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Abstract

Small-scale faults with associated drag folds in brittle-ductile rocks can retain
detailed information on the kinematics and amount of deformation the host rock
experienced. Measured fault orientation (), drag angle (/) and the ratio of the thickness
of deflected layers at the fault (L) and further away (7) can be compared with «, fand
L/T values that are calculated with a simple analytical model. Using graphs or a
numerical best-fit routine, one can then determine the vorticity and initial fault
orientation that best fits the data. The proposed method was successfully tested on both
analogue experiments and numerical simulations with BASIL. Using this method, a

kinematic vorticity number of one (dextral simple shear) and a minimum finite strain of

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

2.47 to 3.76 was obtained for a population of antithetic faults with associated drag folds
in a case study area at Mas Rabassers de Dalt on Cap de Creus in the Variscan of the

easternmost Pyrenees, Spain.

Keywords: strain analysis; vorticity ; progressive deformation; faults; drag folds;

foliation.

1. Introduction

One of the aims of structural geology is to determine and quantify the amount and type
of deformation thatrocks experienced. For this structural geologist use a variety of
structures that record deformation, such as folds, boudins, veins, etc. (e.g. Ramsay and
Huber, 1983). In this paper we propose a new method to determine finite strain and the
kinematics of deformation using isolated, discrete small-scale faults and their associated
drag folds.

Slip along a fault will cause heterogeneous deformation in the vicinity of the
fault. Drag folds are the usual result in foliated rocks. Recently, much attention has been
given to small-scale faults and their associated drag folds in mostly ductile rocks
(Passchier, 2001; Grasemann and Stuwe, 2001; Grasemann et al., 2003; Exner et al.,
2004; Grasemann et al., 2005; Wiesmayr and Grasemann, 2005; Coelho at al., 2005;
Kocher and Mancktelow, 2006). In the modern literature, these structures were first
described by Gayer et al. (1978) and Hudleston (1989). These structures were later
dubbed "flanking folds" or "flanking structures" by Passchier (2001), who used this
term for a variety of structures apart from fault-related drag folds. Instead of this new

terminolo gy, we prefer to use well-known and long-used terms: faults and drag folds.
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The aforementioned authors described a range of drag fold structures and
proposed a number of classification schemes. Basically, an isolated fault with its
associated drag folds falls into one of four categories by the combination of two
parameters: fault movement is antithetic (a-type of Grasemann et al., 2003) or synthetic
(s-type) with regard to the far-field sense of shear, and drag folds are normal or reverse
with regard to the slip along the fault. Of these four, the antithetic reverse-drag category
is the most common for isolated faults. The fact that reverse drag is common is to be
expected for isolated faults in an otherwise homogeneously deforming medium. A
straight foliation element (layering, cleavage) that is cut by the fault will remain on a
single straight plane away from the fault, whereas close to the fault, it is bent by the
fault movement (Fig. 1a). Both synthetic and antithetic faults will therefore initially
develop reverse-drag folds. However, Exner et al. (2004) showed that the slip direction
may change at a high strain and reverse drag folds then become normal drag folds.

An isolated, discrete fault will typically develop drag folds with a constant sign
of curvature. In a ductile shear band (i.e. minor shear zone) the foliation is not cut by a
fault, but can be traced continuously through the shear band (Fig. 1b). This implies that
there is an inflexion point where curvature changes sign (Coelho et al., 2005). This
produces shear-band type structures in the terminology of Wiesmayr and Grasemann
(2005). However, these structures still exhibit the same reverse or normal drag on a
larger scale than the deflection caused by the localised shearing within the shear band.
These reverse-drag folds can usually not be discerned when shear band spacing is on the
same scale as the reverse drag folds.

