
Trends
Recent studies in human history, devel-
opmental psychology, animal cogni-
tion, and neurophysiology provide
evidence that the emergence of zero
passes through four stages.

In the first and most primitive stage, the
absence of a stimulus (‘nothing’) cor-
responds to a (mental/neural) resting
state lacking a specific signature.

In the second stage, stimulus absence
is grasped as a meaningful behavioral
category but its representation is still
devoid of quantitative relevance.

In the third stage, nothing acquires a
quantitative meaning and is repre-
sented as an empty set at the low
end of a numerical continuum or num-
ber line.

Finally, the empty-set representation is
extended to become the number zero.

These different stages of zero-like con-
cepts reflect progressing levels of men-
tal abstraction and pave the way for a
full-blown number theory.
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Zero stands for emptiness, for nothing, and yet it is considered to be one of the
greatest achievements of humankind. This review first recapitulates the discov-
ery of the number zero in human history, then follows its progression in human
development, traces its evolution in the animal kingdom, and finally elucidates
how the brain transforms ‘nothing’ into an abstract zero category. It is argued
that the emergence of zero passes through four corresponding representations
in all of these interrelated realms: first, sensory ‘nothing’; then categorical
‘something’; then quantitative empty sets; and finally the number zero. The
concept of zero shows how the brain, originally evolved to represent stimuli
(‘something’), detaches from empirical properties to achieve ultimate abstract
thinking.

The point about zero is that we do not need to use it in the operations of daily life. No one goes
out to buy zero fish. It is in a way the most civilized of all the cardinals, and its use is only forced
on us by the needs of cultivated modes of thought. (Alfred North Whitehead)

In the history of culture the discovery of zero will always stand out as one of the greatest single
achievements of the human race. (Tobias Dantzig)

Special Status of Zero among the Natural Numbers
Any number is an abstraction, a recognition that collections may have something in
common even if the elements of the collections are very different [1,2]. The number 2 is
the common property of all sets containing a pair, the number 3 of all sets that contain a
triple, and so on [3]. However, although they are abstract and demanding, positive integers
correspond to real ‘things’ that can be enumerated [4]. Therefore, we first learn to count
small numbers of items and later use this counting procedure to comprehend infinite positive
numbers [1].

Zero, however, does not fit into this routine (Box 1). While the counting procedure is based on the
assumption that there is something to be counted, a set with no elements cannot be assessed
via counting. Understanding that zero is still a collection (even if empty) and a numerical concept
requires abstract thinking that is detached from empirical experience [5]. The problem is that
‘nothing’ needs to become ‘something’. The absence of elements needs to become a mental
category – a mathematical object [1,6].

As a reflection of this mental challenge, it took a long stretch of human history for zero to be
recognized and appreciated [7,8]. This cultural hesitation is mirrored in a protracted ontogenetic
understanding of numerosity zero in children [9]. Unsurprisingly, only advanced nonhuman
animals with which we share a nonverbal quantification system exhibit rudiments of a grasp of
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Glossary
Numerical-distance effect:
psychophysical phenomenon of
magnitude discriminations; the
greater the magnitude difference
between two numerosities, the more
easily they can be discriminated.
Place-value systems: numerals
adopt different numerical values
according to their position in a
record. Each position is related to the
next by a constant multiplier; for
example, units, tens, hundreds, and
so on.
Positional notation system: see
place-value systems.
Prefrontal cortex (PFC): associative
cortical region in the anterior frontal
lobe of mammals central to cognitive
control (executive) functions and
high-level cognition.
Single-cell recordings:
measurement of the electrical action
potentials of single neurons as
physical carriers of information in the
brain.
Ventral intraparietal area (VIP):
associative cortical area in the fundus
of the intraparietal sulcus of the
parietal lobe of primates.

Box 1. Zero and the Empty Set

Definition and Features of Zero [3,73]
� Zero is a number to describe ‘no quantity’ or ‘null quantity’.
� Zero is the only natural number (by most definitions) that is not positive.
� Zero is neither positive nor negative.
� Zero is the integer immediately preceding 1.
� Zero is an even number because it is divisible by 2.
� Zero is the only number that can be divided by every other number.
� Zero is the only number that can divide no other number.
� Zero is a prerequisite to understanding negative numbers.
� Beyond denoting null quantity, zero has a second and discrete function as a placeholder sign (or digit) in other

numbers (e.g., 30, 103).

