
Effect of spatial smoothing on t-maps: arguments
for going back from t-maps to masked contrast
images

Matthias Reimold1, Mark Slifstein2, Andreas Heinz3, Wolfgang Mueller-Schauenburg1

and Roland Bares1

1Department of Nuclear Medicine, University of Tuebingen, Tuebingen, Germany; 2Division of Functional
Brain Mapping, Columbia University and New York State Psychiatric Institute, New York, New York, USA;
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Voxelwise statistical analysis has become popular in explorative functional brain mapping with fMRI
or PET. Usually, results are presented as voxelwise levels of significance (t-maps), and for clusters
that survive correction for multiple testing the coordinates of the maximum t-value are reported.
Before calculating a voxelwise statistical test, spatial smoothing is required to achieve a reasonable
statistical power. Little attention is being given to the fact that smoothing has a nonlinear effect on
the voxel variances and thus the local characteristics of a t-map, which becomes most evident after
smoothing over different types of tissue. We investigated the related artifacts, for example, white
matter peaks whose position depend on the relative variance (variance over contrast) of the
surrounding regions, and suggest improving spatial precision with ‘masked contrast images’: color-
codes are attributed to the voxelwise contrast, and significant clusters (e.g., detected with statistical
parametric mapping, SPM) are enlarged by including contiguous pixels with a contrast above the
mean contrast in the original cluster, provided they satisfy P<0.05. The potential benefit is
demonstrated with simulations and data from a [11C]Carfentanil PET study. We conclude that spatial
smoothing may lead to critical, sometimes-counterintuitive artifacts in t-maps, especially in
subcortical brain regions. If significant clusters are detected, for example, with SPM, the suggested
method is one way to improve spatial precision and may give the investigator a more direct sense of
the underlying data. Its simplicity and the fact that no further assumptions are needed make it a
useful complement for standard methods of statistical mapping.
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Introduction

Voxelwise statistical analysis has become popular in
explorative functional brain mapping (Ashburner
et al, 2003) and powerful tools for spatial normal-
ization (Ashburner and Friston, 1999) and statistical
analysis (Friston et al, 1995), including correction
for multiple testing (Worsley et al, 1992; Friston
et al, 1994) are publicly available. In the absence of
an anatomically defined a priori hypothesis, statis-
tical tests can be calculated for each voxel after

spatial normalization and smoothing. Spatial
smoothing is required to cope with interindividual
functional anatomic variability that is not compen-
sated by spatial normalization, and to improve the
signal-to-noise ratio. Following the matched filter
theorem (Rosenfeld and Kak, 1982) that states that
the optimal smoothing kernel should match the
signal to be detected, smoothing kernels of up to a
FWHM (full-width at half-maximum) of 20mm have
been used. Smoothing with an FWHM of 10 to
15mm is common in PET studies; often smaller
kernels are applied in fMRI. The resulting t-maps
(t = estimated parameter divided by its standard
error) are masked at a certain threshold of voxel-
level significance (often P<0.001), and depicted as
an overlay on corresponding anatomic sections, as
maximum intensity projections or as surface projec-
tions. Those clusters that survive correction for
multiple testing are frequently characterized by the
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coordinates of the maximum t-value and the asso-
ciated ‘nearest gray matter’. Many of these techniques
have originally been developed to detect cortical
patterns of neural activation (e.g., with [15O]H2O PET
or fMRI BOLD signal) and are now increasingly
applied also in neuroreceptor/-transporter studies.

It is widely accepted that smoothing limits spatial
selectivity and significant clusters are to be inter-
preted as regional results rather than anatomically
precise information. However, little attention is
being given to the fact that smoothing affects t-maps
differently from ‘contrast images’ (contrast = linear
combination of parameter estimates in the general
linear model that is supposed to reflect the interest-
ing physiologic parameter). While the latter change
with FWHM in a way one might guess intuitively,
t-statistics formed from the smoothed data are
also affected by the nonlinear interaction of the
filter kernel with the voxel variances, which
becomes most evident after smoothing over different
types of tissue (e.g., gray matter, white matter) with
a different variability. Voxelwise maps of parameters
such as binding potential have two main sources of
variance—measurement error (all sources of error
associated with instrumentation, operator impreci-
sion and the stochastic nature of isotope decay) and
authentic between-subject physiologic variance. The
physiologic variance can also be decomposed into
two main sources—variance from nuisance variables
such as intersubject differences in nonspecific
binding, and differences in receptor availability,
the variable of interest. The variance attributable to
between-subject differences in receptor availability
can be considerable, leading to larger variance in
gray matter tissues with high receptor density
compared with other tissues, especially white
matter. If, following smoothing, voxel by voxel
statistical tests are performed, spatially inaccurate
results may occur because the linear weighting
scheme will redistribute voxel variances differently
than it redistributes voxel intensities.

