
Number rules the universe. Pythagoras

One of the central concepts we use in thinking about 
the world is the number concept. The number concept 
encompasses cardinal numbers, which are the focus 
of this Review, ordinal numbers and nominal numbers1,2. 
Cardinality (also known as numerosity) corresponds to 
the empirical property of quantity, and is the number of 
countable elements in a given group (for example, five 
runners). From basic needs, such as finding enough food 
items, to more advanced requirements, such as calculat-
ing the flight trajectories of spacecraft, survival depends 
on processing numerical quantity.

Numbers are intriguing because they are abstract 
representations. When assessing numerosity, the sensory 
appearance of the elements is meaningless. For example, 
three fingers, three calls and three hand movements can 
all be classified by the cardinal number ‘three’. Numbers 
are also fascinating because they can be logically trans-
formed according to a finite set of rules; for example, two 
plus two equals four. Such simple and many more com-
plex operations are the building blocks of arithmetic, the 
elementary branch of mathematics. Numerical opera-
tions require mental feats such as abstraction, memori-
zation, rule following and decision making. Therefore, 
number processing provides a means to decipher the 
neuronal mechanisms of cognitive control functions.

Several lines of evidence suggest that number 
estimation is ubiquitous in the animal kingdom and 
deeply rooted in human ancestry. First, numerate 
humans who are presented with stimuli that are dis-
played too briefly to be counted can still estimate 
numerosity3,4. Second, innumerate humans who have 
never learned to count verbally are still able to process 
numerosity5,6. Third, prelinguistic infants can discrim-
inate the number of objects7,8, and, last, both trained 

and wild animals (insects9,10, fish11,12, amphibians13,14, 
birds15,16 and mammals) exploit set size to arrive at adap-
tive decisions17–22. Three different processes, subitizing23, 
number estimation (also known as analogue magnitude 
representation) and a texture-like mechanism are thought 
to underlie the (nonverbal) representation of number 
in humans and other animals24. Collectively, these find-
ings argue that humans share a nonverbal quantification 
system with non-human animals.

This quantification system resides in a dedicated 
parieto-frontal brain network in primates25,26. Over the 
past 15 years, studies in non-human primates have iden-
tified cellular mechanisms that give rise to numerical 
competence. This Review discusses how single ‘number 
neurons’ in selected regions of the primate association 
cortices encode the number of elements in a stimulus. 
Beyond a mere understanding of how cardinal numbers 
are represented, the investigation of number neurons 
elucidates the processing and transformation of numer-
ical information in tasks that require cognitive control 
as a pre adaptation for arithmetic.

Neurons represent abstract number
Coding across space, time and modality. Determining 
whether number representations are abstract or are 
influenced by non-numerical variables is notoriously 
difficult because number is intrinsically correlated with 
many other features of a physical stimulus. Varying the 
number of items in a set inevitably changes spatial and/
or temporal parameters, and fixing one parameter causes 
another to vary with the number of items. For example, 
the total area covered by all items in an array can only be 
fixed if the size of the individual items is decreased for 
each item that is added to the array. Responses made by a 
neuron or a subject to such an addition could in fact rep-
resent changing item size rather than number. The best 
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Ordinal numbers
Numbers that relate to the 
empirical property of ‘rank’ 
in a sequence (for example, 
‘fifth place’).

Nominal numbers
Strictly linguistic labels to 
identify objects (for example, 
‘Bus number 5’).

Number estimation
(Also known as the analogue 
magnitude system and the 
analogue number system). 
A process of representing 
small and large set sizes that 
becomes systematically less 
precise with increasing 
numbers. Thus, number 
estimation obeys Weber’s law.

Subitizing
(Also known as object file 
representation or object 
tracking system). The rapid 
tracking for up to 
approximately four items 
by assigning ‘files’ or ‘pointers’ 
to individual items.

The neuronal code for number
Andreas Nieder

Abstract | Humans and non-human primates share an elemental quantification system that 
resides in a dedicated neural network in the parietal and frontal lobes. In this cortical network, 
‘number neurons’ encode the number of elements in a set, its cardinality or numerosity, 
irrespective of stimulus appearance across sensory motor systems, and from both spatial and 
temporal presentation arrays. After numbers have been extracted from sensory input, they need 
to be processed to support goal-directed behaviour. Studying number neurons provides insights 
into how information is maintained in working memory and transformed in tasks that require 
rule-based decisions. Beyond an understanding of how cardinal numbers are encoded, number 
processing provides a window into the neuronal mechanisms of high-level brain functions.
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Texture-like mechanism
A mechanism that allows the 
representation of very many 
and densely packed items and 
does not obey Weber’s law.

Preadaptation
A trait that serves a different 
purpose from the one for which 
it evolved.

way to tackle this problem is to control — unbeknown 
to the individual — one parameter after another in sepa-
rate stimulus configurations. If a neuron (and the subject) 
responds equally to systematically varied (that is, con-
trolled) numerosity stimuli, it is safe to conclude that the 
neuron responds to number. Therefore, one important 
past research agenda was to test the activity of neurons 
to various number stimulus formats.

In monkeys trained to judge cardinal values (FIG. 1a), 
neurons in the lateral prefrontal cortex (lPFC) and the 
intraparietal sulcus (IPS) of the posterior parietal cor-
tex (PPC) responded selectively to a specific number of 
items (that is, numerosity) in visual multiple-dot dis-
plays27–31 (FIG. 1b,c), including a numerosity of zero32,33. 
Number neurons respond most strongly to their pre-
ferred numbers, but they also respond to a lesser extent 
to adjacent numbers, and thus they have a bell-shaped 
(Gaussian) response function. The visual appearance of 
stimulus displays, such as the spatial arrangement, the 
density or the total area of the dots, had no effect on neu-
ronal activity in the studies described above, confirming 
that the neurons represented numerosity rather than the 
co-varying sensory features of the displays.

Number neurons not only signal the numerosity in 
simultaneously displayed visual items but also encode 
the number of elements that appear sequentially one by 
one, irrespective of the temporal intervals between the 
elements34 (FIG. 1d). In functional MRI (fMRI), the acti-
vation of number neurons is mirrored by bilateral blood 
oxygen level dependent (BOLD) activation in the human 
IPS during numerosity estimation in both spatial (item 
arrays) and temporal (sequential items) modes of dis-
play35. Sequential processing is particularly important 
in the motor system, and cells in the superior parietal 
lobule (SPL; area 5) are tuned to different numbers of 
hand movements36. Transient pharmacological inactiva-
tion of neuronal activity in parietal area 5 led to individ-
ual movements being omitted in monkeys that had been 
trained to perform between one and five hand move-
ments, thus preventing the monkeys from performing 
the correct number of movements37. Controls showed 
that the errors were not caused by motor deficits or an 
impaired ability to select between actions. This finding 
demonstrates that the activity of number neurons is 
causally related to number estimation.

Given its abstract nature, a number needs to be 
encoded not only across time and space in single sen-
sory domains but also independently of the sensory 
modality (that is, encoding must occur supramodally). 
In monkeys trained to assess both the number of sequen-
tial visual dots and auditory sounds within the same ses-
sion (FIG. 1d,e), neurons in the lPFC and in the ventral 
intraparietal (VIP) area of the IPS encoded the number 
of auditory pulses, the number of visual items, or both38. 
Interestingly, many randomly selected neurons (11% 
of the total number) in the PFC responded to the same 
number of items in both the visual and the auditory stim-
ulation protocols; that is, they responded supramodally to 
number (FIG. 1f). In the VIP area, however, intermingled 
neurons represented either visual or auditory numeros-
ities, but not both38. In humans, modality-independent 

(visual or auditory) BOLD activation during numerosity 
estimation has been observed in a right fronto-parietal 
network39. The same network was also identified dur-
ing verbal counting of visual and auditory items, with 
additional activation in prefrontal, parietal and premotor 
areas39. In contrast to monkeys, the human parietal lobe 
seems to be recruited more strongly with age and num-
ber proficiency40,41, giving rise to supramodal (spoken or 
written) and notation-independent (numerals or number 
words) symbolic number activation42.

