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Serotonin Decreases the Gain of Visual Responses in Awake
Macaque V1
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Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic
cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation
has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals.
We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male
macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly
multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin
neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus
(“noise-correlation”). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs
quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity.
Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal’s
behavioral or motivational context, complementing other known state-dependent gain-control mechanisms.
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Introduction
Perceptually guided behavior depends on context. Such context
includes an animal’s prior experience or knowledge of the envi-
ronment and task, and its behavioral and motivational state

(Harris and Thiele, 2011). The context dependence of percep-
tually driven behavior relies, in part, on the context-depen-
dent neuromodulation of sensory processing (Hurley et al.,
2004; Harris and Thiele, 2011). One mode of such neuromodu-
lation involves subcortical nuclei that have widespread projec-
tions throughout the brain (Jacobs and Azmitia, 1992). These are
ideally suited to modulate processing in extended networks
according to changing behavioral–motivational conditions
(Dayan, 2012).

One important neuromodulatory system is the serotonin sys-
tem. Serotonin [5-hydroxytryptamine (5-HT)] in the brain has
been implicated in a variety of affective, cognitive, and sensori-
motor functions, but identifying an account of its computational
role even for the intensely studied links to reward signaling has
proved challenging (Ranade et al., 2014; Dayan and Huys, 2015).
Similarly, the reported effects of serotonin on sensory processing
have been heterogeneous (Waterhouse et al., 1990; Hurley et al.,
2004; Petzold et al., 2009; Watakabe et al., 2009; Lottem et al.,
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Significance Statement

Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless,
surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation
of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the
gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple com-
putational function of serotonin for state-dependent sensory processing, depending on the animal’s affective or motivational state.
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2016) and a simple computational account remains elusive. For
example, in the primary visual cortex (V1) of anesthetized ani-
mals’ bidirectional modulation of the responses (Watakabe et al.,
2009) and variable effects on receptive field properties have been
observed (Waterhouse et al., 1990; Hurley et al., 2004; Bachatene
et al., 2013). However, despite this multitude of effects on sensory
processing, the serotonergic effects on perceptually driven be-
havior have been surprisingly uniform and consistent with a
decreased perceptual response (Davis et al., 1980; Dugué et al.,
2014). Potential reasons for these apparent differences are that
cortical neuronal modulation in some studies was examined us-
ing receptor-selective rather than the endogenous ligand (Wat-
akabe et al., 2009), and these studies were all performed using
anesthetized animals. Under anesthesia, substantial fluctuations
in brain state that affect responses in the primary sensory cortex
have been observed (Ecker et al., 2014). Moreover, anesthesia,
such as isofluorane, can directly influence the activity of seroto-
nergic neurons (Johansen et al., 2015). It may therefore be that in
awake animals, where the serotonergic system may be in a more
controlled state, a less diverse modulation would be seen.

We therefore set out to characterize the modulatory effect of
serotonin on sensory processing in the awake animal. To this end,
we focused on the macaque V1. The macaque V1 receives exten-
sive projections from the dorsal and medial raphe nuclei, the
major source of serotonin in the brain. Serotonergic input pro-
jections are most pronounced in the input layers of V1 (de Lima
et al., 1988). This pattern is approximately mirrored by the lam-
inar profile of the expression of serotonin receptors in V1 (Wat-
akabe et al., 2009). From a functional perspective, such a bias
toward the input layers would be expected, for example, for a
mechanism involved in adjusting the gain of the sensory input, as
previously suggested (Hurley et al., 2004; Disney et al., 2007).
Here, we leveraged the extensive knowledge of the spatiotemporal
tuning properties in V1 to quantify the serotonergic modulation on
visual processing in awake monkeys along several stimulus dimensions.

Serotonergic neurons are thought to convey a variety of signals
on different time scales, as found, for example, for their phasic versus
tonic response components (Ranade and Mainen, 2009; Cohen et
al., 2015; Fonseca et al., 2015; Hayashi et al., 2015; Correia et al.,
2017), versus long-term (days) effects of phasic activation (Cor-
reia et al., 2017). In this study we focused on time scales that are
consistent with the tonic component of the response by ionto-
phoretically applying serotonin in the minute range time scale.

We find that across the population of neurons in V1 and
across different stimulus dimensions, the serotonergic modula-
tion is surprisingly simple: serotonin predominantly decreases
the gain of the visual responses, with little change to the tuning
properties. A simple additive change to a threshold-linear spiking
nonlinearity can account for the observed modulation. Gain
modulation is an important computation to change response
levels without affecting tuning (Atallah et al., 2012). It has been
implicated in the modulation by cognitive states, such as atten-
tion (McAdams and Maunsell, 1999), and is subject to cholin-
ergic modulation at the cortical input (Disney et al., 2007). Our
results show that serotonin is well suited to control the response
gain of neurons in V1, potentially complementing these known
gain control mechanisms.

Materials and Methods
Animals. Two adult male rhesus monkeys (Macaca mulatta; M, 8 kg, 11
years old; K, 12 kg, 7 years old; housed in pairs) participated in the
experiments. Using aseptic techniques, the monkeys were implanted
with a titanium head-post and titanium chambers over the operculum

of V1 under general anesthesia. All experimental procedures followed
guidelines for animal experimentation and were approved by the local
authorities, the Regierungspräsidium Tübingen, Germany.

Electrophysiological recordings and iontophoresis. We recorded extracel-
lular single-unit activity in V1 while the animals performed a 2 s fixation
task (fixation within 0.75° of a small 0.1° fixation dot on the center of the
screen) for fluid rewards while we presented stimuli in the receptive field
of the recorded unit. The positions of both eyes were recorded at 500 Hz
using an infrared optical recording system (Eyelink 1000, SR Research).
Experimental control and stimulus presentation was done using custom-
written software in Matlab modified after Eastman and Huk (2012) using
the psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al.,
2007).

Recordings and iontophoresis were done using custom-made tungsten-
in-glass electrodes flanked by two pipettes as described previously (Thiele
et al., 2006; Jacob et al., 2013). This electrode pipette was mounted inside
a guide tube and inserted transdurally without a dura-piercing guide tube
using a custom-made electric microdrive. Iontophoretic application was
controlled by an MVCS iontophoresis system (NPI Electronic). Neuro-
nal signals were amplified, digitized, and filtered (250 Hz to 5 kHz) with
the Ripple Grapevine System (Ripple). Spike sorting was performed off-
line using the Plexon Offline Sorter. Spike clusters were computed based
on a variety of features, including principal components, energy, peak,
trough, and spike amplitude. Single-unit clusters were identified using
the features that provided the best separation. Spike isolation was quan-
tified by computing the isolation distance and L ratio (Schmitzer-
Torbert et al., 2005). For 763 of 780 (98%) included experimental blocks,
the isolation distance was �20 and the L ratio �0.1. For the remaining 17
(2%) experimental blocks that did not meet these criteria, unit isolation
was verified by visual inspection. One barrel of the electrode pipette was
filled with serotonin hydrochloride (Sigma-Aldrich; 10 mM in double-
distilled water; pH 3.5–3.8), the other with pH-matched saline (NaCl;
0.9%). The electrodes typically had impedances between 0.3 and 1.6 M�
(measured at 1 kHz) and tip sizes of 10 –15 �m. The ejection current
ranged between 2 and 50 nA (median, 10 nA) for serotonin and between
5 and 20 nA (median, 11 nA) for saline. To better quantify effects on the
neuronal tuning properties, we aimed for relatively small modulatory
effects. The values of the ejection currents used were therefore toward the
lower end of the range of values previously used in the macaque cortex
(Williams et al., 2002). In a subset of experiments, we used different
ejection currents across blocks to examine the dose dependence of the
effect (Fig. 1B). We typically used ejection currents less than or equal to
the value for which the serotonergic modulation seemed to asymptote
(Fig. 1B), which we observed at values between 20 and 30 nA, and this
limited range of currents may have contributed to the homogeneity of
our results. The retention current was �8 nA to prevent leakage from the
drug barrels during the control conditions. The pipette resistance ranged
from 10 to 150 M�, as was used previously (Ott et al., 2014). To mini-
mize long-term effects of serotonin (Maya Vetencourt et al., 2008; Cor-
reia et al., 2017), we avoided recording from nearby locations in V1 in
consecutive recording sessions.