Empty Set in Set Theory
� Set theory is the mathematical theory of well-determined collections, called sets, of objects that are called members,

or elements, of the set. The size of a set (its number of elements) is called its cardinality.
� A set that contains no elements is called an empty set or a null set and is denoted by 1 or {} (null-set axiom of

Zermelo–Fraenkel set theory); for instance, if set A = {2, 3, 4} and B = {5, 6, 7}, then A \ B = {}.
� The empty set is not the number 0.
� The empty set is not nothing, because a set containing no element still is a set [74].
zero numerosity [10]. For a brain that has evolved to process sensory stimuli (something),
conceiving of empty sets (nothing) as a meaningful category requires high-level abstraction. It
requires the ability to represent a concept beyond what is perceived.

The Four Stages of Zero-Like Concepts
Until recently, the biological origins of the understanding of zero were unknown. Recent studies
from human history, developmental psychology, animal cognition, and neurophysiology provide
evidence that the emergence of zero passes through four stages. These four stages are used to
structure this review (Figure 1, Key Figure). In the first and most primitive stage, the absence of a
stimulus (nothing) corresponds to a (mental/neural) resting state lacking a specific signature. In
the second stage, stimulus absence is grasped as a meaningful behavioral category but its
representation is still devoid of quantitative relevance. In the third stage, nothing acquires a
quantitative meaning and is represented as an empty set at the low end of a numerical
continuum or number line. Finally, the empty set representation is extended to become the
number zero, thus becoming part of a combinatorial number symbols system used for calcula-
tion and mathematics. As outlined in the following, these different stages of zero-like concepts
reflect progressing levels of mental abstraction.

Zero in Human History
The number zero is a surprisingly recent development in human history [7]. Zero was first used as
a simple sign to indicate an empty place for integers in a so-called positional notation system
(see Glossary) (place-value system). In a positional notation system, a numeral has different
numerical values according to its position in a record: units, tens, hundreds, and so on. For
instance, the 3 in the number 302 stands for three hundreds, whereas in the number 203 it
denotes three. Without a sign for an empty space, any place-value number record is highly
ambiguous. This can be seen, for instance, when in China around 500 BC [11] rod numerals
were placed on the columns of a counting board to represent digits in a base-ten decimal system
and perform calculations (Figure 2A). Zeroes were represented by an empty space [8]. The
problem with this notation is that an entry such as jjj j may represent any one of several numbers:
31, 301, or 310 among others.

Zero as a sign for an empty column in positional notation appears to have first been used around
400 BC in ancient Mesopotamia by the Babylonians, who used two slanted wedges as a place
holder (Figure 2B) [7,11–13]. Slightly later, the Greeks used a circle as a placeholder, probably
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Key Figure

Four Stages of Zero-Like Concepts Appearing in Human Culture, Onto-
geny, Phylogeny, and Neurophysiology

Quan�ta�ve representa�on:

Categorical representa�on:

Sensory representa�on:

Mathema�cal representa�on:
ei π + 1 = 0

Zero as a numberProgression (cultural, ontogene�c, phylogene�c, neural) 

Zero as a quan�ty

Zero as the absence s�mula�on

Zero as ‘‘nothing’’ versus ‘‘something’’

2 0 3

Figure 1. At the most primitive, sensory representation stage (bottom), sense organs register the presence of stimuli such
as light. In the absence of stimulation, sense organs are in an inactive resting state. At the next-higher level, ‘nothing’ is
conceived as a behaviorally relevant category, as exemplified by the blank (empty space) used for 0 in Chinese counting-rod
systems to depict the number 203. With the advent of quantitative representations, a set containing no elements is realized
as an empty set or a null set. Finally, zero becomes the number 0 used in number theory and mathematics. For instance, 0 is
the additive identity in Euler's identity, often judged as the most beautiful equation in mathematics (e, Euler's number; i,
imaginary unit; p, pi). The equation combines five of the most important numbers in mathematics, including zero. Each
higher stage encompasses the previous lower one: the conception of zero as a number requires a quantitative under-
standing of empty sets, which in turn necessitates a grasp of nothing as an abstract category.
based on Babylonian influence [7]. Independently from the Babylonians, the ancient Mayan
civilization introduced a shell-like sign as zero around the beginning of the Christian era [14]
(Figure 2C). Nothing – the absence of a numeral in a positional notation system – was now first
realized to be a meaningful category and denoted by a sign.
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Chinese rod numerals