The idea that numerical representations are abstract 
has previously been rejected as premature based on the 
behavioural differences that are found for the processing 
of different number formats and number task-specific 
BOLD responses43. Whether the issue of abstract rep-
resentation can be resolved on the basis of behavioural 
outcome effects and the methodological limitations 
of BOLD signals is a question in itself 44. However, the 
idea of the abstractness of numbers does gain support if 
‘abstract representation’ is operationalized as “neuronal 
populations that code numerical quantity and are insensi-
tive to the form of input in which the numerical informa-
tion was presented” (REF. 43). Number neuron responses 
in the PFC were generalized across spatial features in 
visual item arrays27,29,31, spatiotemporal visual presenta-
tion formats34, visuo-auditory presentation formats38, and 
the number of dots and associated number signs45. That 
the extraction of numerosity is only minimally influ-
enced by the processing of physical stimulus features 
has also recently been demonstrated in human imaging 
studies46,47. Of course, if neurons operate on lower, more 
sensory levels of the cortical hierarchy, such generalized 
responses cannot (and should not) be expected for all 
selective neurons. Abstract number information could 
also be extracted from population activity.

Computational advantage of abstract number neurons. 
Before the first electrophysiological recordings of num-
ber neurons, the influential triple-code model of number 
processing48 proposed that number representations 
initially involve a lower step of modality-specific analy-
sis, followed by a higher processing stage in which these 
representations reach an abstract, amodal format. The 
number-selective responses of supramodal neurons 
could easily be associated with arbitrary signs, such as 
visual shapes or auditory sounds, to establish symbolic 
representations of numbers in humans through numer-
als and number words40,49,50. Neurons in the PFC of mon-
keys that were trained to associate the number of dots 
with visual shapes (for example, with ‘3’) responded 
equally well to the cardinal values in both displays45. This 
linking capacity of PFC neurons might constitute a 
pre-adaptation in monkeys that may have evolved to 
become symbolic linking in humans.

Number as a spontaneously represented category. For a 
long time, number neurons were investigated in monkeys 
that had been trained to discriminate set sizes. Could it 
be that number neurons are only a by-product of intense 
experience rather than a reflection of a native quantita-
tive faculty that resides in the primate brain? After all, 
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g  Number network in the monkey brain

b  Cell tuned to the number 2 c  Cell tuned to the number 6

d  Sequential visual number task

a  Delayed match-to-numerosity task

e  Sequential auditory number task

h  Number network in the human brain
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it is well known that neuronal responses in the associ-
ation cortex can be modified by learning51,52. However, 
recordings in monkeys that had not been trained to 
judge number showed that single neurons in both the 
VIP area and the lPFC spontaneously responded to 
numer osity and were tuned to preferred numerosities53. 
Similarly, recent imaging evidence has suggested that 
the direct and automatic extraction of numerosity also 
occurs in the human brain46,47.

Strong support for the direct and spontaneous assess-
ment of number resulted from psychophysical experi-
ments that showed that approximate visual number 
assessments are subject to adaptation (that is, set sizes 
are underestimated after adaptation to a high numeros-
ity)54,55. This adaptation is even present for sequentially 
presented items, across modalities and across spatio-
temporal presentation formats56. Because adaptation is a 
characteristic of sense organs, number may be regarded as 
a sensory-like attribute54. Importantly, numerosity adapta-
tion is spatially selective. Thus, adaptation may be medi-
ated by number-selective neurons that show a spatially 
restricted response field, such as lateral intraparietal57 or 

VIP area neurons58. Cells in the IPS that were number-se-
lective in both space and time34, and number cells in the 
PFC that integrate across modalities38, are probably neural 
substrates for cross-format and supramodal adaptation. 
Collectively, these results from psychophysics, brain imag-
ing and single-neuron recordings support the classic idea 
of a ‘sense of number’ (BOX 1).

Cortical topography
Hierarchical number processing. Across many studies 
in monkeys, the highest proportions of number neurons 
have been found in the lPFC (20–30%) and in the VIP 
area (15–20%) in the IPS27,29–31,34,45 (FIG. 1g). Both of these 
brain areas, which constitute the core number network, 
have also recently been activated in a monkey fMRI study 
of number processing59. Neurons in the inferior temporal 
lobe, however, do not seem to be involved in numer osity 
processing29. The lPFC and PPC are anatomically60–63 
and physiologically64,65 interlinked, classic association 
cortices. They are ideally positioned for number pro-
cessing because both the lPFC and the VIP area receive 
highly processed input from nearly all senses, which is 
a pre requisite for representing number abstractly across 
multiple sensory modalities. In addition, both areas are 
connected to premotor output structures, allowing them 
to guide behaviour in an adaptive manner66.

Physiological parameters suggest that number infor-
mation is processed hierarchically between the IPS and 
the lPFC. Simultaneous recordings from parietal and fron-
tal lobes have repeatedly found that IPS neurons respond 
markedly earlier to number than do PFC cells29,30,53,67. 
In addition, single PFC neurons are less sensitive to co- 
varying sensory features of numerosity displays than are 
IPS neurons29 and, in contrast to IPS neurons, PFC neu-
rons respond supramodally to numerosity38. Finally, in 
monkeys trained to associate cardinal values with visual 
shapes, PFC neurons signify this association across time, 
whereas IPS neurons do not45. These findings suggest 
that the IPS is the first cortical hub to extract quantita-
tive information. As a putative recipient of information 
about numerosity from the IPS, the PFC can then process 
numerical information in a goal-directed way.

Human number system. The cortical number network in 
the non-human primate cortex is mirrored in the human 
brain. Damage to parts of the association cortices causes 
acquired deficits in processing numbers in humans68–70, 
leading to a neuropsychological syndrome that is known 
as acalculia71–73. Acquired numerical impairments have 
revealed a crucial role for the parietal lobes in number 
and calculation skills, besides other frontal and temporal 
associ ation areas (reviewed in REFS 74,75). Collectively, 
recent neuropsychological studies in patients have sug-
gested a cortical number network rather than a one-to-one 
correspondence between number abilities and one spe-
cific brain area76. In agreement with findings from lesion 
studies, it is thought that underdeveloped neuronal cir-
cuitries in the number network cause dyscalculia, which is 
a developmental disorder that is characterized by impair-
ments in the ability to understand numbers and perform 
calculations77. Dyscalculia is associated with reductions 