For each unit we initially quantified the center of the receptive field
from receptive-field profiles along a horizontal and vertical axis as de-
scribed previously (Nienborg et al., 2004) by presenting an elongated
rectangular grating (height, 3–5°; width, 0.2°) at different horizontal or
vertical positions across the receptive field and its immediate surround-
ings. Subsequent stimuli were centered on the receptive field at a median
eccentricity of 3.6° (range, 1.6 to 6.4°). We initially measured neuronal
tuning curves without applying serotonin or saline to establish the base-
line using the retention current. We then started to apply serotonin or
saline using the ejection current in blocks and then remeasured a tuning
curve during the application (note that our analyses of the time course of
the response modulation across trials averaged over all experiments did
not reveal a systematic difference between the baseline, saline control,
and serotonin experiments, suggesting that the lead time of the serotonin
application of several seconds was, on average, sufficient). Following the
application of the drug, we remeasured the tuning in subsequent blocks
using the retention current to obtain the recovery of the response if it was
possible to maintain unit isolation. Thus, if it was possible to maintain unit
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Figure 1. Iontophoretic application of serotonin leads mainly to a gain decrease. A, Schematic of the experimental setup. While the monkey performed a fixation task, grating stimuli were
presented in a neuron’s receptive field (RF) during blockwise iontophoretic application of serotonin (5HT; red) or pH-matched saline (NaCl; black). B, Dose dependence of the serotonergic
modulation. The relative firing rate is plotted as a function of the applied iontophoretic current range of 90 serotonin blocks from n � 36 units. Each unit is shown only once per bin. The green line
represents the geometric mean � SEM. C, Modulation for the subset of units for which the duration of unit isolation allowed for a full sequence of baseline, drug application, and recovery. Note that
for four units for which tuning for �1 stimulus dimensions was tested, only the first comparison is included. The median of the average firing rate decreased from 27 to 24 spikes/s for serotonin but
not for saline application [20 spikes/s for the baseline, 21spikes/s for saline application; p � 0.03, n5-HT � 32, nNaCl � 23; 11 of 32 (34%) of units were significantly suppressed, 2 of 32 (6%) were
significantly enhanced for serotonin application; 1 of 23 (4%) was significantly enhanced and suppressed for saline application]. D–G, Orientation, spatial frequency, contrast, and size were varied
in blocks, and results are shown in the first, second, third, and last column, respectively. D, Example tuning curves are shown for the baseline condition (red solid line, filled symbols) or the application
of serotonin (dotted line, open symbols). Note the decrease in the response amplitude during the application of serotonin. No such change is observed during control experiments when saline is
applied instead: the open and closed black symbols largely overlap. E, The mean firing rate (average across the tuning curves as in D, including the blank response) for the baseline condition is
compared with that for application of serotonin (red) or saline (black). Note the systematic decrease of the response for serotonin but not for the application (Figure legend continues.)
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isolation and keep the monkey working, each block of drug application was
followed by �1 block of recovery before the next application of the drug.
Full recovery was evaluated by observation during recording but verified
statistically off-line: the responses to each stimulus parameter were
z-scored to remove the stimulus-driven variability of the response, and
the z scores for the baseline and recovery block were then required to be
statistically indistinguishable ( p � 0.05, Wilcoxon rank-sum test). The
median time to achieve full recovery [possible for n � 90 serotonin
experiments for which the inclusion criteria (see below) were met; this
value includes multiple experiments per unit, e.g., for our dose–response
measurements; Fig. 1B] after the serotonin application was 32 s (range,
15 to 1171 s). Note that these values reflect the upper bound of the times
to full recovery since we occasionally inserted wait times of variable du-
ration after the serotonin application experiment to ensure full recov-
ery while keeping the animal motivated to perform additional trials
afterward.

Stimuli. Visual stimuli were back-projected on a screen using DLP
LED Propixx projector (1920 � 1080 pixels resolution; 30 cd/m 2 mean
luminance; linearized gray values; run at 100 Hz/eye, combined with an
active circular polarizer, DepthQ, run at 200 Hz) at a distance of 98 cm in
front of the animals. The animals viewed the screen through passive
circular polarizing filters monocularly or binocularly. Visual stimuli were
generated in Matlab (Mathworks) using the Psychophysics toolbox (Brain-
ard, 1997; Pelli, 1997; Kleiner et al., 2007).

Stimuli were circular drifting sinusoidal luminance gratings centered
on and slightly exceeding a neuron’s receptive field and presented for 450
ms (temporal frequency typically 7 Hz) binocularly or monocularly to
the preferred eye. For each experimental block, either the direction (16
equally spaced values), the spatial frequency [eight logarithmically
spaced values from 0.125 to 16 cycles per degree (cpd)], the contrast
(typically seven logarithmically spaced values from 1.56 to 100%), or the
size (typically 12 logarithmically spaced values from 0.3 to 8°) of the
grating was pseudorandomly varied, randomly interleaved by blank
stimuli, with all other parameters constant at approximately the pre-
ferred value for each unit. Within each experimental block each stimulus
was typically presented 8 –10 times.

For the subspace reverse correlation, we briefly flashed sinusoidal lumi-
nance gratings (flash duration typically 10 ms; 100% contrast; preferred
spatial frequency; presented binocularly or monocularly to the preferred
eye) that randomly varied in orientation (eight equally spaced values) and
spatial phase (equally spaced values), randomly interleaved by blank stimuli
(also 10 ms duration, presented with equal probability as each orientation).

Data analysis. All analyses were done in Matlab (Mathworks). For
experiments using drifting gratings, we computed the mean firing rate
during the 450 ms stimulus presentation. To obtain orientation tuning
curves, we averaged the responses for directions 180° apart. Tuning
curves were computed as the mean firing rate as a function of orientation,
spatial frequency, contrast, and size, respectively, and fit with standard
descriptive functions.

Orientation tuning curves were fit with Gaussian functions for which
all parameters were constrained to values �0. To avoid an overestima-
tion of the amplitude resulting from placing the preferred orientation
between two sparsely measured values, we further restricted the ampli-
tude to be smaller than twice the peak value of the tuning curve.