Mayan numerals Gwalior inscrip�on, India

 Babylonian numerals(A)

(C)

(B)

(D)

5 1 3

2(0)3

(400′s)

(20′s)

(Units)
1 6 20

Zero

Zero

40 405

1x60x60 + 0x60 + 4 = 3604

1 x 60  +  4  = 64

Figure 2. Signs of Zero. (A) In China, bamboo rods were placed on a counting board to represent numbers in a decimal
system and perform arithmetic operations. From right to left, each column represents a decimal order: the first column is for
units, the second for tens, the third for hundreds, and so on. Zeroes were represented by an empty space. (B) Babylonian
base-60 (sexagesimal) number system, read from left to right. The Babylonians wrote in cuneiform, a writing system
optimized for writing in damp clay tablets. Because they used a sexagesimal positional notation number system, a new
place value begins at 60. The number 64 (top) would be written with one wedge to the left (1 sixty) and four to the right (4
ones). The Babylonians used an oblique and superscript double wedge as sign for the empty place. In the second number
(bottom), the second place is empty, so this sexagesimal number in decimal writing is 3604. (C) Mayan base-20 (vigesimal)
positional numeral system, read from bottom to top. After the number 19, larger numbers were written in a vertical place-
value format using powers of 20. (D) Ninth century inscription from Gwalior, India. The number 270 is in the middle of the
image. Photograph by courtesy of Alex Bellos.
Importantly, however, these signs for zero had no numerical value and therefore cannot be
interpreted as representations of the number zero [7]. None of these zero signs appeared in
isolation or independently of other digits in positional notation. The realization that zero has its
own quantitative (null) value marks a cognitive turning point because it requires the insight that
even if a set is empty, it still is a quantitative set.

Zero first became associated with an elementary concept of number in India around the 7th
century AD. Now zero was a number that became part of a complex number theory. The first
written record of the use of zero as a number in its own right comes from the Indian mathemati-
cian Brahmagupta [7,11,12]. In his book Brahmasphutasiddhanta (AD 628), written in Sanskrit
and completely in verse, Brahmagupta was the first to provide rules to compute with zero, which
is a clear sign of zero as a number. For instance, he writes ‘When zero is added to a number or
subtracted from a number, the number remains unchanged; and a number multiplied by zero
becomes zero’.

The numeral for zero as we know it today (0) first appeared in an Indian inscription on the wall of a
temple in Gwalior (central India) dated AD 876 [11,15] (Figure 2D). Zero was called sunya
(‘empty’) in Sanskrit. When the Arabs became acquainted with zero in the 9th century, they
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Box 2. The Poet and Nothingness: William Shakespeare

The concepts of nothingness and zero play prominent roles in Shakespeare's work (Figure I). For instance, in his tragedy
King Lear he used the term ‘nothing’ approximately 40 times in different contexts. When King Lear decides to divide his
kingdom among his three daughters and his youngest daughter Cordelia, who loves him most, cannot find the words to
articulate this love, the tragedy unfolds from her nothing [75].

Lear: What can you say to draw
A third more opulent than your sisters? Speak.
Cordelia: Nothing, my lord.
Lear: Nothing?
Cordelia: Nothing.
Lear: Nothing will come of nothing. Speak again.