Figure 1 | Representation of number in the primate brain. a | A delayed match-to-nu-
merosity task is commonly used to explore the representation of numbers. A trial begins 
when the monkey grasps a lever and fixates at a central target on a screen. After fixation, 
a sample stimulus comprising a number of dots (which varies between trials) is displayed 
and the monkey memorizes this stimulus during a delay period. The monkey needs to 
respond whenever the numerosity displayed in the sample phase is shown again in the 
test phase. In this case, the test stimulus is a match in 50% of the cases. Trials are 
pseudo-randomized and each numerosity is indicated with many different images.  
b | Neurons of the primate association cortex (here the prefrontal cortex (PFC)) 
selectively respond to specific numbers. The time course of neuronal activity during the 
trials shows that this example neuron preferentially responded to two dots (that is, it 
preferred the number 2). Note that this neuron signalled ‘2’ both during the sample 
presentation and during the following delay phase (that is, in working memory). 
Discharges to all even numbers (and 1) up to 30 for many stimulus repetitions are plotted 
as dot-raster histograms (top panel; each dot represents an action potential) and 
averaged spike density functions (bottom panel; neural activity is averaged and 
smoothed, and only a selection of the numbers are shown for clarity). Colours correspond 
to specific tested numbers. c | Different neurons exhibit different preferred numbers. 
This example neuron selectively responded to 6 items both during sample presentation 
and memory delay. d | To assess how neurons encode the number of items presented over 
time, a sequential visual enumeration protocol has been used. In this task, the monkey 
needed to enumerate items one by one and respond if the sample period and test display 
showed the same number of visual items, and it had to withhold a response if they did 
not (probability = 50%). Sample numerosities ‘1’ to ‘4’ were cued by sequentially 
presented dots separated by blank displays. The temporal succession and duration of 
individual dots were varied systematically within and across numerosities, thus 
controlling for temporal cues. e | To find out whether number neurons generalized across 
sensory modalities, different numbers of sounds (indicated by speaker icons) had to be 
enumerated by monkeys and matched to the number of visual items in multi-dot 
displays. This sequential auditory enumeration task was presented alternately with the 
sequential visual protocol (see part d) in a given session. In this way, the neuronal 
responses of single neurons to both visual and auditory numbers could be tested.  
f | Supramodal number neurons responded to the same preferred numbers of visual dots 
and auditory sounds. Tuning functions (normalized average responses) of four example 
neurons with preferred numerosities of 1 to 4. Each neuron shows almost identical tuning 
to the number of auditory sounds or visual items. g | A frontolateral view of a monkey 
brain shows the areas of the number network with a high proportion of number neurons. 
h | A fronto lateral view of a human brain depicts areas that are consistently activated by 
numbers in functional imaging studies. IPS, intraparietal sulcus; lPFC, lateral PFC; mPFC, 
medial PFC; VIP, ventral intraparietal. Parts b and c are based on data from REF. 31. Part f 
is based on data from REF. 38. Part h is adapted with permission from REF. 82, Elsevier.

◀
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Before adaptation

After adaptation to 400 dots

30 dots

100 dots 30 dots

30 dots

Judged to 
be equal to

Judged to 
be equal to

Labelled-line rate code
Relates to the discharge rates 
of neurons that belong to 
dedicated processing pathways 
and that convey information 
about specific stimulus 
parameters (it is a variation 
of a rate code).

in grey matter volume in the right IPS78 and frontal areas, 
such as the anterior cingulum, the left inferior frontal 
gyrus and the bilateral middle frontal gyri79.

Functional imaging studies in humans also suggest 
that frontal lobe areas and posterior parietal areas sub-
serve the nonverbal and symbolic representation of quan-
tities80, with the posterior parietal areas even showing a 
spatially organized numerosity map81. The findings of 
dozens of fMRI studies exploring BOLD activation during 
number tasks were summarized in a recent quantitative 
meta-analysis82, which showed that numerical process-
ing is repeatedly and robustly associated with activation 
mainly in the inferior and superior parietal lobules and 
the IPS, as well as in frontal lobe areas such as the inferior 
and middle frontal gyrus of the lPFC, and the cingulate 
gyrus of the medial PFC (mPFC) (FIG. 1h).

Reading number from neuronal responses
Labelled-line code for number. A number neuron shows 
a maximum discharge rate to its preferred numerosity 
(FIG. 1b,c,f). When the presented number becomes more 

remote from the preferred one, the neuronal activity of 
single neurons progressively drops off, thus forming a 
peak-tuned response curve27–31. Such a labelled-line rate 
code for number has been shown to exist in the mon-
key brain, across spatio temporal presentation formats, 
modalities and sensory-motor domains34,36,37,83.

The tuning functions of neurons explain the behav-
ioural phenomenon known as the numerical distance 
effect4,28, which is the finding that numerically distant 
numbers are easier to discriminate (for example, 2 versus 
6) than numerically closer numbers (for example, 5 ver-
sus 6). This is because the read-outs from neurons that are 
tuned to distant numbers are unequivocal given that the 
tuning functions hardly overlap. Neuronal coding prop-
erties also explain the numerical size effect4,28, which cap-
tures the finding that it is easier to discriminate numbers 
with low magnitudes (for example, 2 versus 3) than num-
bers with high magnitudes (for example, 8 versus 9) at a 
given numerical distance (a distance of 1 in this example). 
The numerical size effect is related to the finding that the 
number-tuning curves (FIG. 2a) and population activity 

Box 1 | A ‘sense of number’

The classic idea of a ‘sense of number’ (REFS 179,180) suggests that humans and animals are endowed with an innate 
faculty to perceive the number of items in a set (that is, numerosity). This idea argues that numerosity is intuitively assessed 
as a perceptual category by hard-wired sensory brain processes, without the need to be learned. Similar to perceptual 
categories such as faces, numerosity is susceptible to adaptation54–56. For example, after adaptation to 400 dots, subjects 
judge 100 dots as being equal to 30 dots (see the figure). Supporting sensory access to numerosity, visual numerosity 
emerges as a statistical property of images in computational network models91.

Recently, this core idea of the ‘number sense’ was tested neurophysiologically by recording single-cell activity in 
numerically naive monkeys. Numerosity-selective neurons were present both in the ventral intraparietal (VIP) area of the 
posterior parietal cortex (PPC) and the lateral prefrontal cortex (lPFC) of the primate brain without numerical training53. 
Moreover, recordings in naive monkeys revealed neurons that were spontaneously tuned to preferred numerosities. This 
finding argues for a labelled-line code of numerosity and against summation coding. Finally, numerosity was encoded earlier 
in the PPC, suggesting that numerical information is automatically extracted in the parietal cortex and then conveyed to 
the frontal lobe. Indeed, when the 
same initially numerically naive 
monkeys were re-trained to 
actively discriminate visual 
numerosity, contrasting neuronal 
effects on PFC and VIP area 
neurons were witnessed as a result 
of numerosity training84: although 
PFC neurons became more 
responsive and more selective 
during active numerosity 
discrimination, none of these 
effects was observed for VIP area 
neurons. These data indicate the 
elevated engagement of PFC 
neurons for executive control, 
whereas the VIP area continues to 
encode numerosity as a perceptual 
category regardless of behavioural 
relevance. Collectively, these 
findings suggest that numbers 
reflect a natural perceptual 
category. The intuitive sense of 
number may well be present at 
birth in both humans and monkeys, 
and number neurons probably 
provide the neurobiological 
substrate of this sense.
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Weber–Fechner law
Classic psychophysical law 
about the perception of 
magnitudes in relation to the 
physical intensity of a stimulus; 
it states that linear increments 
in sensation S are proportional 
to the logarithm of stimulus 
magnitude I (S = k * log(I)).

(FIG. 2b) become progressively broader and thus less selec-
tive with increasing magnitudes. Further evidence that 
monkeys rely on the activity of number neurons to solve 
a trial comes from recordings during behavioural errors. 
The discharge rate to the preferred number is markedly 
reduced in error trials compared with correct trials27,29–31,84. 
Thus, if the neurons do not properly encode their pre-
ferred number, the monkey is at risk of confusing numer-
osities. Together with the numerical deficits seen after 
pharmacological inactivation (described above)37, these 
findings suggest that the activity of number neurons is 
indispensable for numerical judgments.

Close examination of the shape of the tuning curves 
reveals asymmetric peak functions on a linear number 
scale. The neuronal tuning functions (and the behav-
ioural performance functions)4,85 are better described 
(that is, symmetric) by a nonlinearly compressed, log-
arithmic number scale (FIG. 2c) than a linear scale28,31 
(FIG. 2a). The logarithmic coding scheme resulting in 
bell-shaped curves has physiological advantages. First, 
it forms a scale-invariant set of neurons that have the 
same widths of tuning for all numbers. Second, it ensures 
that the variability of neuronal responses is independent 
of number preference. Third, logarithmic coding agrees 
with the psychophysical Weber–Fechner law, which pre-
dicts that the discrimination of stimuli diminishes in 
proportion to the increasing quantity of the stimuli. 
Logarithmic scaling may be a mathematical approxima-
tion, but so far this compression has provided the most 
symmetric number tuning functions in comparison 
with other compression schemes, such as peak power 
functions4,28,31. Symmetric Gaussian tuning functions are 
extensively used in neural models of information cod-
ing because they show computational advantages over 
nonsymmetric functions and their analytical expression 
can be easily manipulated in mathematical derivations86.