The aim of this paper was to demonstrate this
effect and to suggest a way of combining t-maps,
t-thresholds of significance and contrast images to
‘masked contrast images’ that can be used for
presentation and that may allow for a more precise
localization of significant effects than t-maps alone.
The suggested algorithm was applied to data from a
previously published PET study with [11C]Carfenta-
nil that showed subcortical brain regions with
increased m-opiate receptor availability in abstinent
alcoholics.

Materials and methods

Theory

Smoothing is an averaging process in which the intensity
at a given voxel is replaced by a weighted average (i.e., a
linear combination) of the values of voxels in some spatial
neighborhood of that voxel. Common smoothing methods

such as Gaussian filtering attribute the most weight to the
(pretransformation value of) transformed voxel itself and
are symmetric in the sense that the weights then decrease
as a continuous function of spatial distance from the
transformed voxel location, without any preferred direc-
tion (isotropic). A very simple example of such a scheme
would consist of a bivariate statistic sampled from two
subject groups (i.e., two variables per subject), but
analyzed following a transformation such that for each
subject, the transformed data associated with each vari-
able is a linear combination of the original two variables.
The weighted sum associated with one of the samples, say
ỹ would be ỹ =w1y1 +w2y2 where yi and wi are the original
samples and weights (i=1, 2) with standard deviations s1

and s2. If y1 and y2 are uncorrelated, the variance of ỹ is
given by

~s2 ¼ w2
1s

2
1 þw2

2s
2
2

A contrast, for example, a between-group difference Dm
can be tested by a t-statistic; the t-statistics on the
transformed variable ỹ, can be expressed in terms of
contrasts Dm1 and Dm2 on each of the original variables y1
and y2:

~t ¼ const
D~m
~s

¼ const
w1Dm1 þw2Dm2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1s21 þw2

2s22
p

where const depends only on sample size. On replacing
Dmi with tisi/const, one obtains

~t ¼ w1t1s1 þw2t2s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
1s21 þw2

2s22
p ð1Þ

Assuming t1, t2 > 0, there is a ratio of weights w1 and w2 for
which t̃ is maximal. As one can see directly from the
vector notation below (equation (9)), this is when w1 and
w2 correspond to 1/(relative variance) with relative
variance being si

2/Dmi:

w1

w2
¼ t1=s1

t2=s2
ð2Þ

When the applied weights are proportional to 1/(relative
variance), the maximal t-value will be associated with the
variable having the smaller relative variance, and thus the
ordering of the t-values may be reversed compared with
their presmoothed values if the sample with the higher
t-value is also the sample with the higher relative
variance. The contrast itself is not similarly affected—if
Dm1 >Dm2 and w1 >w2 then the same ordering is preserved
in the transformed contrast.
We now seek the range of weights that will lead to a

reversal of t-statistic ordering. Given the symmetry of the
smoothing kernel and appropriate normalization of the
weights (i.e., w1 +w2 = 1), ỹ1 and ỹ2 can be expressed as

~y1 ¼ wy1 þ ð1% wÞy2

~y2 ¼ ð1%wÞy1 þwy2

and, if y1 and y2 are uncorrelated, the corresponding
t-values t̃1 and t̃1 are given by equation (1). All weights are
positive and as with Gaussian smoothing we assume greater
weight in ỹ1 is given to y1 than y2, and vice versa for ỹ2, thus

Effect of spatial smoothing on t-maps
M Reimold et al

2

Journal of Cerebral Blood Flow & Metabolism (2005)



0.5<w<1. As shown in Appendix A, the ordering of
t-values will be reversed if s1/t1 >s2/t2 (thus s1 >s2) and