Spatial frequency tuning curves were also fit with Gaussian functions,
either in linear or logarithmic units, whichever resulted in better fits.

Contrast tuning curves were fit with the Naka–Rushton function (Al-
brecht and Hamilton, 1982): R(c) � Rmax c n/(c50

n 	 c n ) 	 Roffset, where
c is the stimulus contrast, c50 is the semisaturation contrast, and n is the
exponent influencing the shape of the curve. All parameters were re-
stricted to values �0, and additionally Rmax 	 Roffset could not exceed the
peak response of the tuning curve to ensure that fits reached saturation
within the contrast range of 0 to 100%. For the model comparison in
Figure 6, we first fit the Naka–Rushton function to the baseline condi-
tion. In a second step, to account for the serotonin-induced modulation
of the response, we allowed one parameter of this fit to the baseline to
change: Rmax for the response-gain model, or c50 for the contrast-gain
model (Williford and Maunsell, 2006).

Size tuning curves were fit with a ratio-of-Gaussians function (Ca-
vanaugh et al., 2002). All parameters had to be positive, and the width of
the center Gaussian had to be less than or equal to that of the surround
Gaussian function. The preferred size was defined as the smallest size that
evoked 98% of the maximal response based on the fitted data (Nienborg
et al., 2013). The suppression index was computed as the difference
between the neuron’s maximum response and the response to the max-
imum size, divided by the maximum response. Goodness of fit was quan-
tified as variance explained and all fits had to explain �70% of the
variance.

For a subset of units we also measured temporal frequency tuning with
stimulus presentations of 2 s each. We used these longer stimulus pre-
sentations to quantify the selectivity to spatial phase for each unit as the
f1/f 0 ratio (Skottun et al., 1991) measured at the preferred temporal
frequency of that unit, where f1 corresponds to the amplitude of response
modulation at the stimulus temporal frequency and f 0 to the mean firing
rate. For these analyses, eye movements within the fixation window were
not factored out, which may have contributed to the modest phase selec-
tivity across the population.

Orientation selectivity was quantified using the circular variance
(Ringach et al., 2002). Direction selectivity was computed as a simple
contrast metric (r��r��180)/(r� 	 r��180), where r� and r��180 corre-
spond to the response at the neuron’s preferred direction � and that at
180° away from preferred, respectively.

Receptive field size was quantified as the mean of the equivalent widths
(w; Bracewell, 1986) in both the vertical and horizontal directions: If A is
the area under the horizontal or vertical receptive field profile, and h is
the peak response of the receptive field profile, then w � A/h. The median
equivalent width was 0.56° (range, 0.25 to 1.34°).

To evaluate significant response modulation during the serotonin or
saline condition, we z-transformed the mean response for each stimulus
condition and compared the z scores across all stimuli between the sero-
tonin or saline condition and the baseline condition using Wilcoxon
rank-sum test (two-sided, 5% significance threshold).

For the experiments with flashed gratings, we quantified the tuning
curves using reverse correlation subspace analysis (Ringach et al., 1997).
We smoothed the stimulus-triggered spike-density function (SDF) using
a 4 ms boxcar. The SDFs were used to compute the mean number of
spikes elicited by each frame to yield “orientation subspace maps,” anal-
ogous to an approach described previously in the disparity domain
(Nienborg and Cumming, 2009). SEs were estimated based on boot-
strapping (1000 resamples). To estimate the dynamics of the orientation-
selective component of the response, we first computed the SD across the
SDFs for each orientation. Response latencies were defined as the first
point in time after frame onset for which the SD exceeded the half-height
between the baseline variability and peak deviation (Lee et al., 2007). The
baseline variability was computed as the average of the first 20 ms after
frame onset. For inclusion of latency estimates, the orientation-selective
response component had to exceed four times the baseline variability.
Additionally, latencies were restricted to 25–100 ms after frame onset. To

4

(Figure legend continued.) of saline. The size of the change in firing rate induced by serotonin or
saline, respectively, differs statistically (for orientation: p � 10 �5; for spatial frequency: p �
10 �3; for contrast: p � 10 �3; for size: p � 0.001; all Wilcoxon ranked-sum tests). F, To
quantify the size of the additive and multiplicative component of the change in the response
(normalized to the peak response in the baseline condition), we performed linear (type II)
regression on the tuning curves [baseline condition plotted on the abscissa against application
of serotonin (red) or saline (black) on the ordinate]. The slope reflects the multiplicative change
(relative gain) and the intercept the additive change. G, For each cell, we compared the relative
gain and the normalized additive change (normalized by the peak response in the baseline
condition). Note that for all stimulus dimensions, the relative gain after applying serotonin is
significantly smaller than in the control condition (for orientation: p � 10 �5, n � 71 for
serotonin; n � 21 for saline; for spatial frequency: p � 10 �3; n � 37 for serotonin; n � 10 for
saline; for contrast: p � 10 �4; n � 100 for serotonin; n � 30 for saline; for size: p � 0.003;
n � 33 for serotonin; n � 20 for saline; all Wilcoxon ranked-sum tests). Circles and squares
correspond to data from monkey M and K, respectively. Filled symbols represent units with
significant mean response modulation ( p � 0.05, Wilcoxon ranked-sum test). *: �0.05;
**:�0.005; ***:�5*10 �4
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ensure that changes in latency could not be explained by differences in
the response variability between conditions, we estimated the depen-
dence of the latency estimate on baseline variability by randomly sub-
sampling the data in the baseline condition and computing latency for
the subsampled data. The change in latency was then predicted from the
change in baseline variability using linear regression, and the actually
measured latency was corrected by the predicted change (see Fig. 5D).
For comparison, we also quantified response latency using maximum
likelihood estimation to identify the critical change point of the dynamics
of the response (Friedman and Priebe, 1998). This approach assumes one
Poisson process for the baseline response and one for the stimulus-
evoked component of the response, and we required significantly differ-
ent Poisson processes for inclusion. This analysis yielded similar results.

Analysis of fixational eye movements. To examine potential effects on
fixational eye movements, we explored the fixation precision as well as
the amplitude and frequency of microsaccades. Microsaccades within the
fixation window were identified as defined previously (Nienborg and
Cumming, 2006, 2014; Clery et al., 2017). Fixation precision was defined
by Cherici et al. (2012) as the area around the mean gaze position that
encompassed the 75 th percentile of the gaze positions.

Noise correlations. Stimulus-independent covariability [“noise correla-
tions,” (Cohen and Kohn, 2011)] was calculated between the single-unit
activity and the simultaneously measured multiunit activity recorded from
the same electrode. Note that since this approach overestimates the ab-
solute value of noise correlation (Ecker et al., 2010), we only explored the
changes in noise correlation with serotonin, not the absolute value. To
reduce the effect of slow fluctuations on nonstationarities (Ecker et al.,
2014; Goris et al., 2014; Rabinowitz et al., 2015) resulting from the onset
of the serotonin application, we removed the initial 20 stimulus presen-
tations of each experimental block for this analysis. Responses for each
stimulus condition were first z-scored, and noise correlations computed
as the Pearson correlation coefficient of the z scores for single-unit and
multiunit activity across all trials. Noise correlations have typically been
found to depend on the neuronal spike rate (Cohen and Kohn, 2011). We
estimated this dependence in our dataset for the baseline condition by
linear regression and corrected the noise correlation by that predicted
from the change in firing rate.

