Solving the master equation of the transmission of macroparasites

Hans-Peter Duerr
Institut für Medizinische Biometrie, Universität Tübingen

Macroparasites, vector-borne
Example: Life-cycle of *Onchocerca volvulus*

- Definite host
 - Adult parasite
 - Microfilariae
 - Larvae
 - ATP (Annual transmission potential)
 - L1
 - L2
 - Vector
 - ABR (Annual Biting Rate)
 - L3
 - L4
 - Adult parasite
 - Ms
 - Mi
 - Mh
Problems & Motivation
(The modellers' dilemma)

"... It is of course desirable to work with manageable models which maximize

generality, realism and precision

toward the overlapping but not identical goals of

understanding, predicting, and modifying nature.

But this cannot be done. ..."

--

Wishes, demands & constrictions

Deterministic model

generality

understanding Biology of disease

- Heterogeneities among parasites, vectors & hosts
- Discrete & finite distributions

predicting Intervention success

realism

Stochastic model

Parasite distributions often cannot be adequately characterized by the mean only:

Ingested m_i per fly

<table>
<thead>
<tr>
<th>Ingested m_i per fly</th>
<th>Relative frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>200</td>
<td>0.2</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
</tr>
<tr>
<td>400</td>
<td>0.4</td>
</tr>
<tr>
<td>500</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Model compartments & rates

\[H_{w,v} \]

Number of hosts with \(v \) premature (developing L4) and \(w \) mature worms (adult worms).

\(v^+ \): maximum no. of premature worms in the host
\(w^+ \): maximum no. of mature worms in the host

\[u^+ = 10, \ v^+ = 10, \ w^+ = 200, \ \sigma_w = 1/10 \text{ yr}, \ \sigma_H = 1/50 \text{ yr}, \ \mu_w = 1/\text{ yr} \]

\[\mu_H \] will be calculated by the algorithm as the sum over all dying individuals, yielding a constant population size.
Acquisition, maturation & death of parasites

No. of adult worms \([0…w^+ = 200]\)

\[\Lambda^u_{w,v} \]

No. of immature worms \([0…v^+ = 10]\)

\[\mu_H \]

\[\sigma_H \]

\[\sigma_W \]

Note the assumption: hosts cannot harbour more than 10 L4 at the same time. This is a strong mechanism of limitation.
Transitions (only infection):

Host state before infection

- $H_{w,0}$
- $H_{w,1}$
- $H_{w,2}$
- $H_{w,3}$
- $H_{w,4}$
- $H_{w,5}$
- $H_{w,6}$

Host state after infection

No. of L3 transmitted:
- $u^+ = 3 \text{ L3}$
- $v^+ = 6 \text{ L4}$
- $w^+ = 3 \text{ adult worms}$

Example:
- $u = 1 \text{ L3}$
- $u = 2 \text{ L3}$
- $u = 3 \text{ L3}$

$H_{w,2}$ can originate from...
\[
\frac{dH_{w,2}}{dt} = \ldots + \sum_{i=0}^{1} H_{w,i} L_{w,i}^{2-i}
\]

In general:
\[
\frac{dH_{w,v}}{dt} = \ldots + \sum_{i=\text{Max}(0,v-u^+)}^{v-1} H_{w,i} L_{w,i}^{v-i}
\]

$H_{w,2}$ can become...
\[
\frac{dH_{w,2}}{dt} = \ldots - \sum_{u=1}^{3} H_{w,2} L_{w,2}^{u}
\]

In general:
\[
\frac{dH_{w,v}}{dt} = \ldots - \sum_{u=1}^{u^+} H_{w,v} L_{w,v}^{u}
\]

$H_{w,6}$ can originate from...
\[
\frac{dH_{w,6}}{dt} = \ldots + \sum_{v=6-3}^{6-1} \sum_{u=6-v}^{3} H_{w,6} L_{w,6}^{u}
\]

In general:
\[
\frac{dH_{w,v'}}{dt} = \ldots + \sum_{v=v'-u^+}^{v'-1} \sum_{u=1}^{u^+} H_{w,v'} L_{w,v'}^{u}
\]
Acquisition & death of parasites: model

\[
dH_{w,v} = \frac{dH_{w,v}}{dt} = -\sigma_H H_{w,v} - w\sigma_W H_{w,v} + (w+1)\sigma_W H_{w+1,v} - \sum_{u=1}^{u^+} H_{w,v} \Lambda^u_{w,v} + \sum_{i=\text{Max}(0,v-u^+)}^{v-1} H_{w,i} \Lambda^{v-i}_{w,i} - \nu \mu_v H_{w,v} + (v+1)\mu_v H_{w+1,v+1}
\]
Acquisition & death of parasites: equations

\[
\mu_H = \sum_{v=0}^{w^+} \sum_{w=0}^{v^+} \sigma_H(w) H_{v,w}
\]