Shakespeare's contemporaries were, of course, familiar with the idea of nothingness, but nothingness as a number,
something that they could count and manipulate, was a rather new idea [76]. In the second half of the 16th century,
William Shakespeare belonged to the first generation of children in England to have learned about zero [77], based on
Robert Recorde's The Ground of Artes (1543) [78]. From this standard arithmetic textbook of the time, he also knew the
arithmetic meaning of a number's ‘place’ in a place-value system [79]. Shakespeare uses this place-value idea of zero in
his plays; for instance, when Polixenes in The Winter's Tale explains:

And therefore, like a cipher [zero]
(Yet standing in rich place), I multiply
With one ‘We thank you’ many thousands more
That go before it

Shakespeare seems to be the first poet to use 0, the symbol for the Arabic zero, metaphorically. He does so with zero not
only as a place holder but also as a sign to denote ‘a mere nothing’ in an almost quantity-like meaning: Shakespeare used
zero as a signifier of utter abandonment and annihilation when the Fool speaks.

Now thou art an 0 without a figure. I am better than thou art now. I am a fool, thou art
nothing. (King Lear, Act 2, Scene 4)

Here, Lear is compared to an isolated zero that does not increase the value of other numerals (‘without a figure’) but
indicates empty quantity. Just like zero adopts different values as a function of its position in a number, so is human
identity determined by one's commensuration with others [79].

Figure I. William Shakespeare.
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translated the Indian name sunya literally into the Arabic as-sifr (‘the empty’). In the West, zero
arrived circa AD 1200 when the Italian mathematician Fibonacci (a.k.a. Leonardo of Pisa)
brought it back from his travels to North Africa along with the rest of the Arabic numerals
and a base-ten positional numeral system. In the 13th century, the Arabic as-sifr was trans-
formed in the West into the Latin forms cifra and cephirum [15]. The Indian numerals, the place-
value principle, and the zero in particular faced considerable resistance during the early Middle
Ages [15]. As a reflection of the uncertainty about zero, the word cifra was used as a secret sign
soon after its introduction in Europe. The English verb ‘decipher’ remains as a monument to
these early days [8]. Mathematicians, philosophers, and poets have been fascinated by zero and
by the magic that it can create, although in itself it is nothing (Box 2).

Development of Zero-Like Concepts in Children
The cultural hesitation to appreciate zero as a quantity and later a number is mirrored in a
protracted ontogenetic development of zero relative to positive integers in children. Five-month-
old infants already have the capacity to represent the number of items in a set [16–18]. Moreover,
they solve basic addition and subtraction operations in puppet shows that demonstrate the
appearance or disappearance of objects [19]. Infants look for longer when the numerical
outcome of the play is inconsistent with the operation (for example, if 2 � 1 = 2 instead of
1), which is interpreted as an indication of a violation of their expectation [19]. Surprisingly,
however, 8-month-old infants do not differentiate operations of 1 � 1 = 1 versus 0 + 1 = 1 [20].
This has been interpreted as the inability of infants to conceive of a null quantity, although they
can already represent small numbers of items [20].

Even many years later, 3.5–6.5-year-old preschoolers master the numerical (cardinal and
ordinal) properties of small numbers before incorporating zero in a proposed three-phase
progression that different children may pass at different ages [9]. In a backward-counting task,
children at age 3–4 years first comprehend that the condition arrived at by taking away the last
cube is ‘none’ or ‘nothing’ or can be called the special name ‘zero’ [9]. Thus, zero becomes an
index for absence. However, zero is not yet integrated with their quantitative knowledge of other
small integers. For example, when asked ‘Which is smaller, zero or one?’ children often insist
that one is smaller [9]. That children around age 3–4 years represent zero as nothing but not yet
as a null quantity has also been reported in a study in which children were asked to distribute
cookies, note the quantity of cookies on a Post-It Note, and read their notation later [6].
Interestingly, the most common way of denoting zero was to leave the Post-It Note blank.
When asked about leaving the paper blank, children frequently said ‘It means none cookies’ or
‘Because there is no cookies’ [6]. The empty Post-It paper serves as an iconic representation of
absence or nothing, much like the empty column denoting an empty position in a positional
notation system.