Number neurons as described electrophysiologically 
in the monkey brain have been postulated in humans87,88 
on the basis of BOLD signals in fMRI adaptation proto-
cols. This fMRI adaptation assumes that neurons tuned 
to a preferred number should habituate (that is, they 
should decrease their discharge rates) with repeated 
presentations of the same preferred numerosity. Such 
a habituation effect can then be read out by recording 
the BOLD activation to individual deviant numerosities, 
resulting in a release from adaptation to the preferred 
numerosity and thus a BOLD recovery signal. The fMRI 
number-tuning curves in the human IPS were shown to 
become symmetric and Gaussian only when plotted on 
a logarithmic scale87,88. Interestingly, this way of coding 
numerical information by number neurons showing log-
arithmically compressed tuning functions seems to have 
evolved independently in vertebrate endbrains with very 
different anatomies and thus is an example of convergent 
evolution (BOX 2).

Tuned and logarithmically scaled ‘numerosity detec-
tors’ were originally predicted by a numerosity detector 
model89 that encoded numerosity from parallel inputs. 
Numerosity detectors may arise by combining the activ-
ity from upstream ‘summation units’, which are neurons 
that monotonically increase and decrease discharge 

rates as a function of numerosity (that is, the ‘summa-
tion code’)57,89–91. Summation units representing num-
ber in a graded manner are also the basis of the serial 
mode-control model92,93, which was originally devel-
oped to model animal timing behaviour. It suggests 
that accumulator units encode pacemaker impulses for 
each element to be enumerated. Both the numerosity 
detector model and the mode-control model result in 
analogue representations of number and predict the 
Weber–Fechner law. So far, neurophysiological data for 
the assessment of number from spatial item arrays can 
be reconciled well with the numerosity detector model. 
Whether this model could be adjusted to serially pre-
sented items — a strength of the mode-control model 
— awaits further investigation.

Population rate code. A problem of single-cell tuning 
curves is that they only allow predictions about how neu-
rons will respond on average to a given number. The read-
outs for single trials of neuronal responses are noisy, and 
smooth and unequivocal tuning functions only emerge 
after the discharges of a cell to many identical trial rep-
etitions have been averaged (FIG. 1b,c), or after the tuning 
functions of many equally tuned single cells have been 
pooled (FIG. 2b). The brain, however, needs to decipher a 
presented number within a single trial. To cope with noisy 
discharge patterns, it must take the activity of a population 
of other tuned neurons into account. The important infor-
mation in a population code is thus the relative, rather 
than the absolute, amounts of activity in different neurons.

Just like a democratic election involves many voters, 
the coding of a particular number may involve many neu-
rons, and the signal of each number neuron represents an 
independent vote for a specific number94. The independ-
ent signals of number neurons may be overlapping and 
may need to be averaged over large populations to clearly 
indicate a number. When the activity profiles of all selec-
tive neurons are grouped together, an array of overlapping 
number tuning functions emerges28,29 (FIG. 2a). This array 
preserves the ordinal relationship of numerosities in rela-
tion to one another. By reading out the activity of labelled 
lines across the population of cells, all numbers along the 
number line can be deciphered. For example, if a stimulus 
with two items is shown, the highest response is elicited 
in the neuron tuned to 2 (FIG. 2a). However, depending 
on the amount of tuning overlap, ‘2’ may also, to a lesser 
degree, activate neurons with a preference for adjacent 
numbers on the number line. Thus, the stimulation by 
specific numbers of items (‘2’ and ‘4’ in FIG. 2a) results in 
unique activation patterns in the neuronal population of 
number neurons for these numbers (FIG. 2b).

Clues to how the activity of number-selective neurons 
could be read out are provided by population-coding 
models developed for sensory and motor systems that 
also rely on Gaussian-shaped tuning functions86. In the 
population vector approach applied to the coding of 
sensory or movement direction information95–97, each 
neuron is assigned a vector — the length of which is pro-
portional to the activity of the neuron and the direction 
of which corresponds to its preferred orientation. All 
the individual vectors are summed to form a population 
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vector that allows the preferred orientation to be esti-
mated from its angle. As an alternative population code 
model, maximum likelihood estimators based on a tem-
plate derived from the Gaussian-shaped tuning curves 
of the cells have been suggested98. With adaptations, 
standard models of population coding could be suited to 
modelling a population code for number representations.

Population coding has several advantages in coding 
information compared with single neurons, including 
the reduction of uncertainty caused by neuronal varia-
bility, relative insensitivity to the loss of cells, the ability 
to code different stimulus features simultaneously and 
the option to compute with representations, such as the 
transformation (for example, from specific to abstract) 
and the combination (for example, across modalities) 
of internal representations86,97. Moreover, population 
activity can reflect changes in stimulus or task conditions 
much faster than single-neuron rates, which need to be 
integrated over time, and the same sensory information 

can be represented over time via the different spatial fir-
ing patterns of a neuronal population99. This dynamic 
population coding for categories has been observed in 
the monkey parietal cortex100 and PFC101, and could be 
especially important for cognitive control functions that 
are based on number102.

Rate and time code. Can functionally overlapping 
groups of parietal neurons provide sufficient informa-
tion for a monkey to make correct quantity judgments? 
To find out, a population decoding technique103 (that is, 
a statistical classifier)104 was used to read out spike trains 
that were recorded from behaving monkeys105. Indeed, a 
small group of numerosity-selective neurons conveyed 
categorical information about numerical quantity with 
high accuracy (FIG. 2d). These tuned neurons were behav-
iourally relevant, because the classifier was no longer 
able to predict the numerosities that the monkey had 
seen based on the firing rates during error trials105.
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Rate code
Relates to the information 
encoded by the number of 
spikes during an interval.

Time code
Relates to the information 
encoded by temporal 
patterns of action potentials 
within an interval.

Surprisingly, however, even populations of neurons 
that were not numerosity-tuned based on classic spike-
count measures (that is, neurons that showed flat tuning 
functions) carried reliable information about quantity 
category105, albeit with less accuracy than the tuned neu-
rons (FIG. 2e). This suggests that the classifier extracted 
additional information from the temporal structure of 
the neuronal responses. These temporal discharge pat-
terns were behaviourally relevant, because the popula-
tion decoding technique was no longer able to classify 
numerosities based on spike trains during error trials. 
Thus, in addition to a classical firing rate code, a tempo-
ral code (time code) provides supplementary information 
about number in the neuronal population.

Discrete and continuous quantities. Many neurons in 
the parietal and prefrontal association cortices respond 
not only to discrete numerical magnitudes but also to 
continuous magnitudes, such as length30,105, distance106 
and time107,108. In both the VIP and PFC, anatomically 
intermingled neurons have been found that encode 
length, numerosity or both types of quantities30,109. Thus, 
judging the type and value of magnitude to be processed 
from individual neurons alone would be not informative 

(if a neuron is tuned to a magnitude and value that is 
not currently relevant) or highly ambiguous (if a neuron 
encodes more than one magnitude).