Indices refer to compartments!

\[
\frac{dH_{0,0}}{dt} = \mu_H - \sigma_H(0) H_{0,0} + (0 + 1) \sigma_W H_{0+1,0} - \sum_{v=1}^{w^+} H_{0,v} \Lambda_{v,0}^W
\]

\[
\frac{dH_{0,v}}{dt} = -\sigma_H(0) H_{0,v} + (0 + 1) \sigma_W H_{0+1,v} - \sum_{w=1}^{v^+} H_{0,w} \Lambda_{v}^W + \sum_{i=\max(0,v-n^+)}^{\min(v^+,n^+)} H_{0+1,i} \Lambda_{v,i}^W - v_{\mu_Y} H_{0,v}
\]

\[
\frac{dH_{0,v^+}}{dt} = -\sigma_H(0) H_{0,v^+} + (0 + 1) \sigma_W H_{0+1,v^+} + \sum_{i=\max(0,v-n^+)}^{\min(v^+,n^+)} H_{0+1,i} \Lambda_{v,i}^W - v^+ \mu_Y H_{0,v^+}
\]
Acquisition & death of parasites: equations

\[\frac{dH_{w,0}}{dt} = -\sigma_H(w)H_{w,0} - w\sigma_W H_{w,0} + (w + 1)\sigma_W H_{w+1,0} - \sum_{u=1}^{v-1} H_{w,u}\Lambda_{w,u}^\Sigma + (0 + 1)^{\mu_H} H_{w-1,0+1} \]

\[\frac{dH_{w,v}}{dt} = -\sigma_H(w)H_{w,v} - w\sigma_W H_{w,v} + (w + 1)\sigma_W H_{w+1,v} - \sum_{u=1}^{v-1} H_{w,u}\Lambda_{w,u}^\Sigma + \sum_{i=\max(0,v-u)}^{v-1} H_{w+i}\Lambda_{w,i}^{v-i} - v^{\mu_H} H_{w,v} + (v + 1)^{\mu_H} H_{w-1,0+1} \]

\[\frac{dH_{w,v+1}}{dt} = -\sigma_H(w)H_{w,v+1} - w\sigma_W H_{w,v+1} + (w + 1)\sigma_W H_{w+1,v+1} + \sum_{i=\max(0,v-u)}^{v-1} H_{w+i}\Lambda_{w,i}^{v-i} - v^{\mu_H} H_{w,v+1} \]
Acquisition & death of parasites: equations

\[
\begin{align*}
\frac{dH_{w^0,\nu}}{dt} &= -\sigma_H(w^0)H_{w^0,\nu} - w^+\sigma_W H_{w^0,\nu} \\
\frac{dH_{w^+,\nu}}{dt} &= -\sigma_H(w^+)H_{w^+,\nu} - w^+\sigma_W H_{w^+,\nu} \\
\frac{dH_{w^+,\nu}}{dt} &= -\sigma_H(w^+)H_{w^+,\nu} - w^+\sigma_W H_{w^+,\nu} + \sum_{\nu=1}^{v-1} H_{w^+,\nu} \Lambda_{w^+,\nu} - \nu H_{w^+,\nu} + (\nu + 1) \mu_H H_{w^+,\nu+1} \\
&+ \sum_{\nu=1}^{v-1} \sum_{i=v^0}^{v-1} H_{w^+,i} \Lambda_{w^+,i} - \nu^+ \mu_H H_{w^+,\nu} + (\nu + 1) \mu_H H_{w^+,\nu+1}
\end{align*}
\]
Acquisition & death of parasites: equations