Fano factor. For each stimulus condition, we computed the Fano factor
as the ratio between the variance and the mean response for each stimu-
lus for each experimental block, excluding the initial 20 stimulus presen-
tations to reduce variability from potential nonstationarities due to onset
of serotonin. The average of the Fano factors for each stimulus was then
calculated as the Fano factor for that unit.

Membrane potential-based model. The responses of the membrane
potential-based model were explored for the stimulus used for orienta-
tion subspace mapping described earlier. The membrane potential was
orientation selective and the selectivity described by a Gaussian function
[amplitude, 20 mV; similar to empirically observed values (Priebe and
Ferster, 2008)]. The width of the Gaussian function describing the ori-
entation selectivity of the membrane potential (SD ranged from 10 to
40°) was chosen such that the bandwidth of the orientation subspace
maps was within the range of those of the neuronal data in the baseline
condition. The time-varying stimulus (a sequence of oriented gratings
each flashed for 10 ms) induced fluctuations in membrane potential
Vm(t) that were convolved by a temporal kernel that consisted of a Gauss-
ian temporal filter (chosen to be within the range of the neuronal data:
SD, 6 ms; mean, 57 ms after stimulus onset to account for the lag of the
response). Spike rates [k(t)] were derived from the following threshold-
linear function:

k
t� � � c � 
Vm
t� � Vthresh� if Vm
t� � Vthresh

0 otherwise

where Vm(t) denotes the membrane potential at time t, Vthresh is the
spiking threshold, and c is a scalar value set to 15, approximating the
value previously obtained for the cat striate cortex (Carandini, 2004).
The spiking rate was converted to Poisson spike events, which were an-
alyzed like the neuronal data.

The serotonergic modulation was imitated by a subtractive shift in the
membrane potential (equivalent to changing Vthresh). We explored shifts

over a range of 1 to 8 mV, similar to empirically observed changes in
membrane potential in response to serotonin (Ko et al., 2016). We ad-
justed the number of stimulus repetitions to obtain a comparable level of
baseline variability for the baseline and serotonin condition.

Inclusion criteria. For each unit, we required a minimum response to
the neuron’s preferred stimulus of 10 spikes/s, a minimum of four pre-
sentations per stimulus condition (except for the noise correlation and
Fano factor analysis, where �8 presentations per stimulus condition
were required), and that the neuron showed selectivity for the respective
stimulus dimension (orientation, spatial frequency, contrast, size; eval-
uated by an ANOVA at a significance threshold of p � 0.01). To be
included in the comparison of additive and multiplicative changes (Figs.
1, 2, 5), the type-II regression had to account for �70% of the variance.

Results
Two macaque monkeys performed a standard fixation task while
we recorded the activity of single units in their V1 during block-
wise iontophoretic application of serotonin (Fig. 1A). We exam-
ined the effect of serotonin on the visual responses to drifting
gratings that varied systematically in orientation, spatial fre-
quency, contrast, or size, and to briefly flashed gratings of varying
orientation (see Materials and Methods). We recorded a total of
265 single units in macaque V1 (118 from monkey M, and 147
from monkey K). To be included for further analysis, we required
a minimum response to the neuron’s preferred stimulus of 10
spikes/s, �4 presentations per stimulus condition, and that the
neuron showed selectivity for the respective stimulus dimension
as evaluated by an ANOVA at a significance threshold of p � 0.01.
These criteria were passed by 229 units (108 for monkey M; 121
for monkey K). Of these, 206 (100 for monkey M; 106 for monkey
K) were recorded with serotonin application and 65 (39 for mon-
key M; 26 for monkey K) with pH-matched saline (NaCl) appli-
cation as control experiments (thus, in a subset of 42 units, we
were able to measure responses for both serotonin and saline
application in consecutive blocks; moreover, whenever possible,
experiments along several stimulus dimensions were done on the
same unit in consecutive blocks).

Serotonin predominantly decreases the responses in V1 by
multiplicative changes of the tuning curves
The most salient consequence of the serotonin application was a
substantial decrease in the visual responses. This effect was evi-
dent for the tuning curves for orientation, spatial frequency, con-
trast, and size, respectively, in four example neurons (Fig. 1D, red
symbols). We found that these response changes could not be
explained by the iontophoretic current application: control ex-
periments with pH-matched saline (NaCl) did not result in such
modulation of the neuronal responses (Fig. 1D, black symbols).
Indeed, across the population, the mean firing rate in response to
gratings of different orientations decreased for the serotonin con-
dition (the median decrease was from 18 to 10 spikes/s) but not
for the saline application (median values, 14 and 15 spikes/s,
respectively), and the changes differed significantly between con-
ditions [Fig. 1E; p � 10�5, n5-HT � 76, nNaCl � 21; monkey M:
p � 10�3, n5-HT � 45, nNaCl � 11; monkey K: p � 10�3, n5-HT �
31, nNaCl � 10; significant modulation for serotonin: 51 of 76
units (67%) were suppressed; 4 of 76 units (5%) were enhanced;
significant modulation for saline: 4 of 21 units (19%) were sup-
pressed; 3 of 21 units (14%) were enhanced]. These results were
similar for gratings of varying spatial frequency, contrast, and size
(Fig. 1E). For spatial frequency, the median average firing rate for
serotonin decreased from 15 to 12 spikes/s and remained con-
stant at 11 spikes/s for saline application [p � 10�3, n5-HT � 37,
nNaCl � 10; monkey M: p � 0.41, n5-HT � 11, nNaCl � 2; monkey
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K: p � 0.001, n5-HT � 26, nNaCl � 8; significant modulation for
serotonin: 24 of 37 units (65%) were suppressed, 2 of 37 units
(5%) were enhanced; significant modulation for saline: 1 of 10
units (10%) was suppressed]. For contrast tuning, the median
firing rate decreased from 26 to 19 spikes/s for serotonin [the
respective values for saline application were 23 and 22 spikes/s;
p � 10�3, n5-HT � 101, nNaCl � 30; monkey M: p � 0.04, n5-HT �
66, nNaCl � 15; monkey K: p � 0.004, n5-HT � 35, nNaCl � 15;
significant modulation for serotonin: 58 of 101 units (57%) were
suppressed, 8 of 101 (8%) units were enhanced; significant mod-
ulation for saline: 4 of 30 (13%) were suppressed]. Similarly, the
mean firing rate decreased for the size tuning curves [29 to 25
spikes/s for serotonin; constant at 18 spikes/s for saline, p �
0.001, n5-HT � 35, nNaCl � 22; monkey M: p � 0.65, n5-HT � 14,
nNaCl � 6; monkey K: p � 10�4, n5-HT � 21, nNaCl � 16; all
Wilcoxon rank-sum tests; significant modulation for serotonin:
19 of 35 (54%) were suppressed, 5 of 35 (14%) were enhanced;
significant modulation for saline: 2 of 22 (9%) were suppressed, 5
of 22 (23%) were enhanced].