To disentangle the effects of two or more types of 
magnitudes on the response of a neuron, the aforemen-
tioned concept of a population code can be extended. The 
magnitude system would benefit from detecting patterns 
in the relative responses of a population of neurons that 
are differently tuned to, for example, number, extent and 
duration, and on the basis of those patterns, the actual 
numerical value, length or time interval of a stimulus 
could be determined. This distributed tuning of single 
neurons probably causes the activation of overlapping 
regions by different types of magnitudes in brain imaging 
studies47,88,110,111 and could explain the well-known interac-
tions and interference effects between magnitudes. Based 
on the commonalities between the neural and behavioural 
representations of number, space, time and other magni-
tudes, common processing mechanisms for different types 
of abstract magnitudes have been proposed112.

Microcircuits sculpturing numerosity selectivity. Narrow 
numerosity tuning functions are advantageous for a pre-
cise read-out of the population responses. At the level of 
local neocortical microcircuits, inhibitory interneurons 
have a vital role in sculpturing tuning curves, even though 
they are outnumbered 4:1 by excitatory neurons (mainly 
pyramidal projection neurons)113,114. In extracellular PFC 
recordings, pyramidal cells tend to exhibit broad action 
potential waveforms and low rates of discharge, whereas 
interneurons display narrow action potential waveforms 
and high discharge rates115–119 (FIG. 3).

By exploiting the established differences between 
putative pyramidal cells and inhibitory interneurons 
that were recorded extracellularly in the PFC of behav-
ing monkeys, the functional roles that these two classes 
of neurons exhibit during numerical cognition in local 
microcircuits have been addressed. Anatomically adja-
cent pyramidal cells that were functionally connected 
(indicated by temporally correlated discharges)120 showed 
similar numerosity tuning functions121 (FIG. 3a). The syn-
chronous excitation of neighbouring pyramidal cells 
probably reflects a shared excitatory input116. By con-
trast, functionally connected inhibitory interneurons 
and pyramidal cells showed inverted numerosity tuning 
profiles that were negatively correlated in time (FIG. 3b). 
That is, whenever an inhibitory interneuron discharged, 
the pyramidal cell was markedly inhibited, and vice versa. 
A similar mechanism with opposite tuning of nearby 
inhibitory interneurons and pyramidal cells accounts for 
spatial tuning in the PFC115,117 (see REF. 116 for contrasting 
results), and blockade of GABAergic inhibition leads to 
the broadening of the tuning profiles of these neurons122.

These findings suggest that inhibitory interneurons 
systematically inhibit numerosity-tuned pyramidal cells, 
as proposed by recurrent network models for spatial 
working memory123. As the preferred numerosities of 
the inhibitory interneurons represent the non-preferred 
numerosities at the flanks of the tuning function of a 
pyramidal cell, the shoulders of the tuning curve are low-
ered by this lateral inhibition, thus sharpening the tuning 

Figure 2 | Responses of neuron populations to number. a | Information about number 
is carried by neurons that form overlapping visual number-tuning functions. Normalized 
and averaged (according to preferred visual numerosity) tuning functions of number 
neurons, each tuned to a different preferred numerosity. Different colours represent the 
distinct preferred numerosities of the neurons. The functions are overlapping and cover 
the entire range of tested numerosities from 1 to 5. The stimulus display with two dots 
elicits the highest response in the neuron tuned to ‘2’, but also activates neurons tuned 
to all the other numerosities to a certain degree. Similarly, the stimulus display showing 
four dots maximally excites the neuron tuned to ‘4’, but to a lesser extent also excites 
the other tuned neurons. b | Stimulation by specific numbers of items (‘2’ and ‘4’, 
respectively) results in unique activation patterns in the neuronal population of number 
neurons shown in part a. c | Numerosity tuning functions shown in part a are not 
symmetric on a linear number axis but show a shallower slope towards higher 
numerosities. After logarithmic transformation of the number axis, the tuning functions 
become more symmetric, as predicted by the Weber–Fechner law of logarithmic scaling 
of perceived magnitudes. d | The average firing rate of a population of number-selective 
neurons conveyed robust information about number. A statistical classifier (neuronal 
network algorithm) extracted information from neuronal responses recorded from 
monkeys discriminating numbers. Based on the information acquired from average 
firing rates of a population of number neurons, the classifier was able to predict the 
number judged by the monkey from novel recordings. The confusion matrix 
(‘checkerboard’) describes the pattern of numerosity classification performed on 
neuronal population of tuned neurons. The rows in each confusion matrix represent the 
true classes the monkey had seen and the columns correspond to the output of the 
classifier. Colour codes the classification probability, and the four classes correspond to 
numerosity 1 to 4. The main diagonal shows how often the classifier correctly assigned 
numerosity to their real category. Averaging the classification probabilities over the 
diagonal parallel to the main diagonal results in the average performance of the 
classifier as a function of distance from the real numerosity, which is plotted as a tuning 
function at each end of the main diagonal. e | The temporal discharge pattern of a 
population of unselective neurons also conveyed reliable information about number. 
Based on the information acquired from the temporal patterns of spikes of a population 
of neurons, the classifier was able to predict the number seen by the monkey from novel 
recordings. Same analysis as in part d, but performed on neurons that were not tuned 
based on firing rates. Parts a–c are based on data from REFS 28 and 29. Parts d and e are 
adapted with permission from REF. 105, Tudusciuc, O. & Nieder, A. Neuronal population 
coding of continuous and discrete quantity in the primate posterior parietal cortex. 
Proc. Natl Acad. Sci. USA 104, 14513–14518 (2007). Copyright (2007) National Academy 
of Sciences, U.S.A.
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Nidopallium 
caudolaterale

PFC

Global neuronal workspace
(GNW). A framework for the 
mechanism of consciousness. 
It consists of a network of 
distributed neurons with 
long-distance connectivity 
constituting a ‘global 
workspace’ that can potentially 
interconnect multiple 
specialized brain areas in 
a coordinated manner to 
give rise to a subjective 
feeling of conscious effort.

Homology
Refers to traits that share a 
common ancestry but may 
have different functions.

Homoplasy
Refers to traits with common 
functions but that are 
associated with different 
underlying structures and 
origins, and have evolved 
by convergent evolution.

curve of the pyramidal cell (FIG. 3c). After a number has 
been encoded, a population of pyramidal cells exhibits 
tuned persistent activity through recurrent excitations. 
These tuned pyramidal cells activate local inhibitory 
interneurons, which, in turn, inhibit pyramidal cells with 
a different numerosity preference. Remarkably, the out-
lined wiring scheme not only illustrates the encoding and 
sharpening of numerosity from sensory input but also 
suggests reverberation of numerosity-selective activity 
after a stimulus has ceased based on positive feedback 
loops of activity between excitatory pyramidal cells. This is 
the type of activity that is needed for working memory124.

Robust numerical working memory
The noncanonical association cortex. The controlled 
processing of numerical information towards a goal 
requires, first and foremost, that number representa-
tions are actively maintained in our ‘mental sketchpad’. 
Working memory, which is the ability to briefly retain 
and manipulate information, is the fundamental basis 
of cognition. It allows us to ‘think about’ quantitative 
information, and to weigh and measure it in relation to 
previous experiences and current goals as a hallmark of 
cognitive control. Consider the simple calculation ‘2 + 3’: 
it relies on the ability to mentally maintain ‘2’ before it 
can be incremented by ‘3’ to end up with the result, ‘5’. 
Without working memory, we would be lost.

The reciprocally connected association areas that 
host the number network are particularly well suited 
to maintaining information across time and to exerting 
cognitive control. The PPC and lPFC are connected not 
only to one another but also to >12 other widely dis-
tributed cortical areas125, which are interconnected by 
a common thalamic input from the medial pulvinar 
nucleus126. The areas in this network display noncanon-
ical circuit properties127: in contrast to canonical circuits 
of the sensory and motor cortices, many connections 
within this network lack a clear sensory-motor hierar-
chical polarity with consistent feedforward and feedback 
laminar termination patterns. Instead, the noncanonical 
network seems to be designed for parallel and re-entrant 
processing. It constitutes a global neuronal workspace 
(GNW) that is thought to enable access to the conscious 
processing of mental representations128,129. According to 
the GNW model, a behaviourally relevant representa-
tion is maintained by a sudden, late and sustained acti-
vation (conscious ‘ignition’ (REF. 129)) of a proportion 
of the GNW neurons, with only one such conscious 
representation being active at any given time.