<table>
<thead>
<tr>
<th></th>
<th>Hosts are born</th>
<th>Hosts die</th>
<th>Parasites die</th>
<th>Parasites acquired</th>
<th>Parasites mature</th>
<th>Results</th>
<th>Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-send +receive)</td>
<td>(-send +receive)</td>
<td>(-send +receive +receive borderline)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{dH_{3,0}}{dt})</td>
<td>(\mu_H) - (\sigma_{H}(0)H_{3,0})</td>
<td>no send</td>
<td>((0 + 1) \sigma_W H_{3+1,0})</td>
<td>no receive</td>
<td>no send</td>
<td>no send</td>
<td>no receive borderline</td>
</tr>
<tr>
<td>(\frac{dH_{3,\gamma}}{dt})</td>
<td>(-\sigma_{H}(0)H_{3,\gamma})</td>
<td>no send</td>
<td>((0 + 1) \sigma_W H_{3+1,\gamma})</td>
<td>no receive</td>
<td>no receive</td>
<td>no receive borderline</td>
<td></td>
</tr>
<tr>
<td>(\frac{dH_{3,\gamma^+}}{dt})</td>
<td>(-\sigma_{H}(0)H_{3,\gamma^+})</td>
<td>no send</td>
<td>((0 + 1) \sigma_W H_{3+1,\gamma^+})</td>
<td>no receive</td>
<td>no receive</td>
<td>no receive borderline</td>
<td></td>
</tr>
<tr>
<td>(\frac{dH_{w,0}}{dt})</td>
<td>(-\sigma_{H}(w)H_{w,0}) - (w \sigma_W H_{w,0}) + ((w + 1) \sigma_W H_{w+1,0}) - (\sum_{i=1}^{V-1} H_{w,0} L_{w,i}^0)</td>
<td>no receive</td>
<td>no receive</td>
<td>no send</td>
<td>((0 + 1) \mu_H H_{w-1,0+1})</td>
<td>no receive borderline</td>
<td></td>
</tr>
<tr>
<td>(\frac{dH_{w,\gamma}}{dt})</td>
<td>(-\sigma_{H}(w)H_{w,\gamma}) - (w \sigma_W H_{w,\gamma}) + ((w + 1) \sigma_W H_{w+1,\gamma}) - (\sum_{i=1}^{V-1} H_{w,\gamma} L_{w,i}^\gamma) + (\sum_{i=1}^{V-1} H_{w,i} L_{w,i}^{\gamma-1}) - (\gamma \mu_H H_{w,\gamma}) (+ (v + 1) \mu_H H_{w-1,\gamma+1})</td>
<td>no receive</td>
<td>no receive</td>
<td>no receive</td>
<td>no receive borderline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{dH_{w,\gamma^+}}{dt})</td>
<td>(-\sigma_{H}(w)H_{w,\gamma^+}) - (w \sigma_W H_{w,\gamma^+}) + ((w + 1) \sigma_W H_{w+1,\gamma^+})</td>
<td>no receive</td>
<td>no receive</td>
<td>no receive</td>
<td>no receive borderline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equations for a model of parasite acquisition and death:

- **Hosts born:** Various factors affecting the birth of hosts and the acquisition of parasites.
- **Hosts die:** Model equations for the death of hosts.
- **Parasites die:** Equations for the death and maturation of parasites.
- **Parasites acquired:** Model equations for the acquisition of parasites by hosts.
- **Parasites mature:** Equations for the maturation of parasites.

The equations describe the dynamics of parasite acquisition and death in a host population, considering factors such as host birth, death, and parasite infection rates.
Frequency of people with w adult worms

\[
H_w = \sum_{v=0}^{v^+} H_{v,w}
\]

No. of immature worms [0…v^* =10]

No. of adult worms [0…w^* =200]
Program

• Problems & Motivation
• Modeling approach
 – compartments
 – equations
 – distributions
• First results
• Outlook
Microfilaria production: $w \rightarrow m_s$

The microfilarial density m_s is beta-binomial distributed with expectation $p_m \cdot m^+$ and a dispersion parameter β.

$$m_s(w) = p_m m^+$$

w adult worms per person

$${p_m} = \frac{b w}{1 + b w}$$

$0 < b < 10$, $\beta = 2.0 \in [0.01...100.0]$, $m^+ = 500.0 \in [10.0...10000.0]$
MF ingested: $m_s \rightarrow m_i$

The log of microfilarial intake m_i is betabinomial-distributed, with expectation μ, Min, Max proportional to the log of m_s:

$\log(m_i + 1) = y_0 + s \log(m_s + 1)$

Expectation: $\mu = 10^{y_0} (m_s + 1)^{s} - 1$

Minimum: $m_{i,\text{min}} = \text{Max}[10^{y_0-s}(m_s + 1)^{s} - 1, 0]$

Maximum: $m_{i,\text{max}} = 10^{y_0+s}(m_s + 1)^{s} - 1$

$s = 0.62 \in [0.0...5.0], \ \beta = 22.2 \in [0.01...1000.0], \ y_0 = 0.38 \in [0.0...10.0]$
Flies die, dependent on m_i