Despite the several field studies (Gayer et al., 1978; Druguet et al., 1997; Harris,
2003), as well as numerical (Grasemann and Stiiwe, 2001; Grasemann et al., 2003;

Grasemann et al., 2005; Wiesmeyer and Grasemann, 2005; Coelho et al., 2005; Kocher
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and Mancktelow, 2006) and experimental simulations (Hudleston, 1989; Odonne, 1990,
Koyi and Skelton, 2001; Harris et al., 2002 ; Exner et al., 2004; Kocher and
Mancktelow, 2006) of drag fold structures, so far only Kocher and Mancktelow (2005)
proposed a way to use these structures to quantify the finite strain and kinematics of
deformation. They employed the analytical solution of Schmid and Podladchikov
(2003) for the deformation field along an isolated fault that itself is passively deformed
by the applied bulk flow. Their method is essentially applying the reverse model strain
field to straighten out the foliation. Since bulk deformation kinematics and finite strain
are not known a priori, a range of finite strains and vorticities are applied and the one
that best straightens the foliation is chosen as the solution. The advantage of the method
is that a single structure can be used to determine the vorticity of deformation, the finite
strain since formation of the fault, and the original orientation of the fault relative to the
foliation. A disadvantage is that appropriate software is needed.

In this paper we propose a similar method to determine these three parameters.
The advantage of our proposed method is that the method does not necessarily require a
computer. Instead, charts can be used, which means the method can easily be applied in
the field. However, a more accurate determination can only be achieved with a
computer program that is also described in this paper. A disadvantage is that multiple
fault-drag fold structures are needed at different stages of development (finite strain
since formation). This study is based on a population of drag fold structures in deformed
quartzites from Mas Rabassers de Dalt on the Cap de Creus Peninsula in north-eastern
Spain (Fig. 2). These structures and their setting will be described first to provide the

background for the method that is described in the subsequent sections.
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2. Examples from the Rabassers quartzite

2.1. Regional setting of the Mas Rabassers de Dalt locality

The Cap de Creus Peninsula is the easternmost outcrop of the Variscan basement
exposed along the Axial Zone of the Pyrenees (Barnolas and Chiron, 1996; Carreras,
2001). The dominant lithology in the area of interest near the ruin of Mas Rabassers de
Dalt (UTM 31N 0523100, 4685200, Fig. 3) is a monotonous series of amphibolite-
facies meta-turbidites (Druguet, 1997;2001). The rocks experienced multiple
deformation phases during the Variscan Orogeny (Druguet, 1997; Druguet, 2001; Bons
etal., 2004). Some quartzite beds, ranging from a few tens of centimetres to a few
metres in thickness, are intercalated in the meta-turbidites. They form the only marker
horizons that can be traced over distances of up to a few hundred metres. All the drag
fold structures discussed in this paper were found in one such bed, which has a distinct
black-and-white cm-scale banding (Fig. 2). The banding is layer-parallel and therefore
assumed to be original sedimentary layering. The colour difference is a result of
different amounts of graphite and other impurities, which also results in a difference in
grain size between the layers (Fig. 2e-f). There are no indications for any significant
differences in rheological properties between the dark and light bands (no cuspate-
lobate structures, buckle folds in specific layers, etc.).

Near Mas Rabassers de Dalt, the quartzite and S, layer-parallel foliation are
affected by two folding events (D, and Dj3), resulting in a complex exposure pattern
(Druguet, 1997). Pegmatites that intruded during peak-metamorphic conditions
(Druguet and Hutton, 1998) are only affected by D3 folding and shearing. The refolded

folds are transected by steep, roughly NNW-SSE trending retrograde dextral shear
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zones (Carreras, 2001; Fusseis et al., 2006). These shear zones are associated with

localization of late D folding (Carreras and Casas, 1987; Carreras et al., 2005).

2.2. Drag fold structures

The discrete faults with drag folds are mainly found in the refolded quartzite bed.
Within that bed they only occur in sections of the bed that run roughly parallel to the Ds
shear zones. This suggests that they formed during D; dextral shearing and not during
earlier deformation events.

The drag folds form at cm-scale, steeply plunging faults, best seen on gently
dipping outcrop surfaces. Almost all drag folds are reverse. Faults with the least offset
relative to their length are almost perpendicular to the banding in the quartzite (Fig 2a).
More evolved structures make an increasingly smaller angle with the banding,
suggesting the structures progressively rotated clockwise (Fig. 2b). Fault tips can rarely
be discerned, as faults tend to bend in a listric form to become parallel to the banding at
both ends. Dextral layer-parallel slip is observed in a few rare cases where crosscutting
veins are offset. Clockwise rotation of the faults and layer-parallel slip all indicate
dextral shear. The faults are therefore interpreted as antithetic faults. Synthetic faults
(Fig. 2¢) are rare in the quartzite, and usually make a small angle with the banding. In
the third dimension, the small faults are remarkably straight and may extend over more
than a metre (Fig. 2d). Even on the microscopic scale, the faults are discrete planes with

only a very narrow damage zone (Fig. 2e-f).
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3. Method