In a subset of experiments, unit isolation was maintained and
the animal worked for sufficiently long for a full sequence of
baseline, drug application, and recovery. The results for this sub-
set of experiments are shown in Figure 1C (same format as Fig.
1E), also supporting the significant decrease in firing when
serotonin was applied. The proportion of units for which full,
statistically defined (see Materials and Methods), recovery was

achieved was relatively small mainly because of sessions in which
the monkeys were not motivated to continue to work or the unit
isolation was lost. However, this relatively small proportion does
not affect the interpretation of the main results of this paper,
which relies on a comparison of the serotonergic modulation
with that for pH-matched saline, and this comparison was robust
when restricting the data to the subset of units with full recovery
and saline control experiments (Fig. 1C). To additionally verify
that a lack of recovery for some serotonin experiments did not
impact the saline control experiments, we also performed two
additional analyses. First, we compared the serotonergic modu-
lation with that for saline for units for which only one substance
(either serotonin or saline) per unit was applied. Second, we com-
pared the serotonergic modulation for units with full recovery
with the subset of the same dataset for which we also applied
saline. For both analyses, we found a significant difference be-
tween the modulation for serotonin and that for saline (compar-
ison across units: p � 10�7, n5-HT � 53, nNaCl � 23 and
comparison for units with full recovery: p � 0.04, n5-HT � 32,
nNaCl � 11, respectively; note that for each unit only the first
experiment per condition was included; Wilcoxon rank-sum
tests). Moreover, our analysis of the responses to the interleaved
blank stimuli revealed that the change in firing was not limited to
the stimulus-driven response, but also observed in response to
the blank stimuli (Fig. 2B).
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For the example tuning curves (Fig. 1D) serotonin seems to
primarily scale down the tuning curve, indicative of a gain de-
crease (multiplicative effect). We then quantified across the pop-
ulation whether the effect of serotonin was primarily additive or
multiplicative. To do so, we compared the tuning curves with and
without serotonin application, fit by type-II regression (Fig. 1F).
The slope and intercept of the regression line reflect the multipli-
cative (relative gain) and additive change. When comparing these
values for each unit across the population, we found that the
changes in the tuning curve were primarily accounted for by a
gain decrease for each type of tuning curve. For orientation tun-
ing curves, the median gain decreased to 74% after serotonin
application, in contrast to saline (median relative gain for saline:
103%; p � 10�5, n5-HT � 71, nNaCl � 21; monkey M: p � 0.01,
n5-HT � 43, nNaCl � 11; monkey K: p � 10�4, n5-HT � 28, nNaCl �
10; Fig. 1G). Similarly, for spatial frequency, the gain reduced on
average to 77% for serotonin (median relative gain for saline:
103%; p � 10�3, n5-HT � 37, nNaCl � 10; monkey M: p � 0.23,
n5-HT � 11, nNaCl � 2; monkey K: p � 10�3, n5-HT � 26, nNaCl �
8). For contrast tuning, the gain decreased on average to 78% for
serotonin (for saline the median relative gain was 99%; p � 10�4,
n5-HT � 100, nNaCl � 30; monkey M: p � 0.01, n5-HT � 66, nNaCl �
15; monkey K: p � 10�4, n5-HT � 34, nNaCl � 15). As for the other
stimulus dimensions, the median gain for size tuning was a de-
crease (to 85%) for serotonin while for saline the median relative
gain was unchanged at 100% (p � 0.003, n5-HT � 33, nNaCl � 20;
monkey M: p � 0.78, n5-HT � 13, nNaCl � 5; monkey K: p � 10�3,
n5-HT � 20, nNaCl � 15; all comparisons Wilcoxon rank-sum
tests). The normalized additive suppressive effect differed signif-
icantly from 0 for the serotonin but not for the saline conditions
for orientation, spatial frequency, and contrast (for orientation:
�0.02 for serotonin, p � 10�3, n � 76; 0.01 for saline, p � 0.96,
n � 21; for spatial frequency: median normalized additive change
for serotonin was �0.02, p � 0.01, n � 37; change for saline was
0.00, p � 0.56, n � 10; for contrast the median normalized addi-
tive change for serotonin was �0.02, p � 10�3, n � 100 and 0.00
for saline, p � 0.45, n � 30; for size: the corresponding changes
were �0.01 for serotonin, p � 0.62, n � 33, and 0.01 for saline,
p � 0.26, n � 20; Wilcoxon signed-rank test) but given the vari-
ability in the control condition, the additive suppression for se-
rotonin did not significantly exceed that for the control condition
(for orientation: p � 0.12, n5-HT � 71, nNaCl � 21; for spatial
frequency: p � 0.29, n5-HT � 37, nNaCl � 10; for contrast: p �
0.21, n5-HT � 100, nNaCl � 30; for size: p � 0.20, n5-HT � 33, nNaCl �

20; Wilcoxon rank-sum test). Moreover, the absence of an addi-
tive suppressive effect seemed to at least partially result from the
“iceberg effect” (Carandini and Ferster, 2000): as a consequence
of the spiking nonlinearity, spike rates are restricted to values �0
such that subtractive changes are limited by the minimum re-
sponse of the tuning curve. In support of this, we found a signif-
icant correlation between the size of the normalized additive
change and the minimum response of the tuning curve for the
baseline condition (r � �0.41, p � 10�8, n5-HT � 198; Spear-
man’s rank correlation; for this comparison we combined data
for different stimulus dimensions but included only one data
point per unit; data not shown). To verify that the observed gain
decrease was not merely a consequence of the iceberg effect, we
repeated the regression analysis after removing all data for which
the responses were 0. In the subset of units for which the regres-
sion fits to the reduced dataset met the inclusion criteria (see
Materials and Methods), we also found a significant gain decrease
(Fig. 2A). Together, the additive and multiplicative changes pro-
vided an excellent fit to the data. Indeed, this simple linear model
accounted for 90% of the variance (averaged across all regression
fits for serotonin in Fig. 1G; note that the quality of the fits was
similar for the saline controls: 92%). These results suggest that a
simple linear transformation, predominantly multiplicative, can
account for the serotonergic modulation of visual responses
along several visual dimensions.

Given that serotonin receptors are differentially expressed
across layers and on different cell types in the macaque V1
(Watakabe et al., 2009) the overall homogeneity of the effect is
surprising. We therefore wondered whether the serotonergic
modulation was systematically related to parameters that have
been reported to vary to a certain degree with layer, such as re-
ceptive field size, orientation, direction, and spatial-phase selec-
tivity (Ringach et al., 2002; Gur et al., 2005). To test this, we
compared each of these parameters with the strength of seroto-
nergic modulation (Fig. 3). Our analyses revealed no correlation
of the serotonergic modulation with these parameters (r � 0.08,
p � 0.28, n � 185 for equivalent width; r � 0.05, p � 0.72, n � 56
for f1/f0 ratio; r � 0.03, p � 0.77, n � 75 for direction tuning
index; r � �0.06, p � 0.62, n � 76 for circular variance; Spear-
man’s rank correlation with serotonergic modulation ratio for each).
Moreover, we did not observe a systematic difference in the seroto-
nergic modulation for narrow spiking compared with broad spiking
(defined by a spike waveform width of �200 or �200 �s, respec-
tively) units (p � 0.49; n � 206; Wilcoxon rank-sum test). Together,
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these analyses suggest that the observed serotonergic modulation
was not restricted to a particular cell type or layer.

