Analysis of a complex high-strain zone at Cap de Creus, Spain

E. Druguet a,*, C.W. Passchier b, J. Carreras a, P. Victor b, S. den Brok b

a Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
b Institut für Geowissenschaften, Universität Mainz, Mainz, Germany

Received 27 February 1996; accepted 29 October 1996

Abstract

The structural analysis of a high-strain zone developed in medium- to high-grade metamorphic micaschists from the Cap de Creus area, Spain provides an example of the complex relationships between geometry, strain and kinematics to be found in deep crustal shear zones. This high-strain zone is composed of E–W trending structural domains characterized by different strain intensities and associated with syntectonic emplacement of pegmatitic dykes. The main phase of deformation discussed here, D2, affects steeply dipping bedding, bounded quartz veins and S1 developed parallel to bedding. D2 deformation of these features and of syn-D2 pegmatite dykes gives rise to fold/boudin structures. In map view, a D2 high-strain zone coincides with a km-scale dextral flexure of S0, S1 and S2, although all small-scale structures on outcrop surfaces close to horizontal indicate a prevalent sinistral shear sense. In addition, a subvertical stretching lineation is present approximately parallel to the axis of the foliation-deflection and thus normal to the apparent 'displacement' direction in the high-strain zone. It is proposed that this high-strain zone did not form by horizontal dextral simple shear with a flow plane parallel to the boundaries of high- and low-strain zones but acted as a zone of highly vortical sinistral non-coaxial flow with a strong vertical extension component. The dextral flexure of S0, S1 and S2 can be explained by considering that sinistral non-coaxial flow in the low-strain zones was either slower or earlier that in the high-strain core. This example stresses the necessity of being careful when interpreting displacement directions from the deflection of older fabric elements in deep-seated high-strain zones.

Keywords: strain analysis; kinematics; deformed veins; Pyrenees

1. Introduction

High-strain zones that formed at deep crustal levels have received increasing attention in the literature because of their common association with synkinematic igneous intrusions (Reavy, 1989; Ingram and Hutton, 1994; McCaffrey, 1994; Karlstrom and Williams, 1995). Deep crustal high-strain zones differ in many aspects from well-known green-schist facies upper crustal shear zones (e.g. Ramsay, 1980; Passchier and Trouw, 1995). In deeper high-strain zones, deformation is not by plane strain flow, and volume changes associated with igneous intrusion and partial melting is more common. In some cases, even the familiar parallel relationship between stretching lineations and displacement direction (Ramsay, 1980), common in low- and medium-grade mylonites, is absent, and lineations may appear to lie oblique to the displacement direction of the...
shear zone (Robin and Crudden, 1994). It is important to characterize deformation in such high-strain zones in order to reconstruct the tectonic regimes operating in the crust and to interpret associated processes like magma emplacement.

In this paper, an example is given of a high-strain Hercynian deformation zone with an unusual deformation pattern and history in medium to high-grade micaschists and associated syntectonic pegmatite dykes from the Cap de Creus area (Spain). The combined analysis of strain in the country rock and strain recorded by differently oriented syntectonic dykes gives information on the deformation history and puts constraints on the type of deformation involved. A model invoking progressive deformation and strain heterogeneization is proposed.

2. Geological setting

The Cap de Creus area, Spain, consists mainly of alternating metapsammite (metagreywackes) and minor metapelitic rocks of Neoproterozoic to Ordovician age. Several isolated layers of quartzite, up to 3 m wide have been recognised and can be used as tracers for large-scale structures in the area. The area is affected by a polyphase tectonics with at least two deformation events during the prograde low-pressure Hercynian regional metamorphism and late shearing events in retrograde conditions. Metasediments show a gradient from the chlorite–muscovite zone in the south to the sillimanite–K feldspar zone in the north. Locally, migmatites were formed along the northern coastline of the Cap de Creus peninsula (Druguet et al., 1995). Medium grade micaschists in the northern part of the area are extensively intruded by pegmatite dykes (Carreras and Druguet, 1994).

The oldest deformation in the area (D₁) led to the development of a first continuous and penetrative schistosity (S₁) in the metasediments, formed prior to the metamorphic climax. A few isoclinal D₁ folds have been found in the area and, with the exception of these structures, S₁ is subparallel to S₀ throughout the area. For this reason, the orientation of both structures is described in this paper as S₀/S₁. Numerous quartz veins (from 1 mm to 50 cm wide) of D₁ age or older, were deformed during D₁ and developed boudins and a marked stretching lineation.