The method described below is aimed at estimating the vorticity and finite strain that
the rock experienced using parameters of the drag fold structures that can be measured
easily. The following parameters can be determined in the field (Fig. 4): the angle (@)
between the fault and the far-field foliation, the drag angle (/) between the foliation and
the fault measured at the fault, preferably in the middle of the fault, and finally the ratio
between the thickness of a marker layer at the fault, measured parallel to the fault (L) at
the fault, and perpendicular to the layer (7) away from the fault. All parameters mustbe
measured in the plane perpendicular to the fault and foliation.

The first main assumption is that the fault acts as a passive, straight marker line
that is being rotated and stretched/shortened by the applied bulk flow. This assumption
is validated by both numerical and physical experiments (Grasemann and Stiwe, 2001;
Exner et al., 2004). Clearly, the four parameters will evolve from their initial values
(a=po and Ly/T=1/sin(y)), depending on the flow field relative to the initial
orientation of the fault and foliation. We need to know how «, S and L/T evolve, as a
function of progressive deformation and initial conditions, to determine which initial
conditions, kinematics of flow and finite strain lead to the combinations of &, fand L/T
that were measured in the field. However, there may notbe a unique solution for any
given single combination of &, fand L/T. This brings us to the second main assumption
for the proposed method: during progressive deformation faults form at different stages,
but with the same initial orientation (). At the end of deformation (the state observed
in the field), each fault experienced different amounts of deformation and is therefore in
a different state of development (Fig. 2a-c). Analysis of several of such faults produces

a number of different , fand L/T combinations. These measured combinations should
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lie on a path in &, £ and L/T space that is unique to the flow kinematics and initial
orientation of the faults.

The basic idea of our proposed method is that theoretical paths for all flow
kinematics and initial fault orientations can be determined, and can then be compared
with @, fand L/T data sets that are measured in the field. The path that best fits the data
provides us with the flow kinematics and the initial fault orientation. It also allows us to
determine which data point represents the highest strain, which gives a minimum
estimate of the finite strain. Comparison of theoretical paths and data can be done using
charts or with a computer program that carries out the best fit. The advantage of using

charts is that they can easily be employed in the field.

3.1. Theoretical a-f5-L/T paths

The following analysis is based on the deformation at an isolated single straight fault in
an otherwise homogenously deforming medium. The fault is supposed to have a limited
extent, so that the offset reduces to zero at both ends. We consider a plane-strain case,
with the fault oriented parallel to the intermediate principal stretching direction. The
problem can therefore be regarded as two-dimensional. If deformation is not plane
strain, stretching or shortening in the third dimension would cause an area change in the
section under consideration, but no changes in the angles and other parameters that are
used below. We further consider an initially straight foliation perpendicular to the
section under consideration.

Similar to Kocher and Mancktelow (2005), we fix our reference frame to be

parallel and perpendicular to the far-field foliation orientation. The foliation is assumed
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to be one of the flow eigenvectors or apophyses (Passchier, 1988; Ebner and

Grasemann, 2006). The bulk flow field is now given by the position gradient tensor F:

a g)
F{o 1a) M

where a is the amount of stretching, and g the amount of shearing, both parallel to the
foliation. Because of the definition of the reference frame, the far field foliation does not
rotate relative to the reference frame, but it may stretch or shorten if a#1. F is area-
conservative because of our assumption of plane-strain flow.

It is also assumed that the fault is frictionless, so that it cannot support any shear
stress. This implies that the material adjacent to the fault stretches/shortens in pure shear
parallel to the fault. Rotation of the fault adds a spin to the deformation, but deformation
immediately adjacent to the fault plane remains coaxial. Furthermore, the fault as a
whole behaves as a passive plane, or a line in 2D, and therefore stretches and shortens
according to the bulk flow field. We define e as the amount of stretching or longitudinal
strain of the fault (its finite length / original length). With these assumptions an
analytical solution exists for the evolution of «, fand L/T for a layer that intersects the
fault at its centre.