Serotonin leaves visual tuning properties largely unchanged
We next wondered whether the serotonin application addition-
ally resulted in a systematic modulation of the visual encoding
properties along one of the visual stimulus dimensions we ex-
plored. To this end we fit descriptive functions (see Materials and
Methods) to the tuning curves and examined the effect of sero-
tonin parametrized by these fits. For orientation tuning, the se-
rotonergic modulation changed neither the preferred orientation
(Fig. 4A, top; p � 0.29, n5-HT � 71; monkey M: p � 0.34, n5-HT �
41; monkey K: p � 0.63, n5-HT � 30) nor the orientation band-
width (Fig. 4A, bottom; p � 0.05, n5-HT � 71; monkey M: p �
0.18, n5-HT � 41; monkey K: p � 0.23, n5-HT � 30; Wilcoxon
paired sign-rank tests; note that the slight decrease in bandwidth
did not significantly differ from the saline condition, p � 0.24,
nNaCl � 21). Similarly, serotonin did not alter the preferred spa-
tial frequency (Fig. 4B, top; p � 0.50, n5-HT � 37; monkey M: p �
0.32, n5-HT � 11; monkey K: p � 0.12, n5-HT � 26) or spatial
frequency bandwidth of the recorded neurons (Fig. 4B, bottom;
p � 0.11, n5-HT � 37; monkey M: p � 0.97, n5-HT � 11; monkey
K: p � 0.11, n5-HT � 26; Wilcoxon paired sign-rank tests). How-
ever, the amplitude of the fits was significantly reduced for both

orientation (p � 10�4, n5-HT � 71, nNaCl � 21; monkey M: p �
0.01, n5-HT � 41, nNaCl � 11; monkey K: p � 0.01, n5-HT � 30,
nNaCl � 10) and spatial frequency (p � 0.01, n5-HT � 37, nNaCl �
10; monkey M: p � 0.41, n5-HT � 11, nNaCl � 2; monkey K: p �
0.01, n5-HT � 26, nNaCl � 8; all Wilcoxon sign-rank tests), as
expected given the observed reduction in gain. Also as expected
from the reduction in gain, we observed a significant reduction in
Rmax for contrast tuning (Fig. 4C, bottom; p � 10�4, n5-HT � 99,
nNaCl � 28; monkey M: p � 0.01, n5-HT � 66, nNaCl � 14; monkey
K: p � 10�3, n5-HT � 33, nNaCl � 14; Wilcoxon sign-rank test).
Conversely, the sensitivity for changes in contrast (i.e., the steep-
ness of the tuning curve parametrized by the exponent n in the
Naka–Rushton function; see Materials and Methods), did not
change (p � 0.15, n � 99; monkey M: p � 0.43, n � 66; monkey
K: p � 0.19, n � 33; Wilcoxon paired sign-rank test; data not
shown). Interestingly, we also found that the contrast that yielded
half the maximum response (c50) was slightly increased. We note
that this trend did not reach statistical significance in the popu-
lation and was only significant in one of the animals (p � 0.06,
n5-HT � 99; monkey M: p � 0.01, n5-HT � 66; monkey K: p �
0.56, n5-HT � 33). Nonetheless, this trend raises the question
whether serotonin engages a similar mechanism as contrast gain
control, which we will address in more detail below.
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Finally, we examined whether serotonin had a systematic ef-
fect on receptive field size, as suggested by previous work in anes-
thetized rats (Waterhouse et al., 1990). To address this question,
we first compared the stimulus size for which the visual response
was maximal (“preferred size”) with and without application of
serotonin. In contrast to the previous suggestion, we found no
systematic change in the preferred size of the neurons (Fig. 4D,
top; p � 0.70, n5-HT � 32; monkey M: p � 0.41, n5-HT � 12;
monkey K: p � 0.30, n5-HT � 20; Wilcoxon paired sign-rank
tests). To explore the effect of center surround interactions, we
also examined the degree to which the visual responses to large
stimuli decreased the visual stimuli compared with stimuli of a
neuron’s preferred size (“suppression index”). Similar to the re-
sults for preferred size, we found no significant effect of serotonin
on the neurons’ surround suppression quantified by the suppres-
sion index (Fig. 4D, bottom; p � 0.54, n5-HT � 32; monkey M:
p � 0.38, n5-HT � 12; monkey K: p � 0.74, n5-HT � 20; Wilcoxon
paired signed-rank tests).

Together these analyses corroborate our finding that the ob-
served serotonergic modulation is dominated by a multiplicative
change and modest additive change of the visual responses. Be-
yond that, serotonin leaves the receptive field properties largely
unchanged.

Serotonin weakly increases the latency of the orientation
selective response
We next wondered whether serotonin influenced the dynamics of
the visual response, since previous work reported serotonergic
influences on the dynamics of subcortical auditory processing in
bats (Hurley and Pollak, 2005). To address this question, we used
orientation subspace reverse correlation (Ringach et al., 1997), an
approach that allows for detailed quantification of the dynamics
of the orientation-selective response. The stimulus consisted of a
random sequence of gratings of the same spatial frequency but
different spatial phases and orientations, updated every 10 ms
(see Materials and Methods). Figure 5A shows the average SDFs
for each orientation for one example neuron for the baseline
(top) and serotonin (bottom) blocks. We extracted tuning curves
(“orientation subspace maps”) from these SDFs (Nienborg and
Cumming, 2009; Fig. 5B) and quantified the changes in tuning
as additive and multiplicative changes using type-II regression.
Similar to the results for drifting gratings, we found a significant
decrease in the mean response (Fig. 5F; p � 10�4, n5-HT � 47,
nNaCl � 11; monkey M: p � 0.08, n5-HT � 34, nNaCl � 3; monkey
K: p � 10�3, n5-HT � 13, nNaCl � 8) that was largely explained by
multiplicative changes in the tuning curves (Fig. 5G; relative gain:
p � 0.007, n5-HT � 40, nNaCl � 5; monkey M: p � 0.06, n5-HT � 31,
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nNaCl � 3; monkey K: p � 0.15, n5-HT � 9, nNaCl � 2; additive
chane: p � 0.99, n5-HT � 40, nNaCl � 5; monkey M: p � 0.86,
n5-HT � 31, nNaCl � 3; monkey K: p � 0.44, n5-HT � 9, nNaCl � 2).
To explore the dynamics of the orientation-selective response, we
computed the SD across the SDFs over time (Fig. 5C). For the
example cell, we find that the response latency for the orientation-
selective component of the response is slightly longer after sero-
tonin application (Fig. 5A,C). Importantly, our control analysis
(Fig. 5D,E; see Materials and Methods) reveals that this effect
cannot be explained by the decreased signal-to-noise ratio owing
to the reduced spike rate in the serotonin condition. Indeed,
across the population, we observed a small but consistent and
statistically significant increase in response latency (Fig. 5H; p �
10�3, n5-HT � 45; monkey M: p � 0.01, n5-HT � 33; monkey K:
p � 0.02, n5-HT � 12), which was correlated with the size of the
serotonergic modulation in firing rate (Fig. 5I; r � �0.51, p �
10�3, n5-HT � 45; monkey M: r � �0.56, p � 10�3, n5-HT � 33;
monkey K: r � �0.20, p � 0.54, n5-HT � 12).