0:5owo0:5þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs1=s2 % s2=s1Þ % ðt1=t2 % t2=t1Þ
ðs1=s2 % s2=s1Þ þ ðt1=t2 % t2=t1Þ

s

ð3Þ

Next, we extend the discussion to a setting in which the
data is defined on a continuous spatial domain and
smoothing has been performed. As commonly applied,
Gaussian smoothing is linear, isotropic and stationary
(independent on position), and so can be represented by
convolution ỹ (x) = f (x)#w (x) with w (x) being the kernel
function in the shape of a normal probability density
function:

wðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð2Þ=p
p

FWHM=2
e

%x2 lnð2Þ
ðFWHM=2Þ2 ð4Þ

where FWHM denotes the ‘full-width at half-maximum’ of
the smoothing kernel.
As a very idealized model for Gaussian smoothed data

with two gray matter regions that are small compared with
the FWHM of the smoothing kernel and surrounded by
white matter with negligible absolute variability, let y1 and
y2 be two point sources, separated by a distance d. With d1

being the distance from source one to a given voxel on the
line segment between source one and source two, the
distance of this voxel to source two is d2 =d–d1 and the
weights w1,w2 attributed to source one and source two are
given by equation (4). Together with equation (2), one
obtains the position of the maximum t-value:

d1 ¼ d

2
% ðFWHM=2Þ2

2d
log2

t1s2
t2s1

" #

ð5Þ

For a small FWHM, this is the middle of both point
sources. With increasing FWHM, the maximum shifts
towards the point source with the lower relative variance.
For imaging data, which can be thought of as a discrete

lattice representation of a variable defined on an under-
lying spatially continuous domain, we expand equation
(1) to account for n samples y1, y2 y yn that contribute to a
smoothed voxel ỹ(x) (x= three-dimensional voxel coordi-
nate) with the weights w1(x), w2(x), y, wn(x):

~tðxÞ ¼ w1ðxÞt1s1 þ . . .þwnðxÞtnsn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½w1ðxÞs1'2 þ . . .þ ½wnðxÞsn'2
q ð6Þ

The assumption for this equation is that all original
samples yi are uncorrelated, which, of course, is not the
case for measured voxels. We therefore use yi to represent
independent components of an image rather than voxels.
For example, a homogeneous region i with the spatial
extent being represented as a voxel mask mi(x) enters
equation (6) as one single sample yi, and the weight wi (x)
with which it contributes to a smoothed voxel ỹ (x) can be
obtained from a convolution of the voxel mask with the
smoothing kernel ws(x):

wiðxÞ ¼ miðxÞ (wsðxÞ ð7Þ

Note that the mi may overlap, corresponding to different
regions sharing some component of signal; that is, a

voxel x may be a part of one homogenous set of voxels
with respect to some component of the signal, and a
different set with respect to another component.
The t-value of a smoothed voxel can also be expressed

by using the vector notation for equation (6):

~tðxÞ ¼~t )
~SðxÞ

jj~SðxÞjj
ð8Þ

where~t is the n* 1 vector of the original t-values and ~SðxÞ
the n* 1 vector of the weighted standard deviations
w1(x)s1,w2(x)s2,y,wn(x)sn. As this is an inner product
and the length of ~SðxÞ=jj~SðxÞjj is one, one obtains:

~tðxÞ ¼ jj~t jj cosðfðxÞÞ ð9Þ

where f(x) is the angle between ~t and ~SðxÞ. The maximal
possible t-value jj~t jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21 þ t22 þ . . .þ t2n
p

is obtained when
~t and ~SðxÞ are parallel, that is, when the original samples
are weighted with 1/(relative variance). In three-dimen-
sional space and for more than three point sources, this
will not, in general, be an obtainable condition and the
observed maximum Tmax will be below the theoretical
maximum jj~t jj. Still, the local maxima of t̃ (x) correspond
to local minima of |f(x)|.
For reasons of simplicity, we do not distinguish between

the point spread function wPSF(x) of the scanner and an
additional smoothing kernel applied during image post-
processing wSPM(x), since, in a typical voxelwise analysis,
the former is much smaller and its contribution is
negligible. However, one can easily account for both steps
of smoothing by defining ws(x) as the combined kernel
ws(x) =wPSF(x)#wSPM(x). Assuming wPSF(x) to have the
shape of a bell-curve (as wSPM(x)), the full-width half-
maximum of ws(x) is given by

FWHMtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FWHM2
PSF þ FWHM2

SPM

q

One-dimensional Simulations

All simulations in this paper were calculated with
matlab (Mathworks, Natick, MA, USA). To allow for
Monte Carlo simulations with small sample sizes, we
did not use equation (6) in the one-dimensional simula-
tion, since equation (6) refers to the true population
contrast and standard deviation Dm and s and not their
estimates from small samples (here, the latter are denoted
Dm̂ and ŝ). Instead, we calculated a set of unsmoothed
one-dimensional ‘images’ f (x) and obtained the smoothed
profiles ỹ(x) (each of which is meant to represent
smoothed data from one subject) by convolution. A two
sample t-test was then calculated from smoothed pixels.
Assuming uncorrelated Gaussian noise epix(x) in each

pixel (measurement error) and interindividual variability
eregi in each region, f (x) was calculated for two groups of
‘subjects’ (N= 2*1000) from

f ðxÞ ¼ mi þ eregi þ epixðxÞ

The corresponding group difference Dm(x) and the

standard deviation stotalðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2reg þ s2pixðxÞ
q

for the first
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simulation are shown in Figure 1 (‘simulation para-
meters’). Width and distance of both gray matter regions
was d=10pixel. For the gray matter regions (gm1 and gm2),
we assumed a group difference Dmgm1 = 1 and Dmgm2= 1.5.
Normally distributed random values for epix(x) and eregi
were calculated with matlab’s function randn() and a
standard deviation sreg = 1 and spix = 1 (thus stotal = 1.41) in
both gray matter regions. In white matter, no group
difference and a lower interindividual variability sreg = 0.2
was assumed. The measurement error in white matter
was set to spix ¼

ffiffiffiffiffiffiffi

0:2
p

(thus stotal = 0.49) in accordance
with the fact that a lower count rate in PET leads to a
lower absolute, but a higher relative statistical error. After
Gaussian smoothing with different full-width half-maxi-
mum (FWHM=1, 2,y, 20pixel), a t-test was calculated for
each pixel, and the local maxima of t (x) and Dm̂ (x) (Tmax

and Dm̂max) were determined for each FWHM by a search

algorithm starting in the middle of each gray matter
region. For the same setting but a smaller number of
subjects (N= 2*10), mean and standard deviation of
the position of Tmax and Dm̂max were assessed by Monte
Carlo simulation. We also calculated f (x) with different
region diameters (d= 3, 4, 5, y, 14 pixel) and obtained the
position of Tmax from equation (9). For each dwe increased
the FWHM by steps of 0.1 until Tmax shifted into white
matter to obtain the ‘critical FWHM’. It should be
mentioned that a different number of pixels per region
results in a different relative contribution from ereg and epix.
To further illustrate the artifacts in Figure 1, we chose

some modified profiles, including the (idealized) assump-
tion of s=0 in the white matter between gm1 and gm2. The
corresponding Dm(x) and stotal(x) are shown in Figure 2.
Unless mentioned explicitly, the parameters sreg and spix

were the same as in Figure 1.

Figure 1 Effect of one-dimensional smoothing on t xð Þ, Dm̂ xð Þ and ŝ xð Þ in a pixelwise two sample t-test. Left column: in most pixels,
the t-value was increasing with FWHM. The highest increase was found in the white matter between gm1 and gm2. For FWHMZ13
pixel, the t-value there exceeded the t-value in gray matter (arrow). Middle column: The location of the maximum group difference
was less affected by spatial smoothing than that of Tmax and no additional maximum between gm1 and gm2 occurs. Lower right:
‘critical FWHM’ (the FWHM at which a white matter Tmax occurs) as a function of the region diameter d (d=width of gm1, gm2 and
white matter in between).
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Two-dimensional Simulation

We used a two-dimensional model of three square gray
matter regions (5* 5pixel each, Figure 3) and surrounding
white matter with the same parameters sreg (between-
subject variability) and spix (measurement error) as in
Figure 1. The group difference Dm was zero in the gray
matter region in the middle and was Dm=1 in the other
two regions. With FWHM= 14pixel, weights wi (x) were
calculated from equation (7) for all ‘anatomic’ regions
(three gray matter regions, one white matter region,
standard deviation sreg) and additionally for each pixel
(standard deviation spix). The weighted standard devia-
tions ~SðxÞ were calculated and t̃ (x) was obtained from
equation (9). t̃-isocontours were plotted between 95 and
100% of the observed maximum. For aesthetical reasons,
we did not use the same resolution for region mask and

smoothed image space, instead, we calculated wi(x) and
t̃(x) on a much finer grid.