To determine the orientation of the fault with progressive strain, we consider a
unit vector parallel to the fault. This vector has initial coordinates [cos( ) sin(aw)].
After deformation, and due to the application of the tensor F, the vector will have new
coordinates [a-cos(ap)tg sin(a),(1/a)sin(ay)]. The stretching (e), parallel to the fault,

is the ratio of the finite and original length of the unit vector:

e=\/(a-cos(ao)+g-sin(ao))z+%sinz(au). 2

The finite orientation (@) of the fault relative to foliation is:
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a= arctan[% 3)

a’ <cos(a‘,)+ a 'g-sin(a‘,) )
As deformation progresses the foliation is reoriented at the fault, describing a
drag angle (/) between the foliation and the fault plane. We use the assumption of a
frictionless fault and therefore pure shear parallel to the fault. The foliation at the fault
thus experiences a stretching (e) parallel to the fault, while it passively rotates along
with the fault. Stretching and rotation determine the drag angle. A local position

gradient (F°) tensor can be defined in a coordinate system parallel to the fault:

e 0
F=(o 1/ej' @

A unit vector in this local coordinate system will change from initial coordinates
[cos(p) sin(f)] to new coordinates [e-cos(/),( 1/e)-sin(f)]. The angle () between

foliation at the fault and that fault will then be (using o = f):

— arctan sin(/)’a) — arctan sin(ao)\
= arctal [Ws(ﬂo)}_a cta [m}‘ (5

The reference layer should intersect the fault just at the centre of it, where the
maximum displacement can be found. Away from the fault the finite thickness (7)) of

that layer is a function of the bulk finite strain and its original thickness (70):

r-h (6
a
The initial fault-parallel thickness (L) is:
T,
Ly=—F—. (@)
sm(au)

This line L, gets stretched by the same amount (e) as the fault, so its length after
deformation will be:

eT (8)

0" sin(ao)

L=e-L
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As the absolute dimensions are irrelevant for the geometry of the system, we combine
equation (7) and (8) to obtain the ratio L/T:

_eT a__ea 9
T_sin(a‘,) Ty sin(ao) ©

‘We now have the three measurable parameters ¢, £ and L/T as a function of the
unknown variables &, a, and g. Although the combination of @ and g defines the
amount of finite strain and the kinematics of strain, it may be more useful to use the two
variables finite strain ration (R,) and vorticity angle () or vorticity number (Wk). Ry is
the axial ratio of the finite strain ellipse and w the angle between the flow apophyses,
with:

-1/a

a
@ = arctan

], Wk=cos(w) (10)

2 =2\/gz+%(l/a+a)2 +\/g2+(a—1/a)2

r
2\/gz+%(l/a+a)z —\/gz+(a—1/a)2

w can range from 0° for simple shear (Wk=1) to +90° for pure shear (Wk=0) stretching

and

(1n

parallel to the foliation, or -90° for pure shear shortening parallel to the foliation.
With the above equations, curves of « and L/T as a function of £ are shown for

different vorticity angles and starting orientation of the fault (Fig. 5).

3.2. Determining vorticity and initial fault angle with charts

To determine the vorticity () and initial fault orientation (¢y), &, fand L/T need to be
measured on a population of faults with drag folds. Such data can be measured in the
field or from pictures. The plane of observation should be perpendicular to both fault

and foliation. If not, the apparent values should be corrected to get the true values. The
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data should be collected as close as possible to the middle of the fault, so that equation
(2) holds for the stretching of the material immediately adjacent to the fault. It should
also be noted that these equations can be only used when the fault is discrete. In case of
a narrow ductile shear band, the angle £ would be modified due to shearing of the
foliation in the narrow zone (Fig. 1b).

