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In their feature article, Lorenzi et al. (2025) compiled extensive biological evidence on the ontogenetic origins of the number sense. 
Drawing on both behavioral and neurobiological data, they convincingly argue that the “number sense” is fundamentally innate and 
present from birth in numerically competent animals, including humans. At the same time, the authors acknowledge the role of learning 
and experience in shaping numerical cognition. This commentary builds on the idea of learning-induced changes to the number sense, 
extending the concept of an innate number sense to one that is modifiable through learning and experience. It summarizes evidence 
from single-neuron recordings and proposes neurophysiological mechanisms underlying these learning-induced changes in numerical 
cognition. 
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Lorenzi et al. (2025) convincingly argue that the "number sense" 
is innate, but they also acknowledge the role of learning in 
shaping numerical cognition. A strong argument for learning-
induced improvements in numerosity representations comes 
from a single-neuron recording study in nonhuman primates 
(Viswanathan and Nieder 2015). In this study, single-neuron 
responses were examined in two monkeys before and after 
numerical training. Initially, when the monkeys were in a 
numerically naïve stage and only discriminated dot colors in dot 
displays, numerosity-selective neurons were already identified in 
the ventral intraparietal area (VIP) of the intraparietal sulcus (IPS) 
and the prefrontal cortex (PFC) (Viswanathan and Nieder 2013)— 
two core brain regions of the number network in primates (Nieder 
2004; Viswanathan and Nieder 2020; Nieder 2025). This provided 
initial evidence that learning is not required for numerosity-
selective neurons to exist in the brain (Viswanathan and Nieder 
2013). These neurons respond maximally to a preferred numeros-
ity, with firing rates decreasing systematically for numerosities 
farther from the preferred one—resulting in a bell-shaped 
numerosity-tuning function. Similar numerosity-tuned neurons 
have also been observed in the human brain (Kutter et al. 2018, 
2023). 

The monkeys of the initial study (Viswanathan and Nieder 
2013) were then re-trained to discriminate the number of dots in 
the displays, and recordings were made in the same brain areas as 
during the previous naïve condition. After training, PFC showed an 
increased number of numerosity-selective neurons, which were 
more selectively tuned to numerosity, exhibiting sharper tuning 
functions (Viswanathan and Nieder 2015). In contrast, no such 
improvements were observed in the VIP. The enhanced selectivity 
of numerosity-selective neurons following numerosity discrimi-
nation training reflects perceptual learning, in which numerosity 
becomes behaviorally relevant for the subject. 

Perceptual learning has been extensively studied in the visual 
system, where it leads to more accurate behavioral discrimination 
of visual stimuli. This increase in accuracy is associated with 
narrower tuning curves (Schoups et al. 2001; Yang and Maunsell 
2004; Lee et al. 2012). Narrower tuning implies that the neu-
ronal representations of individual neurons overlap less, thereby 
enhancing neuronal selectivity. In addition to an increase in the 
absolute proportion of numerosity-selective neurons in the PFC, 
the numerosity tuning functions became more selective as a 
result of training and learning (Viswanathan and Nieder 2015). 
These effects can be explained by at least two distinct mecha-
nisms operating on different time scales during numerosity dis-
crimination: lateral inhibition within local cortical microcircuits 
enables immediate selectivity adjustments with behavioral rele-
vance, while reinforcement learning, driven by neuromodulator 
feedback loops, supports long-term changes. 