Later intense and inhomogeneous D₂ deforma-
tion led to folding of bedding, S₁ and quartz veins, with upright or steeply inclined axial surfaces which trend approximately NE–SW in less deformed areas and E–W in more deformed areas. D₂ structures formed around the time when peak metamorphic conditions were reached, as shown by the presence of synkinematic sillimanite and 1–10 cm long partial melt veins. Pegmatite dykes, some of them muscovite, sillimanite and garnet bearing, intruded after the peak of metamorphism. The intrusion apparently took place during D₂. Temperatures of crystallization are estimated over 580°C (Alfonso, 1995).

A last major deformation event, D₃, gave rise to E–W to NW–SE trending anastomosed ductile shear zones developed under retrograde metamorphic conditions (Carreras and Casas, 1987). Mylonitic bands in the Cap de Creus area are related to this anastomosed network of late shear zones, cutting across medium–high-grade schists and pegmatites, with predominantly dextral strike-slip or oblique-slip movements.

This paper describes the results of detailed analysis of structures developed during the prograde stage (D₁ and D₂) in medium to high-grade domains in an area of the Cap de Creus Peninsula (Fig. 1).

3. D₂ structures

The structures generated during D₂ are the principal subject of this paper and were investigated in detail in the area outlined in Fig. 1. This area is located in the medium- to high-grade metamorphic zone mainly formed by sillimanite-bearing micaschists. In this area, D₂ deformation was heterogeneously distributed and three structural domains with relatively high- and low-D₂ strain can be distinguished (Fig. 2). The low-strain domains are characterised by a subvertical nearly N–S trending S₀/S₁. In these domains D₂ folds are open and the associated crenulations develop exclusively in more pelitic schists. Strain-increase towards the high-strain zone is accompanied by the development of ‘S’-shaped D₂ folds in bedding on a 10 cm–100 m scale with an associated subvertical crenulation cleavage (S₂). These folds are most common near pegmatite dykes, probably due to inhomogeneous deformation induced by the presence of these dykes. The D₂ folds have subvertical or steeply plunging axes (Fig. 2), which are
closely parallel to equally steeply inclined lineations. Most lineations are L_2-lineations, usually stretching lineations defined by elongate quartz grains, and mineral lineations defined by sillimanite, tourmaline or biotite. These lineations are mainly developed in the deformed pegmatite dykes described below, but locally also in quartz veins and bedding. L_2^1 or L_2^0 intersection lineations also occur and are parallel to L_2 throughout the low-strain domain. D_2 folds are cylindrical with axes subparallel to these lineations.

Towards the centre of the high-strain zone, a further increase in strain is manifested by the increasing tightness of D_2 folds and a change in the general orientation of S_{O1} and S_2 towards a steeply dipping NE–SW or even E–W trend. Also, the angle between S_{O1} and S_2 decreases with increasing D_2 strain from 39° in the low-strain areas up to subparallelism in the centre of the highest strain zone (Fig. 2). The change in orientation of both foliations from the low-strain into the high-strain zone defines a cylindrical sigmoidal structure, with axes parallel to D_2 lineations and fold axes (Figs. 2 and 3; fig. 5 in Carreras and Druguet, 1994). In a section across the high-strain zone from southern low-strain zones to the north, the abundance of andalusite porphyroblasts decreases, the density and size of pegmatite dykes and the size of sillimanite grains increases. This suggests that the high-strain zone formed at medium to high-grade metamorphic conditions, like D_2 structures in the low-strain zones. The change in orientation of S_2...
Fig. 2. Sketch map of the Culip–Cap de Creus area showing the arrangement of different structural domains and their equal-area lower-hemisphere stereoplots. Main great circles of S_1 and S_2 and its poles (S_1 in black and S_2 in white) are shown. L_2 = mean values of stretching lineations from medium- to high-strain zones.

Towards the high-strain zone does not appear to be the effect of deformation later than D_2, since folds and their related axes and crenulation cleavages are undisturbed by later deformation phases except in the vicinity of greenschist-facies D_3 shear zones.