[11C]Carfentanil-PET

Measured PET data presented in this paper originate from
a previously published PET study in abstinent alcoholics
(Heinz et al, 2005). In 20 alcoholics, abstinent for 2 to 3
weeks, and in nine healthy control subjects, radioacti-
vity distribution in the brain was measured with a GE
Advance PET-scanner 0 to 66min after intravenous
injection of 700MBq [11C]Carfentanil, a highly selective
m-opiate receptor ligand. Stereotactically normalized para-
metric images of receptor availability (V3

00) were calculated
with Logan’s linearization and the occipital cortex as
a reference region with negligible specific binding.
For details, see Heinz et al (2005).

Figure 2 Effects from white matter. The simulation from Figure 1 was modified to illustrate the effects from white matter. Top row:
without white matter, smoothing leads to a local minimum of ŝ xð Þ at the border between gm1 and gm2, and to a corresponding peak
in t xð Þ (black arrow). Middle row: Noise and variability in the white matter on the left side from gm2 was set to zero. After smoothing,
the t-value in gm2 is ‘spreading’ to the left. Bottom row: white matter (s=0) allows gm1 and gm2 to interfere in spite of a large
distance (30 pixel) and create an artificial Tmax.
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SPM Analysis

With SPM2, V3
00 images were smoothed with a 12-mm

Gaussian kernel, and a voxelwise two-sample t-test was
calculated. Unlike previously published (Heinz et al,
2005), we did not mask out white matter. We applied a
voxel-level threshold of P=0.001 (uncorrected) and con-
firmed that both striatal suprathreshold clusters survived
correction for multiple comparisons with SPM’s small
volume correction and a mask for the striatal volume of
interest (12.1 cm3). The analysis was repeated with a
voxel-level threshold of P=0.05 (uncorrected) to obtain
the corresponding t-threshold for later use.

Masking Algorithm for Contrast Images

To use contrast images for presentation, just as t-maps
with significant clusters being displayed over correspond-
ing anatomic sections, a masking algorithm is needed.
Instead of using the original t-isocontours, which are
affected by the investigated artifacts, we used a corres-
ponding contrast-threshold that we had calculated sepa-
rately for each cluster.
The following data were available from the SPM

analysis:

+ t-maps (file: spmT_0002.img).
+ Contrast images (file: con_0002.img), containing the

smoothed DV3
00.

+ A list of clusters (coordinates of Tmax) that survived
SPM’s correction for multiple testing.

+ t-thresholds for P=0.001 and P=0.05.

The mask that was applied to SPM’s contrast images was
calculated as illustrated in Figure 4. For each significant
region, we first obtained the original SPM-cluster from
t-maps with a region growing algorithm that starts at Tmax

and includes all voxels with a t-value above the original
threshold (here P=0.001). The mean contrast in this
cluster was subsequently used for thresholding and all
contiguous voxels that met both the DV3

00 threshold and
satisfied P<0.05 (to ensure some statistical evidence)
were included in the resulting region.

Results

Simulations

The effect of Gaussian smoothing on t (x), Dm̂(x) and
Dŝ(x) in a pixelwise two sample t-test is shown in
Figure 1. In most pixels, the t-value was strictly
increasing with FWHM (for FWHM= 3, 4, 5,y, 20).
Unlike the shape of Dm̂(x), which changed with
FWHM in a way one might guess intuitively, t(x)
showed an irregular pattern with the highest
increase in the white matter between gm1 and gm2

(Figure 1, top left). Slightly decreasing t-values were
observed only at higher FWHM (Z10pixel) at the
border between gray and white matter. At
FWHM>12pixel, there was only one single Tmax in
the middle of gm1 and gm2 (Figure 1, arrow), which
slightly shifted back towards gm2 when FWHM was
further increased. The ‘critical FWHM’ at which
such a white matter peak occured was lower than
150% of the region diameter d in all simulations
(d= 1, 2, 3,y, 14). The position of D m̂max was much
more stable: the local maximum in gm1 was
preserved until FWHM= 18pixel, the maximum in
gm2 was located within the gray matter borders
until FWHM= 28pixel (not shown). The higher

Figure 3 Two-dimensional simulation (worst case): t-isocon-
tours from three gray matter regions (5*5mm=5*5pixel)
and surrounding white matter, smoothed with FWHM=
14mm. All gray matter regions had the same variance, yet
only the upper and the lower region had a positive contrast
(Dm=1). Note that the nearest gray matter of Tmax is the region
with Dm=0.