Therefore, a key neurophysiological signature of 
recurrent loops of the noncanonical association cortex 
is persistent (or sustained) neuronal activity. Persistent 
activity is typically witnessed during delayed response 
tasks that include a short gap in time between a sensory 

Box 2 | Convergent evolution of numerical representations

The sophisticated circuitries in the six-layered neocortex of the frontal and parietal lobes endow both humans and 
non-human primates with numerical competence. Interestingly, this six-layered neocortex, which is thought to enable 
primates with the highest levels of cognition, is not present in non-mammalian vertebrates such as birds. The last common 
reptilian-like ancestor of mammals and birds lived 300 million years ago, at a time when the neocortex had not yet 
developed181. Since then, mammals and birds have independently been through a parallel evolution of endbrains. The bulk 
of the endbrain in both mammals and birds stems from the ontogenetic mantle, the pallium, and thus shares common 
ancestry (homology)182,183. The overall architectures of the endbrains, however, are very different and developed 
independently to give rise to similar functions owing to similar selection pressures (homoplasy)184,185. Despite these 
structural differences, birds are known to rival primates in quantitative competence in the laboratory186–188 and in 
the wild189–191.

To explore where and on which basis neuronal code numerosity is represented in avian brains, crows were trained to 
discriminate the visual number of items in controlled displays192. At the same time, single-cell activity was recorded from an 
endbrain association area that is known as the nidopallium caudolateral (NCL) in crows193, which is a brain area considered 
to be the avian analogue of the primate prefrontal cortex194–196 (see the figure). The behavioural and neuronal data show an 
impressive correspondence of neuronal mechanisms found in the avian brain with those described earlier in the primate 
brain193: NCL neurons were tuned to individual preferred numerosities, and neuronal discharges proved to be relevant for 
the correct performance of the crows in a delayed number discrimination task. Both the neuronal and the behavioural 
tuning functions were best described on a logarithmic number line. This argues for a nonlinearly compressed coding of 
numerical information, just as predicted by the psychophysical Weber–Fecher Law28, not only in primates but also 
across vertebrates.

Even though crows and primates have 
very differently organized endbrain 
structures, they show the same code for 
number, which suggests that this way of 
coding numerical information has 
evolved based on convergent evolution 
because it exhibits a superior solution to 
a common computational problem.  
A comparative approach is indispensable 
for deciphering evolutionary stable 
neuronal mechanisms and codes. This 
proves true not only in the realm of 
numerical competence but also for all 
neurobiological questions.
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stimulus and an instructed response130,131. By sustaining 
activity, neurons actively buffer and process information 
to bridge the gap until an adaptive output is selected132. 
High-level cognitive functioning would be impossi-
ble without persistent activity offering ‘freedom from 
immediacy’ (REF. 133).

The delayed match-to-numerosity task (FIG. 1a) allows 
the investigation of persistent activity during numerical 
tasks because it requires animals to retain a number of 
items over a delay period to subserve a future selection 
process. As a putative physical correlate of working 
memory for number, a notable proportion of neurons 
(20–30% in the PFC and 10–20% in the PPC) show 
persistent activity during delay periods when monkeys 
memorize the numerosity that they have just sensed 
(FIG. 1b). Similar to neurons that are active during sensory 
stimulation, delay-selective number neurons are tuned 
to the remembered numerosity27–31. Neurons are even 
tuned to the same numerosity in both the sample and the 

delay periods (FIG. 1b). In addition, many delay-selective 
neurons integrate across spatial and temporal pres-
entation formats34 and visual–auditory modalities38. 
Therefore, numerical delay selectivity is abstract and 
is found irrespective of the exact spatial or temporal 
appearance of the memorized sets.

Cognitive inhibition. Working memory has severely lim-
ited capacity. Thus, transient representations of numerical 
information in working memory are vulnerable to dis-
tractions that potentially replace important representa-
tions with different content encoded by another discrete 
combination of neurons in the workspace population. 
The process of restraining or overriding irrelevant rep-
resentations to keep hanging on to relevant information 
is known as ‘cognitive inhibition’ (REF. 134). Crucial ques-
tions include where and how number representations 
that each compete to gain access to the global workspace 
are selected.

Figure 3 | Microcircuit interactions of number neurons. a | Putative (excitatory) pyramidal cells seem to receive common 
inputs about number information rather than being engaged in reciprocal interactions. This is suggested by functionally 
connected and synchronously excited putative pyramidal cells (broad-spiking neurons) recorded simultaneously at the 
same electrode tip, with both cells tuned to a numerosity of 1. b | The number tuning of putative (excitatory) pyramidal 
cells seems to be shaped by inhibitory interneurons that show opposite number tuning. This is evidenced by putative 
inhibitory interneurons (narrow-spiking neurons) and putative pyramidal cells (broad-spiking neurons) that were recorded 
simultaneously at the same electrode tip and showed inverted (opposite) tuning profiles. These cells were functionally 
coupled and inhibited each other. c | Putative schematic of the lateral inhibition microcircuit in the prefrontal cortex that 
acts to sharpen number tuning. Tuned broad-spiking pyramidal cells excite each other through glutamatergic synapses on 
the spines of basal dendrites, thus causing recurrent persistent excitation. Narrow-spiking inhibitory interneurons provide 
lateral inhibition through GABAergic synapses. Numbers in each model neuron depict the respective preferred numbers. 
Parts a and b are republished with permission of the Society for Neuroscience, from: Complementary contributions of 
prefrontal neuron classes in abstract numerical categorization. Diester, I. & Nieder, A. J. Neurosci. 28 (31), 2008; permission 
conveyed through Copyright Clearance Center, Inc.
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As challenging abstract categories, number rep-
resentations place high demands on cognitive inhi-
bition. Consider a simple example: you look up your 
friend’s phone number to call for a chat but while you 
pick up the phone someone utters an arbitrary num-
ber. Only with considerable effort will you be able to 
ignore the distracting number and still manage to call 
your friend’s number. Monkeys were confronted with 
a situation mirroring the abovementioned phone call 

situation135. To that aim, a behaviourally irrelevant 
number display was inserted as a distractor in the delay 
period of a delayed match-to-number task (FIG. 4a). 
Because cognitive inhibition cannot entirely eradicate 
distracting influences, a worsening of performance 
reflects increased distraction. Indeed, the monkeys 
managed to resist the distractor numbers most of 
the time but made slightly more errors than when no 
distractors were present135.