3.1. Sigmoidal quartz-rods

Early quartz-veins were emplaced throughout the area prior to the development of D_2 folds. These veins usually have millimetre to centimetre thicknesses and display D_2 boudinage or folding structures (Fig. 4a) depending on their original orientation. Some of them were boudined before the onset of D_2, developing into a peculiar shape during D_2 as a result of general shortening of the veins and rotation of the boudins by D_2. These structures, here designed as sigmoidal quartz-rods, develop an asymmetric shape on horizontal surfaces with the widest part of the boudins at an angle to the nearly undisturbed S_{O1} in the wall of the rock, even in the absence of D_2 folding (Fig. 4b,c). The angle of obliqueness between these quartz-veins structures and S_{O1} plane varies from 0° to 170° (anti-clockwise sense). Short, stocky boudins develop a shape resembling δ-shaped mantled porphyroclasts (Fig. 4c). Where S_2 is present, its orientation in the embayments of the quartz-vein structures makes a larger angle with S_{O1} than in the wall rock, suggesting lower strain in these domains. S_{O1} is usually straight in the wall rock and wraps around the sigmoidal quartz-rods. Throughout the area, in high- and low-
strain zones, sigmoidal quartz-rods have an S-geometry on horizontal pavements. In three dimensions the structures are highly cylindrical with the symmetry axis parallel to \(D_2 \) stretching or intersection lineations. Sigmoidal quartz-rods on a 10-cm scale of identical geometry and vergence are present in both limbs of 10 metre-scale \(D_2 \) folds, showing that folding locally postdated the development of sigmoidal quartz-rods and that they are not simply small-scale \(D_2 \) folds.

Fig. 3. Schematic block diagram showing the three-dimensional arrangement of the main structural elements in the area. For the sake of simplicity only one late shear zone separating the Culip and the Lighthouse areas is represented. \(S_{01} \) = bedding and bedding parallel foliation, \(S_2 \) = crenulation cleavage, \(L_2 = D_2 \) related stretching lineations, \(S_m \) and \(L_m \) are respectively the mylonitic foliation and the associated stretching lineation, \(p \) = pegmatites.

Fig. 4. Field photographs of quartz-veins. All sections are plane view. (a) \(D_2 \) folded quartz-vein, highly oblique to \(S_2 \) crenulation cleavage. (b) Sigmoidal quartz-rods displaying asymmetric shapes. (c) sigmoidal quartz-rod with a shape similar to a \(\delta \)-object.
The proposed interpretation of the sigmoidal quartz-rods is as follows. The massive D1-boudins in quartz veins acted as relatively competent bodies during D2 flow. The geometry of the sigmoidal quartz-rods indicates that they formed by relative rotation of the massive boudins over variable angles with respect to S_{O1}. Most likely, the structures formed in sinistral non-coaxial flow; this would cause round objects to rotate permanently, stocky competent objects to rotate over a certain angle, while more elongate bodies such as S_{O1} and pegmatite veins are blocked in rotation (Passchier, 1987); (Fig. 5).

Porphyroblasts of andalusite up to 5 cm diameter occur all over the study area. S_1 is deflected around these andalusites but is continuous inside them with straight inclusion patterns S_1. Most porphyroblasts have an oblique-S_1 geometry (Passchier and Trouw, 1995) i.e. S_1 differs in orientation from S_1 in the wall rock. This structure shows that andalusite grew intertectonic between D1 and D2 (Passchier and Trouw, 1995, chapter 7). Anti-clockwise rotation in the map view and ‘northern block down’ in the vertical section seem dominant.

3.2. Pegmatite dykes

In map view (Fig. 1), a pegmatite dyke swarm occurs in the area in a band closely parallel to the trend of the higher strain zone, although some dykes also intrude more marginal, less deformed domains. Pegmatites mainly form planar dykes up to 5 m wide, but also more irregularly shaped elongate bodies up to a few hundred meters long and 40 m wide (Fig. 1). Pegmatites are subvertical and range in orientation from orthogonal to nearly subparallel to S_{O1} (Fig. 3). The intersection lineation of pegmatite dykes with S_{O1} and S_2 and the intersection lineation of both foliations are all subparallel. Some subhorizontal or gently dipping pegmatite dykes up to 1 m thick and 100 metres long are also present in the high-strain zone (Fig. 6), and these are connected to vertical pegmatite veins which seem to have acted as feeder dykes.

