The elimination of parasites under consideration of their numerically discrete and finite nature

Hans-Peter Duerr
Markus Schwehm, Martin Eichner

Institut für Medizinische Biometrie, Universität Tübingen
Program

- Modeling approach (recapitulation)
 - Calibration results
 - Limitation
 - Eradicability
 - Outlook
Parasite distributions often cannot be adequately characterized by the mean only:

In a finite world, limitation is the rule:
Acquisition, maturation & death of parasites
Model software

![Graph showing model software interface](image)

<table>
<thead>
<tr>
<th>Log10(ABR)</th>
<th>0.0</th>
<th>0.0144881119628793</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.012937297847966</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00129915699812</td>
<td>0.001856143045735485</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.70635922773737</td>
<td></td>
</tr>
<tr>
<td>0.00235991529267</td>
<td>0.002897293703209</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.67906723816862</td>
<td></td>
</tr>
<tr>
<td>0.003489366194535</td>
<td>0.004027981267711</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.20962243615008</td>
<td></td>
</tr>
<tr>
<td>0.004617322599248</td>
<td>0.005155954093357</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.79994733382364</td>
<td></td>
</tr>
<tr>
<td>0.005745978139956</td>
<td>0.006284601244634</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0064601244634</td>
<td></td>
</tr>
<tr>
<td>0.00687373896887</td>
<td>0.00741240494428</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0074124049442</td>
<td></td>
</tr>
<tr>
<td>0.00799046909805</td>
<td>0.008529125060941</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0085291250609</td>
<td></td>
</tr>
<tr>
<td>0.0091171950218996</td>
<td>0.009655961121743</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0096559611217</td>
<td></td>
</tr>
<tr>
<td>0.010234996907586</td>
<td>0.0107737332854</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0107737332854</td>
<td></td>
</tr>
<tr>
<td>0.01135283979118</td>
<td>0.01189166528894</td>
<td>0.0</td>
<td>2.0</td>
<td>39.0</td>
<td>232.0</td>
<td>0.0576198219516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0124706016812</td>
<td>0.0130094381372</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0</td>
<td>72.0</td>
<td>325.0</td>
<td>0.6016271782897</td>
<td></td>
</tr>
<tr>
<td>0.0135983827352</td>
<td>0.0141272157802</td>
<td>0.0</td>
<td>0.0</td>
<td>20.0</td>
<td>101.0</td>
<td>397.0</td>
<td>0.7620379292492</td>
<td></td>
</tr>
<tr>
<td>0.01471615478774</td>
<td>0.0152449818322</td>
<td>0.0</td>
<td>3.0</td>
<td>36.0</td>
<td>125.0</td>
<td>362.0</td>
<td>0.8267168471761</td>
<td></td>
</tr>
<tr>
<td>0.015833943017554</td>
<td>0.0163627690617</td>
<td>0.0</td>
<td>0.0</td>
<td>7.0</td>
<td>49.0</td>
<td>145.0</td>
<td>0.0882740142751</td>
<td></td>
</tr>
<tr>
<td>0.01695172510718</td>
<td>0.0174805511503</td>
<td>0.0</td>
<td>0.0</td>
<td>12.0</td>
<td>61.0</td>
<td>161.0</td>
<td>0.8798302499203</td>
<td></td>
</tr>
<tr>
<td>0.01806949720019</td>
<td>0.0185983332434</td>
<td>0.0</td>
<td>0.0</td>
<td>17.0</td>
<td>72.0</td>
<td>174.0</td>
<td>308.0</td>
<td>0.9319429376534</td>
</tr>
<tr>
<td>0.0191872692932</td>
<td>0.0197161053365</td>
<td>0.0</td>
<td>0.0</td>
<td>23.0</td>
<td>81.0</td>
<td>184.0</td>
<td>333.0</td>
<td>0.9915356256508</td>
</tr>
<tr>
<td>0.02030503138687</td>
<td>0.02083386743015</td>
<td>0.0</td>
<td>0.0</td>
<td>29.0</td>
<td>89.0</td>
<td>192.0</td>
<td>337.0</td>
<td>0.9915356256508</td>
</tr>
<tr>
<td>0.02142279348016</td>
<td>0.02195162952342</td>
<td>0.0</td>
<td>0.0</td>
<td>35.0</td>
<td>95.0</td>
<td>210.0</td>
<td>400.0</td>
<td>0.9915356256508</td>
</tr>
</tbody>
</table>

Modeling approach Calibration Limitation Eradicability Outlook
Program

- Modeling approach (recapitulation)
- Calibration results
- Limitation
- Eradicability
- Outlook
Calibration: ABR - ATP

Calibration: $\text{Prev}_{\text{nodules}} - \text{Prev}_{\text{MF}}$
Calibration: $M_{\text{f, skin}} - \text{Prev}_{\text{MF}}$

Calibration: $\text{Mf}_{\text{skin snip}} - \text{MF}_{\text{fly}}$

Calibration: ATP - MF

Calibration: $\text{MF}_{\text{ingested}} - L_{\text{fly}}$

Program

• Modeling approach (recapitulation)
• Calibration results

• Limitation

• Eradicability
• Outlook
Interventions under chain limitation

Life cycle stages s_1, s_2, s_3, s_4:

Chain limitation:

- Equilibrium *before* intervention
- Equilibrium *after* intervention
Example:
limitation between s_i and s_{i+1} is of the form:

$$s_{i+1}(s_i) = \frac{\alpha_i s_i}{1 + \alpha_i s_i}$$

For s_2, the equilibrium solution results from

$$s_2 = s_1(s_4(s_3(s_2)))$$

which can be solved for s_2:

$$s_2^* = \frac{\alpha_1\alpha_2\alpha_3\alpha_4 - 1}{\alpha_2(1 + \alpha_3 + \alpha_3\alpha_4 + \alpha_1\alpha_3\alpha_4)}$$

Likewise:

$$s_3^* = \frac{\alpha_1\alpha_2\alpha_3\alpha_4 - 1}{\alpha_3(1 + \alpha_4 + \alpha_4 + \alpha_1\alpha_2\alpha_4)}$$

$$s_4^* = \frac{\alpha_1\alpha_2\alpha_3\alpha_4 - 1}{\alpha_4(1 + \alpha_1 + \alpha_1\alpha_2 + \alpha_1\alpha_2\alpha_3)}$$

Assume: an intervention reduces s_1 by 90%
and reductions in the other variables follow accordingly
Chain limitation causes stability
Program

• Modeling approach (recapitulation)

• Calibration results

• Limitation

• Eradicability

• Outlook
Eradicability of onchocerciasis

Threshold biting rate:
TBR ~ 30 bites per (person year)
Program

- Modeling approach (recapitulation)
- Calibration results
- Prevalence vs. intensity
- Limitation
- Eradicability

- Outlook
Outlook

• continue calibration
• determine Threshold Biting Rate (ABR\text{crit})
• analyze intervention with microfilaricides
• determine the critical coverage for elimination with microfilaricides
• analyze other interventions, e.g. exposure prophylaxis (clothing)
Hans-Peter Duerr
Universität Tübingen
Institut für Medizinische Biometrie