Figure 4 Suggested algorithm to create masked contrast
images. (A) For each significant cluster, a mask (black bar) is
generated from t-maps and the initial voxel-level t-threshold
(P=0.001) and subsequently applied to contrast images (B).
The mean contrast in this cluster is calculated, and the cluster is
enlarged by including adjacent voxels (grey area) that exceed
this mean contrast. Voxels that do not reach the P=0.05 level
are not included. The depicted profiles were taken from Figure 1
(FWHM=14pixel).
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robustness of Dm̂max as opposed to Tmax was also
obvious in the Monte Carlo simulation (Figure 1,
bottom): a higher variability of the position of Tmax

than that of Dm̂max was observed for all simulated
FWHM. At FWHM=6pixel, Tmax of gm1 was already
outside the boundaries of gm1 in 8% of all realiza-
tions.

Results from three modified profiles are depicted
in Figure 2:

+ Without white matter between gm1 and gm2

(Figure 2, top row), smoothing resulted in a local
minimum in ŝ(x) at the border between gm1 and
gm2 and a corresponding peak in t (x). When ereg
was set to zero (but not epix), this peak disappeared
(not depicted).

+ In white matter with a hypothetical variance
stotal = 0 (Figure 2, middle row) and a Dm=0, the
standard deviation and Dm̂ after smoothing solely
reflect the contribution from the adjacent gm2.
Accordingly, in Figure 2, the t-value left of gm2

was close to that within gm2 (theoretically, if gm2

was only one pixel wide and if the contribution
from white matter on the right side of gm2 was
negligible, the t-value would be exactly the same).
The horizontal arrow suggests looking at this
effect as if the t-value was ‘spreading’ over white
matter with increasing FWHM (no t-values were
plotted for a denominator ŝ(x) < 0.001).

+ When white matter with stotal = 0 was surrounded
by two gray matter regions (Figure 2, bottom row),
smoothing resulted in a peak t(x) in the middle
of gm1 and gm2, which first occurred when both
‘spreading’ t-values met exactly in the middle. For
higher FWHM, Tmax shifted towards gm2 (the
region with the lower relative variance). Interest-
ingly—unlike in the simulation without white
matter (Figure 2, top row)—interindividual varia-
bility ereg (in addition to the measurement error
epix) was not needed for this effect.

In the two-dimensional simulation (Figure 3), the
maximum t-value was shifted to the left by the gray
matter region in the middle (with Dm=0). Note that
in the chosen setting, Tmax was still closer to the gray
matter region in the middle than to the regions with
a positive contrast.

[11C]Carfentanil PET

SPM analysis of [11C]Carfentanil PET-data con-
firmed significantly increased m-opiate receptor
availability in the bilateral ventral striatum. Without
masking out white matter, the maximum t-value in
the left hemisphere was found between ventral
striatum and frontal cortex (Figure 5, top left), close
to a localminimum of the unsmoothed DV3

00. Masked
contrast images (Figure 5, bottom) were more
symmetrical, including more voxels in the middle
of the left ventral striatum where the maximum DV3

00

was found.

In the right striatum, group differences were
stronger and the standard deviation showed less
local variation. Accordingly, masked contrast
images were very similar to the original t-map.