Applying the above equations, several unique graphs for the evolution of «’, S
and L/T can be plotted for progressive strain, for a certain starting orientation of the
fault () and a certain vorticity angle (w) (Fig 5). Charts covering the full range of @
from -90 to +90° and a from 0 to 180° are provided in the appendix. We assume that
all the shear bands start off at different times, but with a similar orientation. Each fault
then represents a different stage of development. The data can be plotted in each of the
graphs of figure 5. Ideally, all data should ploton a single curve thatrepresents the
evolution of a fault system with a certain &y and w. The fault that experienced the least
strain should lie closest to the estimated initial fault angle (). The total amount of
strain can be estimated from that for the most developed fault system. This is, of course,
a minimum estimate, because even the most developed, oldest fault that is found must
not necessarily have experienced the total finite strain of the host rock. The pair of
curves in figure 5 that best fits the eight measurements is the one for w=0° (simple
shear) and «y is 70° to 80°. The highest strain the rock experienced is estimated to be
between R=8 and 16, which corresponds to a dextral shear strain of 2.47 to 3.76.

Figure 5 shows that the curves for different o and w are distinct, as long as o is
larger than about 40°. This means that the method is only applicable to faults that

started off at a high angle to the foliation.

3.3. Numerical implementation of the method
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Finding the curve thatbest fits the data can also be done numerically, using a least-
squares approach. A small program that does the curve fitting was written in the
language "C" (source code can be obtained from the authors). Input is a text file
containing a list of e, fand L/T data. The program cycles through all possible vorticity
angles (-90° to +90°) and ¢ angles (0 to 180°), each with increments of 1°. For each @
and ay combination, the program then calculates the o~fL/T curve for progressive
strain, increasing strain in small increments. For each strain increment and each i-th data
point, the difference A; between the theoretical and measured «, £, L/T values is

calculated:

2

Avoayy =@ =) +(B.=B) +w(LIT, - L/T) (12)
Here the subscript ¢ stands for theoretical values and 7 for measured data. Because the
range of L/T values differs from that of the angles & and S, L/T data may be given a
different weighting (w) for the least-squares best fit. For a given @ and ¢ combination,
the sum (2A;) of the smallest A-value for each data point is a measure of how well that
w and @y combination fits the data. The w and &) combination with the lowest ZA, is
regarded as the best estimate of w and . Once a best estimate for @ and ¢ is found,
one can estimate the amount of strain that each analysed fault experienced by finding

the strain that minimises A;, using equation (12).
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4. Validation of the method

4.1. Introduction

In order to ascertain the validity of the method, it has been tested on several analogue
and numerical experiments with different initial fault angles and different boundary
conditions. First, the method has been applied to a simple shear analogue model from
Exner et al. (2004) and later to a pure shear experiment of our own. We also ran a series
of numerical experiments with a variety of initial angles and vorticities, ranging from
pure to simple shear. In all cases, we measured «, fand L/T of a single drag fold
structure at different stages of its development, and applied the least-squares best-fit

routine to the data.

4.2. Validation on a simple shear analogue experiment

Exner et al. (2004) studied drag fold structures at a fault in a deforming a homogeneous,
linear viscous matrix material (PDMS) in a ring shear rig. Each of their models started
with a predefined fault, lubricated using liquid soap and silicone oil. They tracked the
offset and deflection of foliation around the fault using a marker grid. We used
published images of one experiment for y=90° according to the authors (Fig 6, after
their figure 6). It should be noted that the actual starting angle in that experiment was
slightly less, about 87°. The fault initially has antithetic slip and develops reverse drag
folds. Ata shear strain of 2.3, the fault has rotated 67° and slip reverses to become
synthetic. In the terminology of Grasemann et al. (2003) the system evolves from a

reverse-drag a-type, to a normal-drag s-type flanking fold.
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Nine groups of data (&, 5, L/T) were measured from the figures of Exner et al. (2004)
up to a shear strain of 1.8, where the finite offset along the fault is still antithetic. With
our analysis (Fig. 7) we obtained an estimated initial fault angle of 85° (true value 87°)

and a vorticity angle of @=3° or Wk=1.00 (true value 0° and 1.00 respectively).

4.3. Validation on pure shear analogue experiments

To test the method on a pure shear case, we used the deformation apparatus described
by Carreras and Ortuio (1990) and Druguet and Carreras (2006). The deforming
medium was soft, commercially available plasticine. This material has been
characterized as non-linear elasto-viscous with a stress exponent of 3, an effective
viscosity 7~4-10" Pa's at the experimental conditions, a density 0 of 1.15:10° kg/m”®, and
shear modulus G~10° Pa (Gomez-Rivas, 2005). The model had initial dimensions of
29x15x10 cm and was deformed in pure shear at a temperature of 26°C and at a strain
rate of 4107 s™", Since tests with a lubricated cut, as used by Exner et al. (2004), failed,
we simulated the fault with a lenticular fracture that was filled with much softer PDMS
(Fig. 8). The fault was initially oriented 60° to the extension direction. A 5 mm grid was
drawn on the surface of the plasticine. Plane-strain pure-shear deformation was applied
by moving the sides of the sample, while keeping the sample thickness constant at 10
cm.