The next developmental stage for children is understanding zero as a quantity and placing it on a
numerical continuum along with other integers. When faced with symbolic notations of zero and
integers (i.e., number words and numerals), children realize that zero is the smallest number in
the series of (non-negative) integers by about age 6 years [9]. To avoid the burden of transcoding
magnitudes into symbolic representations and to investigate a more direct, nonverbal access to
the representation of zero, 4-year-old children (and adults) were tested with numerosities,
represented by the number of dots in displays [21]. In this numerical ordering task, children
were required to select the quantitatively smaller of two numerosities (Figure 3A,B). Confirming
an earlier grasp of countable items, children were more accurate at ordering countable numer-
osities than ordering pairs that contained an empty set. To determine whether children treat
empty sets as quantitative stimuli (analog magnitudes) rather than a category that has nothing to
do with numbers, the numerical-distance effect was exploited: the greater the magnitude
difference between two numerosities, the more easily they can be discriminated. Thus, if empty
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Figure 3. Behavioral Empty-Set Representations in Children and Monkeys. (A) Children and monkeys learned in
standard trials to order numerosities (dot collections on yellow background) in ascending order by selecting them on a
touch-sensitive screen. In this example image, they had to first select numerosity 2 (left) and then numerosity 4 (right). (B) In
intermingled empty-set probe trials, one of the sets contained no item. Again, the two sets had to be touched in ascending
order. (C) Performance accuracy of 4-year-old children and two rhesus monkeys for empty sets as a function of numerical
distances of 1, 2, 4, and 8. For instance, accuracy at distance 1 represents performance for empty sets and numerosity 1,
accuracy at distance 2 represents performance for empty sets and numerosity 2, and so on. Images in (A,B) and child data
in (C) after [21]. Monkey data in (C) from [10].
sets are represented with a quantitative meaning in relation to countable numerosities, it should
be most difficult to discriminate empty sets from the smallest numerosity, 1. At age 4 years,
childrens’ performance with empty sets was variable; children exhibiting poor numerosity
performance were at chance on empty-set comparisons and showed no distance effect
[21]. However, children who were more proficient with comparisons of countable numerosities
also showed higher accuracy levels and distance effects with empty sets (Figure 3C). This
suggests that around 4 years of age children begin to include a non-quantitative representation
of nothing as an empty set into their mental number line [21].

Understanding zero as quantity later in life seems to function as a bridge to a true concept of zero
as a number and an early algebraic understanding [9]. Children aged 6–9 years are increasingly
able to correctly affirm and deny simple algebraic rules, particularly if they involve zero (such as, ‘If
you add 0 to a number it will be that number’). From age 7 years on, children typically understand
three general rules, namely: 0 < n, n + 0 = n, and n � 0 = n. Their ability to justify and reason
about such rules, again with zero, also develops dramatically. It was concluded that young
elementary-school children possess some understanding of simple algebraic rules and that zero
holds a special status in fostering their reasoning about such rules [9].

Zero remains a special number even in adults. Psychophysical experiments indicate that the
representation of zero is based on principles other than those used for integers. For instance,
while adult humans’ reading time for numbers from 1 to 99 grows logarithmically with the
number magnitude, zero takes consistently more time to read than expected based on the
logarithmic function [22]. In parity-judgment tasks, zero is not judged as a typical even number
and is suggested not to be investigated as part of the mental number line [23,24] (but see [25] for
836 Trends in Cognitive Sciences, November 2016, Vol. 20, No. 11



a different opinion). Not only spontaneous but also explicit processing of zero remains intricate.
When elementary-school teachers were tested on their knowledge about zero, they were
reluctant to accept zero as an attribute for classification, exhibited confusion about whether
zero is a number, and showed stable patterns of calculation errors using zero [26].

Zero stands out among other integers. Still, it shows a close recapitulation of the cultural history
in ontogeny and progresses from a representation of nothing to a grasp of empty sets as
quantity. Finally, zero was conceived as number zero.

Zero-Like Concepts in Animals
Research over the past decades has shown that humans and animals share an analog
magnitude system for processing the numerical quantity of countable items [4,27–35]. Could
it be that nonhuman animals also show the different representational stages indicative of
precursors to a concept of zero? As a first requirement, animals can be trained to report
not only the presence but also the absence of stimuli (nothing) [36,37]. Rhesus monkeys, for
instance, can be taught to press one of two buttons to indicate the presence or absence of a light
touch [38] or to respond depending on rule contingencies to the presence or absence of a faint
visual stimulus [39]. This indicates that animals are able to represent nothing not just as the
absence of a stimulus but also as a behaviorally relevant category.