Figure 4 | Cognitive inhibition of a prefrontal cortex cell during numerical distraction. a | How neurons may cope 
with the interference caused by an irrelevant number was studied in a modified delayed match-to-sample task 
(see FIG. 1a). Here, a behaviourally irrelevant numerosity (distractor) presented in the prolonged delay period needed to 
be ignored to solve the task correctly. Numerosities from 1 to 4 were shown both as the sample and as the distractor 
numerosities, with all possible combinations used. b | An example neuron in the prefrontal cortex encoded a working 
memory trace of the relevant sample numerosity even after a distracting numerosity had been shown in the 
aforementioned distractor task. When trials are sorted by sample numerosity, the time course of activation (spike density 
histogram) shows that the neuron was equally tuned to number 4 both before (1. memory delay) and after presentation of 
a distractor number (2. memory delay). Interestingly, tuning was apparent during the distractor presentation. The plot is 
temporally correlated with the task layout that is shown in part a. c | When the responses of the same neuron as in part b 
were sorted by distractor numerosity, temporary tuning to the distractor numerosity during the end of the distractor 
period was evident. d | The same neuron that is featured in parts b and c carried information about both the sample and 
the distractor numerosity in different trial epochs. Information about either the sample or the distractor numerosity is 
quantified by a sliding window percent explained variance (PEV; ω2) analysis, which is derived from an analysis of variance 
(ANOVA). This analysis conveys how much of the discharge variation over time can be explained by the sample numerosity 
or the distractor numerosity. Information about the sample numerosity (blue line) is encoded during the end of the first 
memory delay and during the second memory delay, but is briefly lost at the end of the distractor phase. Conversely, 
information about the task-irrelevant distractor numerosity emerges towards the end of the distractor phase and the 
beginning of the second memory delay, but vanishes towards the end of the second memory delay. Thus, information 
about target numerosity was not permanently replaced by irrelevant distractor information but regenerated in the second 
delay after the distraction, just in time to solve the task. Dashed lines mark the significance threshold. Parts b–d are 
adapted with permission from REF. 135, Elsevier.
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While the monkeys performed this task, single-unit 
activity was simultaneously recorded from the PFC 
and the VIP area. After sample presentation, PFC neu-
rons encoded the relevant sample number during the 
first delay period and exhibited the well-known tun-
ing curves and persistent activity (FIG. 4b). However, 
when the distractor number was subsequently shown, 
the neurons did not resist interference. Rather, sam-
ple information was overwritten and the PFC neurons 
responded strongly and in a tuned manner to the dis-
tractor numbers, sometimes with different preferred 
numerosities (FIG. 4c). Surprisingly, however, target 
number representations were not permanently lost but 
were regenerated in the second delay after the distrac-
tion, just in time to solve the task (FIG. 4d). Neurons in 
the VIP area, by contrast, were mostly unaffected by the 
distractor numbers and continued to retain the working 
memory representation of the sample numbers.

These results were unexpected, given the findings 
from previous studies in which neurons in the PFC and 
PPC were not activated during the memorization of 
stimulus features but were instead activated by stimulus 
location. In spatial working memory tasks, PFC neu-
rons only mildly respond to distractors, suggesting that 
the suppression of distracting information in the PFC 
is the key mechanism that protects working memory 
from interference and gates access to it136–139. By con-
trast, PPC neurons responded strongly to distractors 
and encoded the physical properties of any stimulus 
irrespective of its relevance. Thus, the activity of PPC 
neurons was considered to be an inferior correlate of 
working memory139–141.

These new results point towards the PFC as a control 
or selection stage in the global noncanonical network. 
Activity in the PFC might be better understood not as a 
signature of memory storage per se142, but as a top-down 
signal143 that influences other members of the global 
workspace, such as the VIP, where the actual working 
memory representations seem to be maintained. To 
adopt this position of a selection stage, the PFC needs 
representations of both relevant and not immediately 
relevant information to attentionally filter144 and flexibly 
guide stimulus selection for the upcoming response later 
in the task. This could explain why the ability to resist 
interfering stimuli is compromised in monkeys139,145 
and humans with lPFC lesions146 — not because stored 
information is lost, but because control and selection 
processes in the global workspace are dysfunctional.

Rule-based decisions with numbers
Although they are important first steps, the representa-
tion and memorization of numerical quantity alone do 
not constitute behavioural advantages. After quantities 
have been extracted from sensory input and maintained 
in short-term memory, numbers need to be processed 
according to rules or general principles. Rules can be 
understood as conditional ‘if–then’ statements that 
determine the logic of a goal-directed task. Rules are cru-
cial to arithmetic: they constitute mathematical syntax. 
For example, in equations, we first solve multiplication 
and division terms, but only if addition and subtraction 

terms are not in brackets, in which case addition and 
subtraction need to be calculated first. Because numer-
ical principles operate on abstract numerical categories, 
quantitative rules in particular require high degrees of 
cognitive structuring.

A fundamental operation when dealing with num-
bers involves ‘greater-than’ and ‘fewer-than’ rules of the 
form: if ‘x > y’ then ‘a’ versus if ‘x < y’ then ‘b’. These 
relationships can also be mastered by non-human pri-
mates147–149. To gain insight into the neuronal process-
ing of numerical rules, rhesus monkeys were trained to 
flexibly switch between ‘greater-than’ and ‘fewer-than’ 
rules148,150,151. In each trial (FIG. 5a), a sample stimulus 
indicated the reference numerosity that the monkey 
needed to remember over a brief time interval (the 
‘memory delay’). Next, a rule cue instructed the mon-
key to follow either a ‘greater-than’ or a ‘fewer-than’ 
rule. After a second delay (the ‘rule delay’), the monkey 
needed to respond according to the currently valid rule 
cue to a greater or fewer number of dots, respectively, 
than it had previously seen in the sample display. The 
monkeys performed this task with different numbers of 
items and generalized to novel numerosities, indicating 
that they had learned an abstract numerical principle148.

PFC neurons are known to flexibly group informa-
tion into behaviourally meaningful categories according 
to task demands152–154, and they also encode these basic 
mathematical rules. In the rule-switching task described 
above, approximately 20% of the PFC neurons reflected 
‘greater-than’ or ‘fewer-than’ rules148 (FIG. 5b). Rule-
selective neurons responded strongly to the preferred 
rule during the rule delay phase with an increase in 
discharge rate, irrespective of the particular sample 
numerosity to which the rule applied148. Importantly, 
the sensory appearance of the rule cue had no impact 
on the activity of rule-selective neurons. Moreover, 
responses in the rule delay could not be explained by 
motor preparation, because the comparison number 
was still missing in this phase and therefore the mon-
key could not know which response was to be prepared. 
Rule selectivity gradually evolved with time in the rule 
delay, with approximately one-half of the rule-selective 
neurons preferring the ‘greater-than’ rule and the other 
one-half preferring the ‘fewer-than’ rule.

The responses of such rule-selective neurons corre-
lated with the behaviour of the monkeys: if the animals 
made wrong decisions, the responses of the neurons to 
the preferred rule in the rule delay phase were mark-
edly reduced148. This observation indicates that there is 
a direct relationship between the rule selectivity of the 
neurons and task performance. Rule-selective neurons 
were prevalent in the frontal lobe but were also found, 
although less frequently, in the VIP area of the IPS150.

‘Greater-than–fewer-than’ rules can be applied not 
only to numbers but also to any magnitude. Could neu-
rons represent overarching ‘magnitude rules’ instead 
of rules applied to individual magnitudes? In mon-
keys that applied these quantity rules to both numbers 
and the lengths of lines151, most rule-selective neurons 
responded only to the quantitative rules applied to one 
specific magnitude type: for example, to the longer lines 
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but not to more items. Such neurons can be regarded 
as ‘rule specialists’. However, other neurons generalized 
the magnitude principle and encoded the overarching 
concept of magnitude rules by equally representing the 
quantitative rules related to both magnitudes. Such neu-
rons are known as ‘rule generalists’ (FIG. 5c). This indi-
cates that the primate brain uses a mixture of selective 
neurons155. Rule generalist neurons provide a computa-
tional advantage compared with rule specialist neurons 
and could operate at a higher functional hierarchy156; 
indeed, they allow the generalization and adaptation of 
quantitative rules to new circumstances.

During mathematical problems, a limited set of neu-
rons needs to be able to solve several tasks throughout 
time and changing task demands. Thus, brain activity 
needs to be highly dynamic and neurons may adaptively 
switch coding properties157 to join different populations 
as time goes on102. Even though PFC neurons signal 
number, when appropriate, many of them may dynam-
ically switch to encoding cognitive control functions 
such as rule-guided decisions. At the population level, 
the temporal evolution of rule-selective activity can be 
expressed as a dynamic trajectory through activity state 
space (FIG. 5d). Once high-dimensional population data 
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are compressed to a three-dimensional space, the dis-
tinct trajectories resulting from PFC population activity 
indicate robust differentiation of the ‘greater-than’ and 
‘fewer-than’ rules. (FIG. 5d). This does not apply only to 
individual neurons — the entire population encodes 
quantitative rules dynamically.