Shortening lead to a rotation of the fault and the development of reverse-drag
folds. The soft PDMS was squeezed towards the tips of the fault, where wing cracks

developed. Despite these developments, our analysis of six data groups, measured every
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10% shortening, gave a good estimate of the vorticity (89° instead of 90°) and initial

fault angle (59° instead of 60°) (Fig. 9).

4.4. Validation on finite element numerical simulations

As shown above, our proposed method appears to work well for ideal pure and simple
shear deformation. Unfortunately, experimental data were not available for general
shear. We therefore conducted a series of finite element models to test the method for a
range of vorticities and initial fault angles. For the numerical simulations we used the
code BASIL (Barr and Houseman, 1996) that is linked to the modelling platform Elle
(Jessell etal., 2001).

The models were two-dimensional and consisted of a square containing a narrow
ellipse in the centre (Fig. 10). The host rock was simulated with a homogeneous
isotropic linear viscous material with a viscosity (77) of one. A single layer of viscosity
1.1 represented the foliation in the host rock. Like Grasemann and Stiiwe (2003) we
simulated the fault in the centre of each model with a narrow ellipse with a viscosity of
0.01. Two types of initial geometries were considered, with the ellipse oriented at 45°
and 75° to the foliation, respectively. These two models were deformed under different
velocity boundary conditions, from simple to pure shear, varying the vorticity angle (w)
by 30° (Table 1). The grid was generated with a self-meshing routine using Delauney
triangles with a minimum angle of 10°.

At least 6 groups of data (¢, 8, L/T) were measured at different finite strain from
each simulation, and analyzed to determine the vorticity and initial fault angle. The

difference between true and estimated values are plotted in Fig. 11, and listed in table 1.
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Differences in Wk ranges from 0 to 0.1 at the most, and estimated initial fault angles are
within 7° of the true values.

Summarizing, in all tests the results from the analysis closely match the known
true values of the physical and numerical experiments, allowing us to apply the method

to naturally deformed rocks with confidence.

5. Strain analysis applied to the Mas Rabassers de Dalt outcrop

A total of 29 small antithetic faults in the quartzite layer at Mas Rabassers de Dalt (Fig.
3) were analyzed to estimate the deformation experienced by this rock. The finite fault
orientations ranged from a=10 to 64° (Table 2). The data were processed with the
software described in section 3.3. The results showed an initial fault angle (c) of 78°
and a vorticity angle () of 3°, which gives a vorticity (Wk) of 1.00 (dextral simple
shear). The highest strain was recorded by fault structure number 5 (at locality C in Fig.
3) with a finite strain of about Rf=8 to 16, which is equivalent to a shear strain of about
2.47to 3.76.

The dextral simple shear inferred from this analysis is consistent with the field
observations: the quartzite layer is oriented parallel to the zone of highest D3 shear
strain. Only one small fault (locality F) was found away from the main shear zone, but
this one, with a high angle of @=54° to the foliation, experienced less finite shear strain.

The available data set it is large enough to test the precision of the method. This
was done by randomly selecting subsets of 5,9, 13, 17, 21 and 25 data and using these
subsets to determine vorticity and initial fault angle. Ten different random subsets were
processed for each size of the subset. Figure 13 shows that even very small datasets (5

to 9 data) already give approximately the right solution. It should also be noted that
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least-squares best fit using 29 data points (measured by EGR) produced almost identical
results to thatusing the graphs (Fig. 5) on only eight data points independently collected
by someone else (PDB). This not only indicates that the graphical method with a limited
data set produces good results but also that user bias does not seem to be a significant

factor in the analysis.