Can animals ascribe a quantitative meaning to nothing? In an attempt to mimic ‘symbolic’
number processing, animals have been trained to associate set sizes with visual or vocal labels,
including a sign for ‘no item’. An African grey parrot used human speech sounds to report the
absence or presence of same/different relationships between objects [40]. For instance, when
asked ‘What's different?’ when faced with two identical objects, he correctly responded with
‘None’ [41]. However, he failed to utter none when asked how many items were hidden under
two empty cups in a follow-up study [42]. Maybe the parrot used none to signify the absence of
object attributes rather than the absence of the objects themselves [42]. Alternatively, none may
have simply indicated a failed search [10]. Thus, attributing a quantitative meaning to the parrot's
utterance ‘none’ would be premature, especially in the absence of reports of numerical-distance
effects.

Similar interpretational limitations arise for studies with nonhuman primates that were trained to
associate sets with specific visual signs (Arabic numerals). A female chimpanzee learned to
match a 0 sign with an empty tray [43]. Moreover, when she was shown a pair of numeral signs,
she was able to select the sign that indicated the arithmetic sum of the two signs (e.g., 0 + 2,
select 2). However, a quantitative interpretation of the 0 sign is not required since only addition
problems for which the chimpanzee would have succeeded if she had simply ignored the 0 sign
that denoted nothing were investigated. In another study, squirrel monkeys were trained to
choose between all possible pairs of the numerals 0, 1, 3, 5, 7, and 9 to receive that many
peanuts [44]. The monkeys always chose the larger sum between two sets of numeral signs (e.
g., 1 + 3 versus 0 + 5). However, even if the monkeys performed numerical operations in this
task, which was confounded by hedonic value (i.e. amount of reward), the 0 sign is likely to have
meant ‘nothing’ to the squirrel monkeys rather than the null quantity. Finally, a female chimpan-
zee was trained to match certain numbers of dots to signs using a computer-controlled setup
[45]. She learned to match blank squares containing no dots to the sign for zero. However, when
tested later on her ability to order the signs in ascending order, she failed to transfer the zero sign
from the matching task (cardinal domain) to the ordinal task without further training [45,46]. The
aforementioned studies allow only limited conclusions about zero-like concepts in animals. First,
it cannot be excluded that the animals associate the 0 sign with nothing instead of null quantity.
Second, although animals learn to associate the absence of items with arbitrary shapes, transfer
to novel contexts (e.g., from cardinal to ordinal tasks) is severely limited.
Trends in Cognitive Sciences, November 2016, Vol. 20, No. 11 837



Evidence of a distance effect is essential to demonstrate that animals represent empty sets
quantitatively with other numerosities along a ‘mental number line’. Empty sets should be
more often confused with numerosity 1 than with any other numerosity. This was shown in
monkeys that were proficient at matching and ordering dot numerosities [10]. In arbitrarily
reinforced transfer trials that prevented learning, the monkeys were immediately able to
numerically match or order empty-set stimuli of variable appearance, thus indicating concep-
tual understanding of null quantity (Figure 3C). Importantly, the monkeys showed distance
effects in both matching and ordering tasks [10]. A numerical-distance effect for empty sets
was recently also reported in rhesus monkeys performing a visual delayed match-to-numer-
osity task for numerosities 0 to 4 [47]. Both monkeys mistakenly matched empty sets to
numerosity 1 more frequently than to larger numerosities. Distance effects for the empty set
were also observed in rhesus monkeys trained to perform numerical operations on visual dot
displays (by adding or subtracting items through manipulation of a hand device to match a
target numerosity) [48].

For animals to transcend the empty set representation to arrive at number zero representations
that satisfy number theory, they would need to comprehend a symbol system. However, a true
understanding of numbers as part of a symbol system, including a grasp of relationships
between numbers [1,49] and application of (algebraic) rules (i.e., syntax) for combining them
in a meaningful way [50], is beyond their reach [51]. Because of this lack, the highest stage of
understanding zero as a number is also out of reach of animals.

