vocal and non-vocal systems. Parallel to
HVC’s projection to the song motor nucleus RA, dense

NCL fiber bundles project to the avian ‘motor cortex’
analogue: the dorsal intermediate arcopallium (AId)
(Figure 4) [77,81,86]. The molecular and cellular
properties of AId and RA are astoundingly similar,
suggesting a homology between these two motor areas
[86]. Nonetheless, there is no good evidence for an
anatomical connection between AId and RA, via which
the general motor pathway could influence the SMP
[83]. Furthermore, NCL’s dense projections to the AId
do not protrude into RA in crows and other songbirds,
except for extremely sparse individual axons [81,82,87].
Thus, the arcopallium is currently an unlikely location

for NCL’s influence on vocal flexibility.

Downstream, RA projects to a midbrain structure (DM)
that drives vocalizations [10,58]. Electrical stimulation
of DM in corvid and non-corvid songbirds elicits vocal-
izations [88,89]. Interestingly, in non-songbird species,
the nucleus DM cannot be identified based on hodo-
logical characteristics but electrical stimulation of the
mid intercollicular nucleus (i.e. where DM is located in
songbirds) also elicits vocalizations [90]. Whether the
NCL has indirect access to these midbrain structures

remains an open question and highlights the need for
additional work on interactions between forebrain and
vocal midbrain structures.
www.sciencedirect.com
Further evidence for the idea that the song system has
developed within the general motor system comes from
the characterization of NCL’s projections into the
striatum [82,91]. Analogous to how individual HVC
neurons in the songbird project either to RA or to the
striatal area X of the AFP (c.f. Fig. 1B), pigeon (Columba
livia) NCL neurons send their axons either to the AId or
the medial striatum [91]. By characterizing the pattern

of NCL’s projections into the striatum relative to area X
in crows, we recently found that area X itself is largely
avoided by NCL axons while its vicinity is densely
innervated (Figure 4 [85]). This finding supports the
hypothesis of a ‘general AFP’ mirroring the connections
of the song system’s AFP [83].

Parallel (i.e., non-overlapping) projections can also be
found on the input side of HVC and NCL ascending
from the magnocellular nucleus of the anterior nido-
pallium (MAN) area and the thalamus (Figure 4)

[82,92]. Interestingly, the songbird MAN area appears to
fully overlap with the medial nidopallium/mesopallium
complex (MNM) which is found in both pigeons and
parrots (Budgerigar: Melopsittacus undulatus) [77,78,93].
Like NCL, the pigeon and parrot MNM, as well as the
songbird MAN area, exhibit direct projections to arco-
pallial motor areas and are implicated in skilled
sequential behaviors, including vocal flexibility
[69,78,81,94]. Furthermore, the nidopallium and the
mesopallium are associative telencephalic areas [76,77]
that are enlarged in corvids compared to other birds

[9,95]. Therefore, the corvid MAN area along with the
overlying mesopallium form an important candidate
region that may be involved in coordinating cognitive
and vocal function.
Conclusion
In this article, we promote the wider adoption of corvid
songbirds to study the behavioral and neural foundations
of cognitive influences on vocal behavior. Behavioral
evidence in both corvid and non-corvid songbirds shows
that they have varying degrees of cognitive control over
vocal production. Some important future directions
include exploring how open-ended vocal flexibility in-
teracts with establishing a vocal repertoire for different
communicative functions. Additionally, uncovering how
vocal flexibility and the associated brain networks
change over an individual’s lifetime will be important.

Different corvid species also allow us to characterize
differences in vocal behavior that co-vary with different
life history strategies. Finally, beyond corvid species,
comparing the neural mechanisms underlying degrees of
vocal and cognitive flexibility with other intelligent
avian species (e.g., parrots and pigeons) will provide
valuable insights. From a neurobiological perspective,
the key question is how the song system, which appears
to be surprisingly isolated from the rest of the oscine
Current Opinion in Neurobiology 2025, 90:102965
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brain, is accessed by the avian brain’s central executive.
Future research on this topic will uncover the general
principles and constraints scaffolding the evolution of
clever, vocal animals and their brains.
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