6. Discussion and conclusions

In this paper we have shown that small-scale faults with drag folds can be used
to determine vorticity, initial fault angle, and estimate of the minimum finite strain since
first fault nucleation. This is a useful addition to the structural geologist's "toolbox"
because relatively few methods exist to determine and quantify vorticity (Ghosh, 1987;
Passchier and Urai, 1988; Wallis, 1992; Short and Johnson, 2006).

The initial fault angle (@) can usually be estimated in the field, by finding the
steepest fault with the least offset and drag fold bending. If this ¢ is determined
independently first, it can of course be used in the subsequent determination of the
vorticity angle (w), either when using the graphs (Fig. 5 and Appendix), or when using
the least-squares technique. In the latter case one can set a and only iterate over @ and
Rf'to find the best fit. However, withoutusing a priori knowledge of &y, the method
appears robust and produced estimated values close (<10°) to the true ones in all tests
on experiments and numerical simulations.

In the field study with 29 measured faults, simple shear deformation was
obtained, which is consistent with the known local deformation at Mas Rabassers de
Dalt. Still, one cannot determine the exact vorticity that the quartzite experienced with

only orientations of foliations, fold axes, and other structural elements. Local field
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observations made so far only indicated a dominant simple shear component, leaving
open sub-simple shear with some shortening or stretching parallel to the shear plane.
With the new analysis of the faults with drag folds the vorticity is better constrained.

In conclusion, we propose a new method to determine vorticity, initial fault
angle and finite strain using small-scale faults with drag folds. Theory and validation
tests on experiments and numerical simulations show that the method is robust,
provided the following assumptions hold: (a) the structures nucleate at different stages
during deformation, and therefore record different amounts of strain, (b) the faults all
nucleate in approximately the same orientation (), (c) the flow kinematics do not
change during deformation, (d) the structures are isolated to avoid interference between
adjacent structures, and (e) the faults are discrete, so that the drag angle (/) can be
determined accurately. The last assumption means that ductile shear bands (Fig. 1b) are
not suitable for this method.

Although a least-squares best fit routine is preferred to obtain the best estimate
of vorticity, initial fault angle and minimum finite strain, charts can be used to obtain a

first estimate.
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Appendix A. Charts to estimate initial fault angle (), vorticity (w) and minimum

finite strain (Rf)

To use these charts, measure the following parameters from a number of fault
systems, preferably at different stages of development (Fig. Al):

- The angle between the fault and the foliation away from the fault (@);
- The angle between the fault and the deflected foliation at the fault (5);
- The ratio (L/7T) of the thickness of a layer away from the fault (7) and
the thickness of the same layer parallel to the fault and at the fault (Z).

Each pair of graphs is for a certain vorticity, defined by the angle between the
flow apophyses (@) or the vorticity number (Wk). Arrows in the graphs show o-f (left)
and L/T-f (right) paths as a function of increasing finite strain and initial fault
orientation (). Dashed lines are finite strain contours at Rf=2, 4, 8, and 16.

Plot your measurements on a transparency, using the blank pair of graphs
provided (Fig. A2). Then overlay your ploton the graphs (Figs. A3 to A6) and find the
vorticity where your data most closely follow one single arrow on both graphs. The
arrow fitting your data points provides you with the starting orientation of the faults.

Ideally, each data point should have the same finite strain in both graphs as well.
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Figure captions

Fig. 1. Schematic illustration of the formation of reverse-drag folds adjacent to (a)
isolated faults and (b) shear bands in a general shear field (WA=0.64) that is
homogeneous far away from the fault/shear band. In case of a ductile shear band,
normal drag is found within the shear band, in addition to reverse drag away from the
shear band. The same applies to antithetic movement (top) and to synthetic movement

(bottom). Left column shows the geometry before deformation.

Fig. 2. Drag fold structures in the banded quartzite at Mas Rabassers de Dalt, Cap de
Creus, Spain. Sense of shear is top (east) to the right. (a-b) Antithetic faults with

reverse-drag folds at different stages of development. (c) One of the rare synthetic
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faults. (d) Photograph and sketch showing that in the third dimension the faults are
straight and extend further than their length perpendicular to the banding. (e) Plane-
polarised light micrograph of an antithetic fault. Variations in the content of graphite
and mica particles form the dark and light bands. (f) Same image in cross-polarised
light. Quartz grain size is largest in clean quartz. All images looking onto the surface
perpendicular to the foliation and faults. Black scale bars 10 mm, white scale bars 0.5

mm, @ of 5 €-cent coin is 21 mm.