Neuronal Representations of Nothing and Empty Sets
For the brain, representing nothing, empty sets, or the number zero is a challenge. This is
because sensory neurons have evolved to represent ‘something’ (i.e., the energy of stimuli that
constitute a collection). In the absence of stimulus energy, neurons are inactive and generate
spontaneous action potentials as the signature of a default or resting stage. Without light, a visual
neuron does not signal optical information; without sound, an auditory neuron conveys no
acoustic information. For simple animals with a humble behavioral repertoire, an active repre-
sentation of nothing is out of reach.

For cognitively advanced animals, the absence of stimulation can become behaviorally relevant
so that nothing is no longer merely a lack of a sensory stimulus but a behavioral category and as
such would need to be actively encoded by neurons. This active encoding of nothing was tested
in a rule-based detection task in which monkeys subjectively judged whether they had or had not
seen a barely visible stimulus. After a delay phase, a cue informed the monkey if and how to
respond to its judgment to dissociate the decision about stimulus absence or presence from
motor-preparation processes. Subsequent single-cell recordings from the prefrontal cor-
tex (PFC) of these behaving monkeys showed neurons that increased discharge rates when-
ever the monkeys later reported to have seen the stimulus (Figure 4A) [39,52]. Such a response
might be expected for a neuron that integrates energy from a present stimulus and similar
responses have also been reported for touch in the frontal lobe [38,53]. Interestingly, a second
class of neurons increased their discharge whenever the monkeys decided that they had not
seen a stimulus (Figure 4B). Analyses of error trials showed that the activity of these neurons
predicted the monkeys’ present/absent judgments even before a response could be planned.
Notably, the active coding of the ‘stimulus-absence’ decision was not a visual response but
emerged during the delay phase when the monkey needed to decide whether it had seen the
stimulus. This indicates that the categorical stimulus-absence signal arises during a post-
sensory cognitive processing stage. Thus, behaviorally relevant stimulus-absence decisions
are not encoded by default (baseline) neuronal responses but rather by internally generated
signals. The brain seems to translate the lack of a stimulus into a categorical and active stimulus-
absence representation.
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(Figure legend continued on the bottom of the next page.)

Neuronal Representations of Nothing and Empty Sets. (A) Prefrontal cortex (PFC) neurons signal the
monkey's decision that a visual stimulus (onset at 500 ms, gray-shaded time interval) was present. This neuron showed
elevated firing rates during a delay period before the monkey reported a stimulus. Activity reflected the monkey's judgment
rather than stimulus intensity, because discharges were indistinguishable for high-intensity (red) and low-intensity (pink)
stimuli. Spike-density histograms of the neuronal responses are shown. The vertical dotted bar indicates onset of the
response rule. (B) Some PFC neurons actively represented the monkey's decision that a visual stimulus was absent. This
neuron increased its spike rate whenever the monkey was about to report the absence of a stimulus. Even if a faint stimulus
was presented, the neuron signaled the monkey's ‘stimulus-absence’ decision (light blue) just as it did when no stimulus
was presented (dark blue). Same layout as in (A). (C) A lateral view of a monkey brain shows the recording sites in the ventral
intraparietal area (VIP) and PFC from which empty-set representations were recorded. (D) VIP neurons encoded empty sets
as categorically distinct stimuli. This example VIP neuron was tuned to empty sets but showed no progressive decrease of
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As a signature for a quantitative representation, neurons are expected not only to represent the
absence of stimulus but also to place empty sets at the lower end of a numerical continuum.
Again, numerical-distance effects are instrumental to demonstrating systematic ordering of
magnitudes. Number neurons found in the parietofrontal number network of primates
(Figure 4C) are tuned to preferred numerosities by maximum activity and show such a distance
effect by a progressive decline of activity relative to the preferred numerosity [54–58]. A recent
study in monkeys performing a numerical matching task including empty sets and countable
numerosities found that single neurons and neuronal populations represent empty sets as
conveying a quantitative null value, albeit to different degrees [47]. At the input to the number
network, neurons in the ventral intraparietal area (VIP) did not exhibit a strong distance effect
and encoded empty sets as a category distinct from all other numerosities (Figure 4D). A similar
finding for VIP neurons has been reported in one monkey trained to perform numerical
operations on visual dots [59]. Thus, VIP neurons still signal the more primitive presence versus
absence of items. Higher up the cortical hierarchy, however, PFC neurons represented empty
sets more similarly to numerosity 1 than to larger numerosities, exhibiting numerical-distance
effects (Figure 4E) [47]. Moreover, prefrontal neurons represented empty sets abstractly and
irrespective of stimulus variations. Compared with the VIP, the activity of numerosity neurons in
the PFC also predicted better the successful or erroneous behavioral outcome of empty-set
trials [47]. These results suggest a hierarchy in processing from the VIP to the PFC along which
empty sets are gradually detached from visual properties and gradually positioned in a numerical
continuum. This brain-internal sequential process mirrors the timeline of the cultural and
ontogenetic advances described above. The brain transforms the absence of countable items
(nothing) represented in brain areas lower in the hierarchy, like the VIP, into an abstract
quantitative category (zero) in areas higher in the hierarchy such as the PFC. Because the
PFC is also engaged in representing basic quantitative rules [60–63], it could provide the basis
for symbolic reasoning about numbers in children [9].