Discussion

In addition to the loss of resolution that is inherent
in spatial smoothing, the nonlinear interactions
with the voxel variances (which affect t-maps, but
not contrast images) can result in sometimes-
counterintuitive artifacts, as demonstrated in this
paper. These effects include a displacement of Tmax

away from a region with a higher relative variance,
and a displacement of Tmax towards the middle of
two or more regions with a positive contrast and
independent error terms. In the latter case, a
displaced peak differs from a smooth, combined

Figure 5 Results from a PET-study with [11C]Carfentanil.
m-opiate-receptor availability V3

00 in abstinent alcoholics was
compared with that in healthy controls. (A) Traditionally
thresholded t-maps show significantly elevated V3

00 in the
bilateral ventral striatum. However, the maximum t-value
of the left cluster was found in adjacent white matter
(y= +20mm), near the local minimum of unsmoothed DV3

00

(see inset, Tmax=white star ‘*’). (B) SPM’s contrast images
(smoothed DV3

00), masked as described, show a more sym-
metrical pattern with a Tmax within the borders of the bilateral
ventral striatum (y= +10mm).
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peak in contrast images in that it manifests at much
lower levels of smoothing, and is spatially narrowed
in a manner such that it may be mistakenly
identified as an additional finding. The position of
this peak depends on the relative variances of the
surrounding regions so that the ‘nearest gray matter’
algorithm may not always determine the correct
anatomic region.

This can be understood by looking at two effects:

+ smoothing causes the independent error terms of
two or more neighboring gray matter regions to be
averaged, resulting in a minimum variance be-
tween these regions

+ white matter with little statistical noise and low
absolute interindividual variability ‘inherits’ the
t-value of adjacent gray matter, and peaks in
t-maps may become broader than the correspond-
ing peaks in contrast images. This not only leads
to a higher uncertainty of the position of Tmax (as
demonstrated in the Monte Carlo simulation),
white matter also may serve as a ‘bridge’ between
two or more interacting gray matter regions.

In our one-dimensional simulation, Gaussian
smoothing with an FWHM in the same order of
magnitude as the distance of the involved regions
was already critical. Depending on the actual
structure, this effect may even be stronger after
three-dimensional smoothing. While such a t-shift is
less likely to affect functional mapping of the cortex,
it may seriously impair localization of subcortical
findings, as for example, in the presented PET study
with [11C]Carfentanil, where a maximum t-value was
observed in the white matter between ventral
striatum (where higher m-receptor availability was
expected) and the frontal cortex (where alcoholics
also displayed a higher m-receptor availability,
though not significant). Smaller misplacements
may just be an aesthetical concern or may raise the
question of how to present the results in a convin-
cing way. Larger misplacements may get masked out
(white matter mask) at the expense of sensitivity.
Findings may also go undetected when the Tmax

shifts into a neighboring gray matter region with
lower relative variance. Finally, misinterpretations
may occur in brain areas with more than two gray
matter regions, as in our two-dimensional (worst
case) simulation, where the ‘nearest gray matter’
algorithm would not have detected the two regions
that contributed to Tmax. Likewise, one has to be
careful when assigning peaks to functional subunits,
for example, of the thalamus or the ventral striatum.

In the literature, different smoothing kernels are
usually compared with regard to the sensitivity of
detecting significant regions (Hopfinger et al, 2000).
Using a spatially stationary noise model, Worsley
et al (1996) also describe the effect on the local
characteristic of the t-map, notably a broadened
peak between the two original maxima. However,
the most striking effects, including a narrowly

focused but shifted peak as in our simulations, only
occur when estimating a local variance (Friston
et al, 1991) instead of a pooled variance across
voxels (Worsley et al, 1992), and when smoothing
across different types of tissue. To our knowledge,
these effects have not yet been investigated in the
literature.

Several methods have been suggested to improve
spatial precision of statistical maps. Clearly, reana-
lyzing the data with a smaller smoothing kernel
(Worsley et al, 1996) would have reduced the
described artifacts, but at the expense of statistical
significance. Another approach is to incorporate
spatial a priori assumptions. Davatzikos et al (2001)
have described an atlas-based adaptive smoothing to
avoid smoothing across anatomic boundaries, which
theoretically prevents the described artifacts. How-
ever, including a priori information either increases
the complexity of the analysis or limits the advan-
tages of a voxel-based (no a priori assumptions) over
traditional ROI analysis. Accordingly, ‘classical
statistical maps’ (Penny and Friston, 2004) are still
the most popular approach for explorative imaging.

While all established methods have in common
that the reported values are statistical measures
related to a level of confidence by which a ‘true
effect’ was observed, the method suggested in this
paper follows a different rationale. We do rely
on established methods of statistical mapping (in
particular those implemented in SPM2, however,
other methods as a starting point are also possible)
to detect significant regions, but once a cluster is
considered significant, we suggest attributing voxel-
wise color-codes to the estimated parameter itself
instead of the level of confidence by which it is
greater than zero.