A proportion of flies dies because of a natural mortality d_0, and an excess mortality caused by ingested MF. We assume that the ABR remains constant, i.e. these flies are replaced by "virgin" flies which have not yet taken a bloodmeal and are non-infected.

$$d(m_i) = d_0 + \left(1 - d_0\right) \frac{s m_i}{1 + s m_i}$$

$d_0 = 0.2, \in [0.0...1.0], \ s = 0.01, \in [0.0...0.1]$
Flies die, dependent on m_i

A proportion of flies dies because of a natural mortality d_0, and an excess mortality caused by ingested MF. We assume that the ABR remains constant, i.e. these flies are replaced by "virgin" flies which have not yet taken a bloodmeal and are non-infected.

$\mu = (10^{y_0} (m+1)^x - 1)(1-d)$
$p = \mu / m^+$

Distribution of m_i conditional on m_s

Weighting with distribution of m_s

2-dimensional distribution

Marginal distribution

Distribution of m_i

Ingested m_i per fly

Ingested m_i per fly

Rel. frequency

Rel. frequency

Distribution of m_i conditional on m_s

Prevalence of infected flies: 58%

$d_0 = 0.2, \in [0.0...1.0], \ s = 0.01, \in [0.0...0.1]$
Larval development: $m_i \rightarrow m_h$.

The no. of haemocoelic microfilariae m_h per fly is a binomial sample of the no. of ingested m_i.

$\log_{10}(m_h + 1) = s \log_{10}(m_i + 1)$

$\rightarrow m_h = (m_i + 1)^s - 1$

Estimate: $s = 0.188$

Proportion developing: $p = m_h / m_i$

$s = 0.188, \in [0.0...10]$
Problems & Motivation
Modeling: compartments
Modeling: equations
Modeling: distributions
Results
Outlook

Result: distribution of L_3

Assumptions:
• all haemocoelic microfilariae m_h will develop into L_3
• The unit "fly" is identical with the unit "bite": flies per person & year = bites per person & year (bppy)

E.g.: $ABR = 10000$

Haemocoelic m_h / fly
$L_3 / bite$

Scaling by the ABR
Assume: e.g. the population consists of

\[H_{0,0} = 50\% \]
\[H_{1,0} = 40\% \]
\[H_{0,1} = 10\% \]

\[\Lambda^{1} = 2000 \text{ bppy, with } u = 1 \text{ L3} \]

\[\Lambda^{1}_{0,0} = 500 \text{ L3 / yr} \]

\[\Lambda^{1}_{0,1} = 100 \text{ L3 / yr} \]

\[\Lambda^{1}_{1,0} = 400 \text{ L3 / yr} \]

Thus, \(\Lambda^{u}_{v,w} = H^{u}_{v,w} \text{ bppy}(u) / 2 \)
Acquisition, maturation & death of parasites
Program

• Problems & Motivation
• Modeling approach
 – compartments
 – equations
 – distributions
• First results
• Outlook
software
Calibration

Problems & Motivation
Modeling: compartments
Modeling: equations
Modeling: distributions
Results
Outlook

ATP - ABR

MF prevalence - ATP

L3/fly - MF intensity

MF intensity - ATP

→ age classes?
Program

• Problems & Motivation

• Modeling approach
 – compartments
 – equations
 – distributions

• First results

• Outlook
What type of model is this?

<table>
<thead>
<tr>
<th>Property</th>
<th>Model type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same initial conditions \rightarrow same output</td>
<td>Deterministic</td>
</tr>
<tr>
<td>Distributions are modelled, not means</td>
<td>Stochastic</td>
</tr>
<tr>
<td>The model is based on transition rates, not on transition probabilities</td>
<td>Deterministic</td>
</tr>
<tr>
<td>The model assumes infinite population size</td>
<td>Rather deterministic</td>
</tr>
</tbody>
</table>

My suggestion: "Stochastically structured deterministic model"
Outlook

- Implement other features like immunosuppression
- Will age-groups compromise performance?
- Sensitivity analyses
- Stability analyses, investigation of breakpoints
- Eradicability
- Prototype simulator for parasitic diseases.