For lateral inhibition to shape tuning curves at the level of 
local microcircuits, inhibitory interneurons play a crucial role in 
sharpening the tuning functions of pyramidal cells, the excitatory 
projection neurons of the cerebral cortex. These two main types of 
cortical neurons can be distinguished in the primate association 
cortex based on the waveforms of their action potentials 
(Merchant et al. 2012). In monkeys trained to discriminate 
numerosity, inhibitory interneurons were more broadly tuned 
to numerosity compared to pyramidal cells, providing initial 
evidence that inhibitory interneurons could sharpen the tuning 
of pyramidal cells (Diester and Nieder 2008). Moreover, neuron 
pairs consisting of pyramidal cells and inhibitory interneurons 
recorded at the same electrode tip, and thus in close anatomical 
proximity, exhibited inverted tuning to numerosity relative 
to each other (Diester and Nieder 2008). When these neuron 
pairs were functionally coupled, as evidenced by temporally 
correlated discharges, and thus part of a local microcircuit,
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they exhibited systematic connectivity patterns. Neuron pairs 
consisting of an inhibitory interneuron and a pyramidal cell 
were functionally connected through a negative correlation 
in temporal firing, showing inverted tuning relative to each 
other. In other words, when a putative inhibitory interneuron 
fired, the connected pyramidal cell was significantly inhibited, 
and vice versa. Mechanistically, these findings suggest that 
inhibitory interneurons exert inhibition on numerosity-tuned 
pyramidal cells (Nieder 2023). Remarkably, the same observation 
of inverted numerosity tuning in functionally coupled excitatory 
and inhibitory neurons was made in the differently evolved 
nidopallium caudolateral of crows (Ditz et al. 2022). This suggests 
that this type of lateral inhibition in shaping numerosity tuning 
is not specific to the cerebral cortex but is a general mechanism 
in the telencephalic pallium of vertebrates. 

This lateral inhibition mechanism, which sharpens neurons’ 
numerosity tuning, becomes enhanced with monkeys’ proficiency 
in discriminating numerosity, but in an area- and neuron-type-
specific manner. In the VIP, neither pyramidal cells nor inhibitory 
interneurons showed sharpened numerosity-tuning functions as 
a result of learning (Viswanathan and Nieder 2015). These findings 
suggest that numerosity is rapidly and automatically encoded in a 
bottom-up fashion in VIP, regardless of task demands, supporting 
the idea of an innate number sense. However, in the PFC, pyrami-
dal cells showed increased numerosity selectivity after training, 
whereas interneurons remained unaffected (Viswanathan and 
Nieder 2015). This improved selectivity may enable the PFC to 
exert top-down influence on downstream cortical areas, guiding 
executive functions through numerical information. 

In the PFC, not only do numerosity-selective neurons become 
sharper, but the proportion of numerosity-selective neurons also 
increases slightly with learning. This suggests that originally 
untuned neurons are converted into tuned neurons over the 
course of long-term learning. Similarly, when monkeys are 
trained to discriminate arbitrary categories, such as cats versus 
dogs or categories of visual motion directions, neurons in the 
prefrontal and posterior parietal cortices reflect the category 
membership of visual stimuli, with their selectivity shifting when 
stimuli are retrained into new categories (Freedman et al. 2001; 
Freedman and Assad 2006). This effect—the emergence of newly 
category-tuned neurons—can be explained by reinforcement 
learning. According to a cortical circuit model, weak but 
systematic correlations between trial-to-trial fluctuations in 
firing rates and the accompanying reward following appropriate 
behavioral choices lead neurons, even initially nonselective ones, 
to gradually become category-selective (Engel et al. 2015). In the 
number domain, this mechanism may help explain why more 
numerosity-selective neurons are present as a subject learns 
to respond appropriately to numerosity in order to receive a 
reward. 

The comparison of single-neuron data in monkeys trained 
on different visual categories suggests that learning-dependent 
neuronal plasticity in the primate association cortices is spe-
cific, and more precisely, limited to numerical categories. In stark 
contrast to the dramatic categorical coding changes observed in 
the IPS for arbitrary perceptual categories (Freedman and Assad 
2006), such changes were absent for number categories. Numeros-
ity representations in the primate association cortex rely on a 
sparse code with stable “labeled lines” (Nieder and Merten 2007; 
Moskaleva and Nieder 2014). The rapid and automatic encoding of 
numerical categories in VIP, without learning-dependent improve-
ments, suggests pure bottom-up processing, consistent with the 
idea of an innate number sense. However, the number system in 

the primate brain is also enhanced by learning and experience 
throughout life, a process that can be explained by the learning-
dependent improvement of PFC neurons, which then exert top-
down influences on upstream brain areas. While the number 
sense is fundamentally innate, empirical influences also play a 
role in numerical cognition and can be traced down to the level of 
single neurons. 
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