The limitations of the presented method are those
of any voxel-based analysis. They are powerful tools
for explorative imaging, but they are not necessarily
a replacement for traditional region-of-interest (ROI)
analysis when a regional a priori hypothesis exists
and when an ROI definition is anatomically and
physiologically justified. Comparing voxel-based
with ROI-based analyses is not subject of this paper,
but it should be mentioned that the proposed
method was primarily developed for assessment of
subcortical regions for which an ROI analysis may
indeed be a more straightforward approach. In
voxel-based analyses, the type I error must be
reduced by using a rather conservative voxel-level
threshold (e.g., P<0.001), which may result in a
loss of statistical power. Applying such a single
t-threshold as a first step has shown to be a simple
and powerful method to detect significant clusters
(e.g., by considering the cluster size). However, such
a t-threshold is not necessarily the best choice to
determine the outline of a neurobiologic effect,
which leaves room for other methods of masking
such as the one presented in this paper. Using the
contrast for color-coding, it may seem natural to use
it also to define the outline of a displayed region.
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Indeed, we have shown that this may provide further
information about the locus of, for example, a group
difference, albeit in an exploratory form outside the
framework of hypothesis testing. It should be noted
that our masked contrast images differ from the
original thresholded t-maps only if there is a local
variation in the variance of the smoothed voxels. The
suggested method can therefore be understood as an
attempt to stick closely with the current standards
while removing the described smoothing artifacts.

We believe that adding a further step to the
analysis by going from thresholded t-maps to
masked contrast images does not substantially
increase the overall complexity of the analysis. On
the contrary, it may give the investigator a more
direct sense of the underlying data and may improve
spatial precision when a significant region occurs.
The simplicity of the suggested method and the fact
that we do not make further assumptions make it a
useful complement for established methods for
statistical mapping.
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Appendix A

We seek the values of w, 0.5 <w<1, such that t̃2 > t̃1
while t1 > t2, or DIF(w) = t̃1%t̃2 < 0.

Note that DIF(0.5) = 0, and DIF(1) = t1%t2 > 0, and
DIF is a differentiable function of w. The derivative,
evaluated at w=0.5 is

4s1s2ðs2t1 % s1t2Þ
ðs21 þ s22Þ

3=2

and this will be negative (i.e., DIF(w) will be
negative immediately to the right of w=0.5) when
s1/t1 > s2/t2.

Therefore, if this condition pertains and DIF(w)
has exactly one root in the open interval (0.5, 1), it
must be the case that DIF is negative between 0.5
and the root, and positive between the root and 1,
and the ordering of the t-map will be reversed
compared with the original values on the interval
0.5 <w< root.

We therefore seek to show that DIF(w) has exactly
one root between 0.5 and 1. DIF= 0 is equivalent to
t̃12 = t̃22 (for t̃ >0), which can be written as

a2w2 þ 2abw þ b2

cw2 % 2dw þ d
¼ a2w2 % 2aðaþ bÞw þ ðaþ bÞ2

cw2 þ 2ðd % cÞw % ðd % cÞ
ðA1Þ

with
a ¼ t1s1 % t2s2
b ¼ t2s2
c ¼ s21 þ s22
d ¼ s22

This leads to a cubic equation in w (the 4th power
term cancels). Noting that 0.5 is a solution of
equation (A1), the remaining two solutions of
equation (A1) are the roots of the quadratic

ða2d þ abcÞwðw % 1Þ
þ ½b2ðd % c=2Þadða=2þ bÞ'

ðA2Þ

These roots, in terms of the original variables, are

0:5* 1,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs1=s2 % s2=s1Þ % ðt1=t2 % t2=t1Þ
ðs1=s2 % s2=s1Þ þ ðt1=t2 % t2=t1Þ

s
" #

ðA3Þ

Finally, given the conditions on t1, t2, t̃1 and t̃2, the
expression under the radical sign must be between 0
and 1, and therefore the larger of the 2 roots falls
between 0.5 and 1, and is the only solution to
equation (A1) in that interval. Values of w falling
between 0.5 and the larger root of equation (A1) will
lead to a reversal of the ordering of the t-values.
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