The serotonin-induced changes differ quantitatively from
contrast gain, but are accounted for by a simple membrane
potential-based model
The main serotonin-dependent changes of the tuning curves (i.e.,
a largely divisive change in the response and a slight increase in
the response latency) are reminiscent of the divisive reduction
and phase delay when lowering contrast (Carandini et al., 1997),
which are accounted for by a model using divisive normalization
(Heeger, 1992; Carandini et al., 1997). We therefore wondered
whether the serotonin-induced changes mimic a reduction in
contrast, suggesting it may engage a mechanism similar to con-
trast normalization. To test this hypothesis, we therefore com-
pared the performance of two descriptive models, a contrast-gain
model and an activity-gain model (Fig. 6A). For the contrast-gain
model, the modulation by serotonin would only mimic a change
in contrast, resulting in a horizontal shift of the tuning curve (Fig.
6A, left). Conversely, for the activity-gain model, the modulation
by serotonin would result in a downscaling of the entire tuning
curve (Fig. 6A, right). While the contrast-gain model provided a

better fit to the data for a small number of cells in support of the
hypothesis that the modulation by serotonin engages a similar
mechanism as contrast, the activity-gain model performed sub-
stantially better in most cases (Fig. 6B; p � 10�6, n5-HT � 99;
monkey M: p � 0.01, n5-HT � 66; monkey K: p � 10�4, n5-HT �
33; Wilcoxon paired signed-rank test). This indicates that mod-
ulation by serotonin relies on a mechanism that differs from
contrast-gain control.

Finally we wondered whether a simple membrane potential-
based model could account for the divisive change in the re-
sponse and the slight increase in response latency. Specifically, we
explored whether a linear change at the level of the membrane
potential would suffice to account for the observed effects by
serotonin (Fig. 7). This membrane potential-based model con-
sisted of an orientation-selective response at the level of the mem-
brane potential followed by a temporal low-pass filter to fit the
orientation bandwidth and average latency of the neuronal re-
sponse to the stimulus used for orientation subspace reverse cor-
relation (see Materials and Methods; Fig. 7A). The time-varying
response of the membrane potential was then passed through a
threshold-linear spiking nonlinearity. To account for the effect of
serotonin, a subtractive shift was applied to the membrane po-
tential [Fig. 7A, Vm(t)], moving it further away from the spiking
threshold. Note that, while biophysically different, in our model
this shift is equivalent to increasing the spiking threshold (Vthresh)
of the spiking nonlinearity. We found that this shift could ac-
count for the observed changes in gain, the additive changes (Fig.
7D), as well as the small increase in latency (Fig. 7B,E). A simple
subtractive change of a threshold-linear spiking nonlinearity can
therefore capture the serotonin-induced modulation of the visual
responses.

Serotonin has no systematic effect on response variability
or covariability
Neuromodulators, such as acetylcholine, have been implicated in
affecting not only the magnitude (Disney et al., 2007) but also the
variability of sensory responses (Pinto et al., 2013), and it has
been hypothesized that serotonin mediates an additional, acetyl-
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choline-independent, mechanism of response desynchronization
(Harris and Thiele, 2011). To test for this possibility, we mea-
sured the stimulus-independent response covariability [“noise-
correlation” (Bair et al., 2001; Cohen and Kohn, 2011)] between
the single-unit and the multiunit activity recorded on the same
electrode. We note that measuring this correlation between
single-unit and multiunit activity recorded on the same electrode
has been shown to overestimate the absolute size of this correla-
tion (Ecker et al., 2010). Nonetheless, this approach allows us to
infer relative changes in noise correlation between the baseline
and the serotonin condition. To reduce the effect of nonstation-
arities resulting from the onset of the serotonin application on
noise correlations, we excluded the first 20 stimulus presenta-

tions of each experimental block for this analysis. Since fixational
eye movements can affect the variability and covariability of vi-
sual neurons, we explored whether these differed systematically
between the serotonin application and the saline controls. To this
end, we compared the fixation precision (Cherici et al., 2012) as
well as the frequency and amplitude of microsaccades within the
fixation window (Fig. 8). For none of these metrics differed the
modulation systematically between the serotonin and the saline
application. Finally, we corrected noise correlation by that pre-
dicted from the change in firing rate (see Materials and Methods).
In contrast to the hypothesis, we found no significant change in
noise correlations for the serotonin condition (Fig. 9B; for orien-
tation: p � 0.74, n5-HT � 63 for serotonin; for spatial frequency:
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n5-HT � 2 for serotonin; for contrast: p � 0.07, n5-HT � 45 for
serotonin; for size: p � 0.59, n5-HT � 15 for serotonin; all Wil-
coxon paired signed-rank test). We also did not observe a system-
atic relationship between the size of effect on firing rate and noise
correlation (Fig. 9D; for orientation: r � 0.07, p � 0.57, n5-HT �
63; for spatial frequency: n5-HT � 2; for contrast: r � �0.02, p �
0.88, n5-HT � 45; for size: r � �0.13, p � 0.66, n5-HT � 15; all
Spearman’s rank correlation). Finally, we also explored the effect
of serotonin on the variability of the sensory response, quantified
as Fano factor, and observed no systematic change in the two
conditions (Fig. 9A; for orientation: p � 0.77, n5-HT � 61; for
spatial frequency: n5-HT � 1; for contrast: p � 0.81, n5-HT � 42;
for size: p � 0.17, n5-HT � 11; all Wilcoxon paired signed-rank
tests). Moreover, the change in mean firing rate was not associ-
ated with a systematic change in Fano factor (Fig. 9C; for orien-
tation: r � �0.22, p � 0.08, n5-HT � 61; for spatial frequency:
n5-HT � 1; for contrast: r � �0.14, p � 0.38, n5-HT � 42; for size:
r � 0.19, p � 0. 58, n5-HT � 11; all Spearman’s rank correlation).
Additionally, there was no systematic change in the difference in
Fano factor in response to a neuron’s preferred stimulus com-
pared with that to a blank stimulus (Fig. 9E). Together, these
analyses indicate that the application of serotonin leaves the re-
sponse variability and covariability in macaque V1 largely un-
changed.

Discussion
Here we combined extracellular recordings and iontophoresis in
V1 of awake macaques to explore the modulatory effects of sero-
tonin on visual processing. We found that across a variety of
visual stimulus dimensions, the modulation by serotonin across
the neuronal population was surprisingly uniform and (1) was
dominated by a decrease in the neurons’ response gain, (2) showed a
slight slowing of the dynamics of the response, and (3) resulted in no
systematic change of the neuronal variability, covariability, or
stimulus selectivity. Our observed effects could be captured by a
descriptive model in which serotonin caused a simple additive
change at the level of the threshold-linear spiking nonlinearity.