Most pegmatites are folded or boudinaged during D2 (Fig. 7a,b), and S_2 is associated with the development of these structures. D_2 folds in pegmatites are coaxial with D_1; folds in S_{O1} but are more open. (Fig. 8). Folding may have taken place when the pegmatite dykes were still partly liquid. Cusptate–lobate
Fig. 6. Scheme showing different shear sense markers (q.v. = quartz veins, pbl = porphyroblasts). Pegmatite dykes (p) closely parallel to \(S_2 \) exhibit boudinage, while \(S_{Q1} \)-parallel dykes are folded. Some steep pegmatites have subhorizontal branches which become folded during \(D_2 \).

Fig. 7. Field photographs of pegmatite structures. All sections are plane view and the location is shown in Fig. 13. (a) Boudinaged (above) and folded (below) pegmatite dykes from the medium strain domain, used to determine sectional strain ellipse in Fig. 12. (b) Detailed view of the folded pegmatite. Note its obliquity with respect to both \(S_{Q1} \) and \(S_2 \) foliations.
structures around the folded pegmatites indicate a more competent behaviour of the magmatic crystal mush than the enclosing metasediments. A non-penetrative solid state tectonic fabric is present in most of the pegmatites although some pre-full crystallization fabrics (Hutton, 1988) and compositional banding parallel to \(S_2 \) are occasionally observable. Some pegmatites, deformed by \(D_2 \), are seen to cut both \(S_2 \) and \(D_2 \) folds affecting \(S_{0/1} \) and quartz veins. Therefore, pegmatite intrusion seems clearly synkinematic with \(D_2 \) deformation (Carreras and Druguet, 1994).

Boudinaged dykes also develop complex structures. Boudinage either develop pinch-and-swell features, or separated boudins connected by thin seams devoid of pegmatite (Fig. 9). In most of the situations, boudin axis are steeply west plunging (Fig. 10). Some complex fold structures in \(S_{0/1} \) only occur adjacent to boudins in pegmatites. These boudin-related folds have variable styles and, in contrast to \(D_2 \) folds in the wall rock, variable vergence and orientation of axial surfaces and fold axes (Fig. 9). Locally, folds with opposite vergence occur facing each other across a boudin neck (a in Fig. 9). Because of their close connection to boudins, these folds probably formed during boudinage of the pegmatites as a result of the flow heterogeneity in the proximity of the boudins.

On horizontal outcrop faces, many pegmatites have contact zones in micaschist, up to 2 cm wide, that are enriched in tourmaline. Where pegmatite cuts though alternating micaschist and sandstone layers, tourmaline-rich rims are only developed in the micaschist. Tourmaline-rich rims are therefore interpreted as developing from boron-enriched fluids which invaded the wall rock of the veins, and transformed the mica in the micaschist into tourmaline. Within the tourmaline-rich rims, \(S_1 \) is preserved as a ghost foliation, made of tourmaline selvages and crystals.

In the higher strained zones, the ghost foliation in tourmaline-rich rims is commonly oblique to \(S_{0/1} \) observed further away in the wall rock (Fig. 11a). This is especially obvious adjacent to the core of boudins, and in the wall rocks isolated in between branches of pegmatite veins (Fig. 11b). \(S_{0/1} \) in the wall rock is continuous with the ghost foliation in the tourmaline-rich rims through folds that have axial planes parallel to the vein and fold axes parallel to \(L_2 \) in pegmatite. This fold structure can be explained by relative rotation of pegmatite dykes with their tourmaline-rich rims and \(S_{0/1} \) in the wall rock during
D$_2$. The tourmaline-rich rims of the pegmatite dykes were probably more competent than the micaschist, and largely preserved an initial high angle between S$_{0/1}$ and the pegmatites when these intruded. Ductile flow in the micaschist changed the orientation between S$_{0/1}$ and pegmatites on a regional scale. Similar structures have been described on cm-scale around calcite veins in slate (Passchier and Urai, 1988).