Both stimulus-absence and empty-set representations require transformation from a sensory
none event to an internally generated categorical activity. Understanding the physiological
mechanism behind this process will be challenging. In contrast to countable numerosities,
which are represented spontaneously [64–67], coding the absence of stimuli and null quantity
requires explicit training. As a behaviorally relevant category, zero-like representations need to
develop over time as the result of trial-and-error reinforcement learning. If behavioral feedback is
provided, reward prediction-error signals arising from the dopamine system [68,69] could
modulate reward-dependent plasticity. Reinforcement learning could refine functional connec-
tivity between parietal and frontal neurons or recurrent connections within associative cortical
areas to support neuronal selectivity and sustained working memory coding [70,71]. A recent
cortical-circuit model showed how category selectivity could arise from reinforcement learning.
According to this model [72], weak but systematic correlations between trial-to-trial fluctuations
of the firing rates and the accompanying reward after appropriate behavioral choices lead
neurons to gradually become category selective. An interesting property of this model is that it
does not require initial tuning of the neurons for successful learning; even nonselective neurons
developed categorical tuning as long as they carried neuronal fluctuations that correlated with
behavioral choices. Therefore, when a subject learns to respond appropriately to absent stimuli
or empty sets to receive a reward, such a mechanism might suffice to produce empty-set-tuned
neurons from originally untuned neurons.
activity towards larger numerosities. Spike-density histograms of the neuronal responses are shown. The sample
numerosity was shown after 500 ms, followed by a memory delay. Colors of the spike-density functions correspond to
the numerosity of the sample stimulus. Inset in the spike-density histogram shows the neuron's numerosity tuning function.
(E) PFC neurons responded to empty sets as part of the numerosity continuum. This example PFC neuron was tuned to
empty sets and showed a progressive decrease of activity towards larger numerosities. Layout as in (C). Data in (A,B) from
[39]; data in (D,E) from [47].
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Outstanding Questions
Where are empty sets and the number
zero represented in the human brain
and would they be part of a ‘number
map’?

How can zero be represented as a
meaningful category in computational
models of numbers that have so far
dealt only with positive numbers?

Are animals in taxa only remotely
related to humans, such as fish or even
insects, able to represent empty sets
as a quantitative category?

How are zero-like concepts neuro-
physiologically encoded in animals that
did not evolve a layered neocortex
Concluding Remarks
The neuronal scenario pictured above indicates an effortful cognitive process to arrive at
representations of empty sets, not to mention a concept of the number zero. Since cognitive
capabilities originate from the workings of neurons, the historical and ontogenetic struggle of
humankind to arrive at a concept of zero may at least partly, and in addition to sociocultural
factors, be a reflection of this neurobiological challenge. With the advent of the number zero,
however, abstract thinking and mathematics rose to a new level. Now, negative numbers were
also conceivable by extending the number line towards numbers smaller than zero, leaving the
realm of empirical quantities behind and enabling a full-blown number theory. Fundamental
calculations would not be possible without zero. No wonder the discovery of zero as a number
was celebrated as a true revelation [8].
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