Rule coding is under the influence of neuromodula-
tors. In the PFC, the neuromodulator dopamine affects 
the basic coding properties of neurons158,159 via the two 
major (D1 and D2) receptor families. Recent experiments 
probing single neurons by combining single-cell record-
ings and simultaneous micro-iontophoretic drug applica-
tions showed that both the D1 and D2 dopamine receptor 
families cooperatively enhance number coding, albeit by 
distinct physiological mechanisms160. Thus, numerical 
operations can be instrumental in deciphering the influ-
ence of neuromodulation in high-level processing.

Numerical rule-related activity is most frequently 
and selectively found in the lPFC and mPFC of mon-
keys but can also be detected in the VIP area150 (FIG. 5e). 
Corresponding brain areas show activity during calcu-
lation tasks in humans (FIG. 5f). Pronounced prefrontal 

activity in addition to posterior parietal activity is readily 
observed when individuals perform arithmetic opera-
tions (for example, addition or subtraction)82,161,162 (FIG. 5f), 
particularly at young ages (around 10 years of age)163.

Consistent with the general role of the PFC in exec-
utive functions, the deficits that occur with numbers 
and calculation following frontal lesions are complex. 
Luria164 suggested that the difficulty patients with fron-
tal lobe lesions experience in carrying out arithmeti-
cal operations stems from a disturbance of intellectual 
activity — a general problem of solving a complex 
problem — rather than primary acalculia. Cognitive 
estimation requires quantitative reasoning, and cogni-
tive estimation deficits in various quantitative domains 
(size, weight, numerosity and time) have frequently 
been reported for patients with frontal lesions165–168. As 
semantic number representations tend to be spared in 
such patients, these estimation deficits are attributed to 
executive deficits that disrupt the translation of number 
representations to structured output. As a most pecu-
liar deficit, ‘task-switching acalculia’ was reported in 
a patient with stroke who had brain lesions in the left 
ventral and dorsolateral frontal lobe169. Interestingly, 
the patient’s calculation ability per se was not affected, 
but he showed a specific deficit in switching between 
different operations in simple calculations; for exam-
ple, from multiplication to addition or subtraction, and 
vice versa. This ‘task-switching acalculia’ is consistent 
with the idea that frontal lesions lead to weak top-down 
control that is caused by an inability to switch between 
mathematical rules.

Conclusions
The combined evidence from neurological, develop-
mental, imaging and neurophysiological studies points 
towards a dedicated, putatively homologous number 
network in the primate brain that processes number 
and other abstract magnitudes112,170–174. The reviewed 
studies highlight striking similarities between numer-
ical representations in both non-human and human 
primates. First, number neurons exist in comparable 
brain regions of the lPFC and IPS, with the IPS being 
the first region to process number information in the 
neural number network. Second, number neurons in 
both groups are tuned to preferred numbers. Third, 
number neurons encode numerosity abstractly across 
modalities and sensory-motor domains. Fourth, experi-
mental (in monkeys) or acquired (in humans) lesions in 
these cortical areas are detrimental to number process-
ing. Fifth, active processing of numbers is not required 
for number neurons to exist and to respond to number.

Collectively, these similarities suggest that the parieto- 
frontal network for nonverbal numerical information 
constitutes an evolutionary pre-adaptation for semantic 
number representations and mathematics in humans. 
Of course, this does not mean that symbolic and non-
symbolic number representations need to be identi-
cal175–177. Even so, symbolic mathematical operations 
may co-opt or ‘recycle’ prefrontal and posterior parietal 
circuits178 to vastly enrich and enhance our symbolic 
mathematical skills.

Figure 5 | Numerical rules. a | How primates and their neurons process numerical rules 
has been investigated using a rule-switching task. Here, monkeys needed to decide 
whether there was a greater or fewer number of dots at the choice stage than the 
number presented in a sample display (five different numerosities were used in the task). 
A cue showed in the delay phase indicated whether a ‘greater-than’ (bottom) or a 
‘fewer-than’ rule (top) needed to be applied (the probability of each rule being displayed 
was 0.5). Each rule was signified by two pairs of different sensory cues (only colour cues 
shown). b | Neurons recorded in monkeys that were engaged in this numerical 
rule-switching task selectively responded to one or the other of these numerical rules. 
The activity averaged over all trials (spike density histogram, smoothed with a 150 ms 
Gaussian kernel) of an example neuron was systematically higher during the rule delay 
when the ‘fewer-than’ rule was cued, irrespective of the sensory features of the rule cue 
(activity coded by cool colours). The plot is temporally correlated with the task layout 
that is shown in part a. c | The neuron featured in part b also signalled a ‘fewer-than’ rule 
applied to the length of lines. The task design was very similar to the numerical 
rule-switching protocol depicted in part a. In this task, however, monkeys saw lines of 
different lengths that they needed to process according to ‘shorter-than’ and 
‘longer-than’ rules. This neuron showed elevated firing rates also to the ‘shorter-than’ 
rule, thus generalizing rules across magnitude types. The neuron shown in parts b and c 
was thus termed a ‘rule generalist’. d | The temporal dynamics of information about 
numerical rules during the numerical rule-switching task (as shown in part a) is encoded 
not only by single rule-selective neurons but also by an entire population of prefrontal 
cortex (PFC) neurons. Multi-dimensional state space analysis was applied to extracted 
shared activity patterns in a population. At each time during a trial, population activity is 
represented by an n-dimensional vector in n-dimensional state space (n = 380 dimensions 
for 380 neurons). A principal component analysis was used to condense the population 
activity in a three-dimensional (3D) subspace. Red and blue lines show the time course of 
average multidimensional dynamical trajectories during ‘greater-than’ and ‘fewer-than’ 
trials, respectively, with separated trajectories during the rule delay. Even if single 
neurons adaptively switch tuning properties throughout an ongoing task, the entire 
population robustly differentiates between numerical rules. Numbers indicate trial 
epochs depicted in part a. e | Numerical rule areas in the monkey brain. Frontolateral 
view of a macaque brain showing areas in red that contain a relatively high proportion of 
number rule neurons. f | Frontolateral view of a human brain showing areas consistently 
activated by calculations in functional imaging studies. IPS, intraparietal sulcus; lPFC, 
lateral PFC; mPFC, medial PFC. Parts b and c are republished with permission of the 
Society for Neuroscience, from: Representation of abstract quantitative rules applied to 
spatial and numerical magnitudes in primate prefrontal cortex. Eiselt, A.K. & Nieder, A. 
J. Neurosci. 33 (17), 2013; permission conveyed through Copyright Clearance Center, Inc. 
Part d is based on data from REF. 160 and is provided courtesy of T. Ott. Part f is 
reproduced with permission from REF. 82, Elsevier.
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Comparisons of the response properties of number 
neurons in different brain areas help to clarify the respec-
tive contributions of the PPC and PFC in number pro-
cessing. They show that neurons in the PFC operate at 
a more abstract level than do PPC neurons. By abstract-
ing number and disposing of specific sensory informa-
tion during encoding and memorizing sets, the brain 
expands its computational power. It reduces the com-
plexity of neuronal signals that can then be processed 
more rapidly and more easily. In particular, this provides 

an advantage during learning, for example, when linking 
numerosities with arbitrary shapes as a first step towards 
learning number symbols40,45,49,50. Number neurons also 
support the learning and application of task rules, so 
that neurons selective to quantitative rules provide easy 
readout signals for rule-based decisions and action selec-
tion. Because numbers are abstract categories and their 
processing relies on derived principles, they constitute 
ideal stimuli to probe sophisticated executive control 
functions of the association cortices.
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