The tourmaline-rich rim structures show that most pegmatites intruded subvertically oblique to S$_{0/1}$, although some dykes were emplaced parallel with bedding. Hence, several factors seem to govern the opening of the space occupied by the pegmatites. Oblique pegmatites were probably emplaced along tension fractures normal to the instantaneous extension direction, since there is no lateral displacement of markers over these planes. Other veins intruded parallel to S$_{0/1}$, indicating that this surface was also important mechanically as a plane of weakness.

4. Kinematics of D$_2$

Shear zones are usually modelled as thin discs of intense deformation in less- to non-deformed parent rocks. Flow in such zones is thought to approximate simple shear which causes development of a planar and linear shape fabric with the linear component subparallel to the displacement direction at high strain. The non-coaxial nature of simple shear flow causes development of structures such as folds, asymmetric mantle porphyroclasts, mica-fish and shear band cleavage with a monoclinic shape symmetry, with the vorticity vector in the shape fabric plane, normal to the linear shape fabric component. This simple model seems to be valid in a majority of ductile shear zones described in the literature. As a result, the standard method to analyse displacement sense in ductile shear zones is as follows. First, the orientation of the linear component of the shape fabric or mineral lineation in the zone is established, assuming that it is parallel to the displacement direction at high strains. Second, sections normal to the shear zone and parallel to the lineations are used to find asymmetric structures; these are then interpreted in terms of shear sense.

In the study area, linear fabric elements such as
the linear component of the shape fabric, mineral lineations, intersection lineations, axes of cylindrical D2 folds and axes of pegmatite boudins are subparallel and steeply west plunging (Fig. 10). However, most marked asymmetric structures are observed in gently dipping outcrop-sections normal or highly oblique to the stretching lineation, while only few asymmetries occur where they would be expected, i.e. on steeply west dipping rock faces normal to S2 and parallel to the L2. On these sections and all other steep faces all main structures are parallel and boudins are symmetrical.

Shear zones with lineations normal to the faces where asymmetric structures are observed have been described in other localities (Robin and Cruden, 1994). They could be explained in several ways.

1. All lineations are intersection lineations formed normal to the displacement direction of the shear zone. Such structures might theoretically form in plane-strain simple shear zones. In the study area, this explanation seems unlikely; although some of the lineations in the area are certainly intersection lineations, which are parallel to mineral lineations and stretching lineations, and to the axes of cylindrical folds. It seems unlikely that such a constant relationship of linear fabric elements could develop normal to a displacement direction in simple shear. In that case, intersection lineations and fold axes would be expected to be wavy and varying in orientation. D2 folds would not likely be strongly cylindrical.

2. The lineations and asymmetric structures were formed during two phases with displacement directions at right angles to each other. Since deformation is never perfectly homogeneous but rather partitioned into low- and high-strain domains, such an overprint
would have variable effects on the older structures, and would particularly produce refolded folds and crenulation cleavage. In the study area, lineations and asymmetric structures have similar geometries and orientations and no overprint structures were found that could warrant two-phase event. This interpretation is therefore unlikely as well.

(3) Flow was not simple shear, but was a non-coaxial flow that deviated from plane strain, with a strong stretching component parallel to the rotation (vorticity) axis of the flow. Such flow types may be common in transpressive shear zones and produce a strain ellipsoid with the longest (X) axis parallel to the rotation axis (Sanderson and Marchini, 1984; Fossen and Tikoff, 1993; Robin and Cruden, 1994; Krantz, 1995). As a result, stretching and mineral lineation will be normal to the sections which display asymmetric structures. This model explains the data from the study area best. We therefore suggest that the high-strain zone in the study area was a non-plane strain sinistral transpressive shear zone with a strong stretching component vertically.

Stretching in a vertical direction, parallel to the rotation axis of flow can also explain some peculiarities of the pegmatites. Most pegmatites apparently intruded as steeply dipping dykes oblique to S_{0//1}. Since there is no offset of bedding and other markers parallel to the veins, they likely formed in tension, approximately parallel to a steep σ2 and gently plunging σ1. Because of the strong anisotropy of the parent rocks, σ1 may have deviated from the orientation of the instantaneous shortening direction of ductile flow during D2. The gently-dipping pegmatite branches (Fig. 6) result most likely from local reorientation of the stress field associated with a stretching component in the vertical direction. Subsequent deformation of these sheets is by folding with axes and axial planes parallel to S_2, which also fits vertical extension.