A surprisingly uniform effect despite receptor and
cellular diversity
In this study, we focused on the serotonergic modulation in the
awake macaque of functional tuning properties along four well
characterized visual dimensions (orientation, spatial frequency,
contrast, and size) that are encoded by neurons in V1. We focused
on awake animals using the endogenous ligand while previous
work examined the modulation to receptor-specific ligands in the
striate cortex of anesthetized macaques and, in contrast with the
predominantly suppressive effect we found, observed variable
modulation (Watakabe et al., 2009). This apparent discrepancy
may in part reflect a net effect between facilitation and suppres-
sion mediated by different receptor classes all activated by sero-
tonin. Additionally, our recordings in the awake animal likely
mimimized fluctuations in brain state found under anesthesia
(Ecker et al., 2014) and avoided effects of anesthesia on seroto-
nergic neurons (Johansen et al., 2015). Moreover, the focus on
parametrized functional properties may have contributed to our
ability to identify an effect—a gain decrease—that is surprisingly
functionally uniform across the population and stimulus dimen-
sions. This effect dominated despite variability on a neuron-by-
neuron basis, which was also observed previously in anesthetized
animals (Waterhouse et al., 1990; Watakabe et al., 2009). In light
of the known diversity of receptor expression on different cell
types in the macaque V1 (Watakabe et al., 2009), this main ob-
served effect is likely mediated by different cellular or network
mechanisms. For example, in the input layers of V1, receptors
5-HT1B and 5-HT2A are expressed by the majority of excitatory
neurons, but not by GABAergic neurons, and are typically coex-
pressed by the same neurons in layer IVC (Watakabe et al., 2009).
The predominantly divisive effect of serotonin may therefore re-
sult from an interaction of the receptor activation in excitatory
neurons. A previous study applied a 5-HT1A agonist to layers IV
and V in V1 of anesthetized macaques and also observed a de-
crease of multiunit activity (Rauch et al., 2008). Given the lack of
5-HT1A-receptor expression in these layers in macaque V1
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(Watakabe et al., 2009), this decrease in activity may at least par-
tially reflect a cross-activation of the densely expressed 5-HT1B

receptors. This modulation was thought to be mediated by a
hyperpolarization of the membrane potential, analogous to the
membrane potential-based model we present here. Serotonin-
mediated hyperpolarization of the membrane potential was also
recently identified at the axon initial segment in auditory neurons
in gerbils (Ko et al., 2016). Conversely, in layer II, where the
receptors are expressed on a subset of both excitatory and inhib-
itory neurons, but typically not coexpressed (Watakabe et al.,
2009), the decrease in gain may reflect network interactions be-
tween inhibition and excitation. Different circuit elements may also
include vasoactive intestinal peptide-positive (VIP	) interneurons
that express the 5-HT3A receptor (Rudy et al., 2011), although in
the macaque V1 5-HT3A-receptor expression has only been ob-
served for layers 5/6 (Watakabe et al., 2009), while VIP	 in-
terneurons are most pronounced in layers 2/3 (Gabbott and
Bacon, 1997). The same functional computation— gain con-
trol—may therefore be implemented by different components of
the neuronal hardware within the same neuromodulator system
serotonin, at least on the time scale we examined.

Indeed, since we applied serotonin in blocks in the minute
time scale, the modulation likely mimics changes in the tonic

level of discharge of serotonergic neurons, implicated in signaling
the contextual valence on such slow time scales, and providing
different signals from the phasic responses (Cohen et al., 2015).
Interestingly, for short (�1 s) phasic serotonergic stimulation, a
divisive modulation was previously observed only for the spon-
taneous response, not the sensory-driven response, in the olfac-
tory bulb in anesthetized mice (Lottem et al., 2016), in contrast
with our findings. Conversely, a decrease in gain of the sensory
response in the mouse olfactory bulb was observed for sustained
(�30 s) serotonergic activation (Petzold et al., 2009), similar to
the modulation observed in this study.

Behaviorally, decreasing the gain of a sensory response can
contribute to a delay or reduction in the response to sensory
stimulation, as has been previously observed for a reduced startle
response in rats (Davis et al., 1980; Sipes and Geyer, 1994), or
reduced mechanosensory responsivity in mice (Dugué et al.,
2014). Although these behavioral findings have typically been
interpreted in the context of a serotonergic role for motor or
emotional processing (Crockett et al., 2009; Cools et al., 2011;
Correia et al., 2017), the observed decreased sensory gain suggests
at least partially a sensory involvement. It may also reflect a sensory
signature of how serotonin promotes waiting (Miyazaki et al., 2014;
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Ranade et al., 2014; Fonseca et al., 2015) by lowering the salience
of sensory input.

On this slow (minute) time scale, serotonin may be comple-
mentary to the action of cholinergic neuromodulation, which has
been found to increase the gain of the visual input in macaque V1
(Disney et al., 2007), and has been linked to mediating spatial
attention (Herrero et al., 2008). Notably, acetylcholine in ma-
caque V1 was found to substantially modulate the gain but not
the variability of the response (Herrero et al., 2008), a dissocia-
tion that is mirrored by our results here. It suggests that distinct
mechanisms are available to modulate the variability and level of
the sensory responses, although cognitive states, such as spatial at-
tention, typically affect both (Cohen and Maunsell, 2009; Mitchell et
al., 2009).

Potential implications for the serotonergic role in visual
hallucinations
An influential perspective of perception is that it reflects an infer-
ence process (Helmholtz, 1867; Gregory, 1980; Lee and Mum-
ford, 2003; Yuille and Kersten, 2006), in which internal beliefs
about the world are combined with the incoming sensory evi-
dence (Lee and Mumford, 2003; Yuille and Kersten, 2006).
Mounting physiological evidence suggests that some of this com-
bination of internal (“top-down”) and external sensory signals
occur already at the level of sensory neurons (Fiser et al., 2010;
Nienborg and Roelfsema, 2015; Cumming and Nienborg, 2016).
In this framework, psychiatric diseases such as schizophrenia
(Friston, 2005) are associated with an imbalance between inter-
nally generated (top-down) and externally driven feed-forward
signals. Hallucinations, for example, have been suggested to arise
from an imbalance toward internally generated over externally
driven sensory signals (Friston, 2005; Notredame et al., 2014;
Jardri et al., 2016; Schmack et al., 2017). Such an imbalance may
also explain, for example, visual hallucinations during visual im-
pairment (Charles Bonnet syndrome; Gold and Rabins, 1989),
when the feed-forward visual input is degraded. Similarly, de-
creasing the gain of the visual input could shift the balance to-
ward the internally generated signals, and thus result in visual
hallucinations. The decrease in gain by serotonin we found here
may therefore shed light onto the mechanism by which the visual
cortex is involved in hallucinations caused by serotonergic hallu-
cinogens (Bressloff et al., 2002; de Araujo et al., 2012; Kometer et
al., 2013; Carhart-Harris et al., 2016; Kometer and Vollenweider,
2016).

Conclusion
To our knowledge this is the first study to explore the role of
serotonergic modulation of neuronal activity in the sensory cor-
tex of awake animals. The modulatory effect we observed across
the population was surprisingly homogeneous—a simple de-
crease in the response gain of the neural activity. Such gain mod-
ulation is an important component of the cortical computation
(Salinas and Thier, 2000) that controls the responses without
changing the receptive field properties. It is therefore well suited
to modulate the responses according to the animal’s internal
state, e.g. influenced by the valence of the contextual environ-
ment (Cohen et al., 2015).
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