Fig. 3. Detailed map of the Mas Rabassers de Dalt Outcrop showing the refolded quartzite
bed and the localities where the small-scale faults were found and measured. The stereoplot
summarizes the main structural information: poles to quartzite bedding (open dots) that lie on
great circle (dashed line) defining the D; fold axis (closed dot) which lies on the great circle
of the average Ds shear plane. The cross is the average D3 shear direction. (Based on

Druguet, 1997).

Fig. 4. Sketch showing a fault and drag fold in the undeformed (a) and deformed (b)

stage, with all the parameters that are required for the analysis.

Fig. 5. Curves of a and L/T as a function of 3 for different vorticity angles and starting
orientations of the fault. This chart can be used to estimate Rf, vorticity and initial fault
angle in the field. Insets show the Mohr-circle for stretch for an R~value of 4. Eight data
points from Rabassers de Dalt are plotted in each of the graphs. The pair of curves that
best fits these data is the one for @=0° (simple shear) and ay is between 70° and 80°.
The highest strain the rock experienced is estimated to be between R=8 to 16 (shear

strain is 2.47 to 3.76).
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Fig. 6. Progressive development of a reverse a-type flanking fold (Modified from Exner

etal. (2004).

Fig. 7. Curves of a, § and L/T for simple shear and a starting orientation of the fault of

85°, which best fit the data measured from the experiment of Exner et al. (2004).

Fig. 8. Initial and final stage of a pure shear analogue model showing the evolution of
an pre-existing fault (a PDMS-filled lens) and its associated drag folds. The side of each

square is 0,5 cm. wide.

Fig. 9. Curves of «, ff and L/T for pure shear and a starting orientation of the fault of

59°. The measured data points of our experiment fit precisely to the calculated curves.

Fig. 10. (a) Initial configuration in finite element simulations with BASIL for an initial
fault angle of 75°. (b) Geometry at the end of a simulation for Wk=0.5 at a finite strain

of RE2.6.

Fig. 11. Comparison of true (open dots) and estimated (closed dots) values of vorticity

number and initial fault angles, for eight numerical simulations with BASIL.

Fig. 12. Curves of e, ff and L/T for a vorticity angle of 3° and an initial fault angle of

78°. The plotted data correspond to the measured parameters at Mas Rabassers de Dalt.
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Fig. 13. Graph showing the stability of this analytical method using a different number
of groups of measurements. The solution becomes stable using less than 10 groups of

data.

Fig. Al. Definition of parameters.

Fig. A2. Plot your data on a transparency using these blank charts.

Fig. A3 to A6. Curves of r and L/T as a function of f for different vorticity angles (w)
and starting orientations of the fault (). Insets show the Mohr-circle for stretch for an

Ry-value of 4. Dashed lines are finite strain contours at Rf=2, 4, 8, and 16.

Tables

Table 1. True and calculated values of vorticity (Wk) and mitial fault angle (o) for
eight finite element simulations, showing that errors in Wk are below 0.1 and in o

below 7°.

Table 2. Values of «, f# and L/T measured from the Rabassers de Dalt outcrop.

Localities are indicated on the outcrop map (Fig. 3).
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Table1

initial @ angle
0°

0°

30°

30°

60°

60°

90°

90°

initial Wk
1.00
1.00
0.87
0.87
0.50
0.50
0.00
0.00

calculated Wk Wk error

092
1.00
0.79
0.86
048
058
0.01
0.10

008
0.00
008
001
002
008
001
0.10

initial @,
450
750
450
750
450
750
45°
750

cakulated @y a,error

52.0°
75.1°
48.8°
69.0°
44.7°
72.7°
44.1°
75.7°

7.0°
0.1°
3.8°
6.0°
0.3°
23°
0.9°
0.7°

Table2

locality

A

B
C

Q™

data group

R N N N N N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

LT

293
1.93
1.56
281
298
1.89
3.31
1.83
1.50
142
1.75
130
1.65
191
1.95
1.62
1.28
1.83
0.94
1.50
1.71
1.50
213
1.71
1.53
242
1.02
1.08
1.15