The subvertical attitude of boudin necks in pegmatites may seem to contradict the idea that vertical extension is important. Although some of the steeply dipping pegmatites appear slightly boudinaged in a vertical section, boudins with steep axes subparallel to the stretching lineation, observed in map view, seem dominant. In addition, in many outcrops the location of boudin necks coincides with psammitic layers. Since S_{0//1} is vertical in the area, it is possible that this causes development of boudin axes parallel to the intersection line of pegmatites and S_{0//1} (Talbot, 1970).

4.1. Kinematic analysis in the vorticity profile plane

Several structures in the horizontal plane, which constitutes a section close-parallel to the vorticity profile plane (Robin and Cruden, 1994), indicate that shear sense was sinistral, i.e. the geometry of sigmoidal quartz-rods, the geometry of asymmetric D2 folds, the inclusion pattern in porphyroblasts, the orientation of pegmatite boudins with respect to the pegmatite vein enveloping surface and the distribution of folded and boudinaged pegmatites in space (Fig. 6 and Passchier, 1990). Unfortunately, strain is rather inhomogeneously distributed over the area, which inhibits a quantitative kinematic approach.

In any progressive deformation, a line or plane can be defined towards which material lines, and consequently foliations and lineations rotate; in simple shear this is the flow plane, but similar planes and lines exist in other types of progressive deformation. We name such lines and planes 'fabric attractors' (following Passchier and Trouw, 1995, p. 19).

The angle between S_{0//1} and S_2 decreases with increasing strain in the area, and this implies rotation of these surfaces towards the fabric attractor. In the core of the high-strain zone, both fabric elements are nearly parallel, hence close to the orientation of the fabric attractor.

Elongate rigid ellipsoids in a homogeneously deforming fluid will show a complex rotation behaviour, depending on the length/width ratio of the object, the vorticity of the flow and finite strain (Passchier, 1987). In principle, all objects except infinitely long ones rotate permanently in simple shear, the latter are blocked by the fabric attractor (Passchier, 1987; Passchier and Trouw, 1995, p. 119). In non-coaxial flows between pure and simple shear, only stocky objects rotate, while more elongate ones rotate over a small angle to a blocking orientation that depends on the shape of the object. In practice, blocked elongate objects will make a small (5–25°) angle with blocked infinitely long objects (Passchier, 1987; Passchier and Trouw, 1995, fig. 5.23). Although sigmoidal quartz-rods deviate from a rigid
ellipsoid model, a plot of their rotation angle (α) with respect to their length–width ratio (R) shows a distribution similar to that expected for ellipsoids (Fig. 5). The orientation distribution of sigmoidal quartz-rods indicates that flow was probably highly vortical, close to simple shear, but with a pure shear component.

The tourmaline-rich rim-structures described above give information on the relative rotation of $S_{0/1}$ and pegmatites. In the medium strain zone of the study area, relative rotation up to 110° with a remaining angle between boudinaged pegmatites and $S_{0/1}$ of 30° has been observed. Assuming that the pegmatites intruded in an orientation near the bulk shortening direction during D_2 flow, rotations of 90° (pure shear) to 135° simple shear are possible towards the fabric attractor. A rotation angle of 110° therefore agrees with a highly vortical flow.

4.2. Strain characterisation in the vorticity profile plane

Sets of differently oriented quartz-veins and pegmatite dykes have been used to determine the stretch values and the related D_2 strain ellipse in map view. Each outcrop selected for analysis shows a rather homogeneous deformation with constant orientations of S_1 and S_2. While the early quartz-veins record the bulk D_2 deformation, the pegmatite sets came later on, so they record only part of the D_2 deformation, i.e. the strain post-dating their emplacement. Bulk D_2 strain determinations have not been performed in higher strain domains because all earlier structures become into close parallelism, impeding their use in strain analysis.

Fig. 12 shows strain ellipses determined by this method, allowing to determine the local strain ratio (R) and area-change. The axial ratios on the outcrop

Fig. 12. Sketch map of the Culip–Cap de Creus area showing the arrangement of different structural domains and some sectional ellipses. In white: bulk D_2 strains recorded by early quartz-veins; in grey: strain recorded by pegmatites.
surface found in low-strain domains range between
\(R = 2.3 \) and \(R = 2.8 \). They are sectional ellipse
values and consequently represent lower values than
those corresponding to the \(X/Z \) ratio of the strain el-
ipsoid which is expected to lie in subvertical planes,
but cannot be measured accurately.

The strain recorded by the pegmatites is consist-
tently lower than the bulk strain recorded in the
mica-schists in medium strain domains (Fig. 12).
This is not only indicated by the recorded strain
values but also by the difference in tightness of
coaxially folded schists and pegmatites and from
comparision of strain values recorded in schists from
low-strain domains with strain recorded in peg-
matites in medium strain domains (strain ratios be-
tween \(R = 3.5 \) and \(R = 3.7 \)). These observations are
in agreement with the proposed synkinematic nature of
the pegmatites.

Another significant result is the obliquity of the
long axis of the calculated ellipses with the orienta-
tion of \(S_2 \), i.e. the long axis of the bulk strain ellipses
(Fig. 13). This fact evidences the non-coaxiality of
the deformation, being the bulk strain ellipse sinis-
trally rotated with regard to the lower strain ellipse
recorded by the pegmatite dykes.

5. Discussion and conclusions

Although small-scale structures indicate sinistral
shear sense in the high-strain zone, the map view
of high- and low-strain zones (Figs. 1 and 3) shows
a deflection of \(S_{0_1} \) into the high-strain zone that
may seem difficult to reconcile with a sinistral shear
sense.

Most shear zones, including these developing by
simple shear and transpression, have the fabric at-
tractor oriented parallel to the shear zone boundary:
as a result, internal shear sense and displacement
sense of external markers over the shear zone are
identical.

We propose (Fig. 14) that the high-strain zone
in the Cap de Creus area did not form with the
fabric attractor parallel to the boundaries of high-
and low-strain zones. As discussed above, the high-
strain zone is probably a zone of highly vertical
sinistral non-coaxial flow with a strong vertical ex-
tension component. If no major volume change is
involved, the shear zone was probably thinning in
order to compensate for vertical extension. The fab-
ric attractor was apparently close to the \(S_{0_1} \) plane
at the end of \(D_2 \). Since asymmetric \(D_2 \) structures
are present in both the high- and low-strain zones, it is likely that similar flow took place in both zones, but that deformation either continued longer in the high-strain zone, or that strain rate was higher there. In any case, since the fabric attractor was at a small angle to S_{01} at the end of D_2, it must have been oblique to the boundary of the high-strain zone. This implies that the high-strain zone is not a shear zone in the classical sense, with a fabric attractor parallel to zone boundaries. Sinistral non-coaxial flow in the high-strain zone may have caused a dextral flexure of S_{01} if flow in the low-strain zones was either slower or earlier that in the high-strain core (Fig. 14). This mechanism is similar to that of flexural flow in a fold. We did not use the term flexural flow here, however, since this strictly implies simple shear parallel to bedding, which does not exactly fit the kinematic regime determined for the Cap de Creus area.

The Cap de Creus area contains an unusual high-strain zone developed at medium- to high-metamorphic grades that seems to have developed by transcurent sinistral non-coaxial flow, combined with vertical extension (Fig. 14). Stretching and mineral
lineations are steep and developed in a direction normal to the sinistral 'displacement' direction in the high-strain zone. Most asymmetric shear sense indicators occur on horizontal outcrop faces normal to the lineations. Nevertheless, the high-strain zone cannot be described as a simple transpressive shear zone. Transpressive deformation has its fabric attractor parallel to the shear zone, as in simple shear and nearly all other modelled shear zones. Sinistral shear sense indicators in the Cap de Creus area seem to be in conflict with a 'dextral' deflection of older foliations over the high-strain zone, and this geometry can be explained by a flow regime with a fabric attractor oblique to the shear zone. It seems, therefore, possible that ductile shear zones with sinistral shear sense produce a dextral deflection of an older foliation. In medium- to high-grade zones it is, therefore, necessary to be careful when interpreting lineations in terms of displacement direction, and with the interpretation of deflection of older fabric elements into high-strain zones.

Acknowledgements

Financial support for this work by DAAD (Nrs. 322-A1-e-dr and 155B). C.W.P., P.V. and B.D.B. gratefully acknowledge the Volkswagen Stiftung. The research of E.D. and J.C. was also sponsored by DGICYT Proyecto: PB 91-0477.

References