Methods of Structural Geology

1. Cross sections

What is "Structural Geology"?

- The description and interpretation of Structures
 in rocks
- · that result from deformation
 - Changes in shape of rock volumes
 (µm-km scale)
- Why?
 - Fundamental understanding of our planet(s)
 - Exploration (hydrocarbons, ore, etc.)
 - Nuclear waste disposal & CO₂-sequestration

Structural geological research

- Field-based research
 - Reconstruct the history and architecture of deformed rocks
 - Mountain belts, e.g. the Alps
 - · Basin tectonics, e.g. for finding oil
- Theory-based research
 - How do structures form?
 - How do rocks deform?
 - Laboratory experiments of folding or faulting
 - Numerical modelling

Methods in structural geology

2

4

- Mapping structures in the field
 - Recording folds, cleavages, lineations, etc
 - Shape and character
 - · Location
 - Orientation
- Thin-section analysis (→Kristallingeologie)
- Analysis

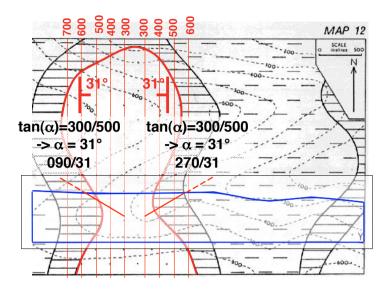
- Developing 2 or 3D models (GIS)
- Plotting data in graphs and stereonets
- Analyse strain, stress, etc.

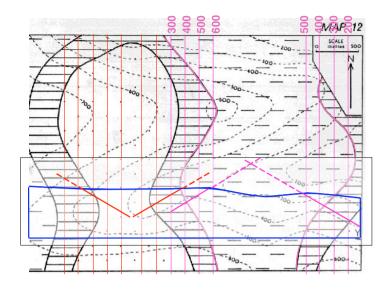
This course

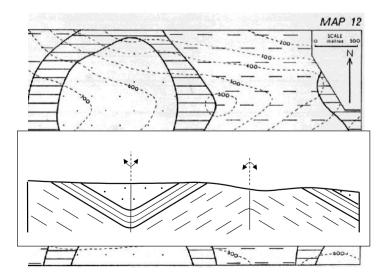
- Constructing cross-sections
- Strain analysis
 - Fry method, Centre-to-centre method, ...
 - Using stretch and rotation of lines & planes
 - Mohr circle for strain!
- Brittle deformation
 - Analysis of fault & slip measurements

Practical info

- During this course you will need
 - Drawing materials: pencils, etc.
 - Paper (plain, mm-grid, transparent)
 - Ruler & compass
 - Calculator
 - Stereonet + thumb tacks
- PDF's of the lecture will be posted on:
 - http://www.structural-geology.info
- There will be one written exam: February 10, 2009


Lecture 1. Cross sections

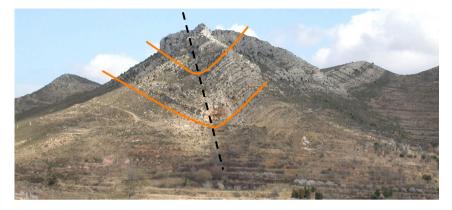

- To make a cross section through a structure we need field data (& drill core data, seismic, etc.)
 - Orientation data
 - Sedimentary bedding
 - · Faults
 - Fold axes and axial planes
 - Stratigraphical (lithological) column
 - Type of structures
 - Parallel folds or similar folds?
 - Thin- or thick-skinned tectonics?


This lecture

- Some basic techniques
- Using a geological map with structure contours (lecture K&P)
- Using data along a surface line ± drill core
 - Assuming layers have constant width
 - Dip domain method
 - Chevron folds (Knickfalten) with straight hinges
 - Circular arcs method
 - Cylindrical folds with curved hinges

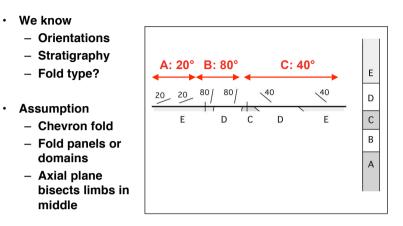
5

9

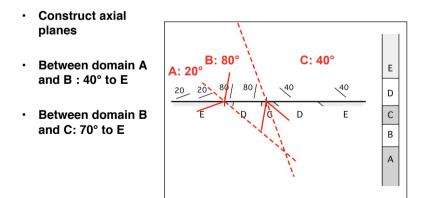

11

Profiles from a line section

- Often data are available along a section only
 - River bed or gorge
 - Cleared strip


Example of field data to determine fold type

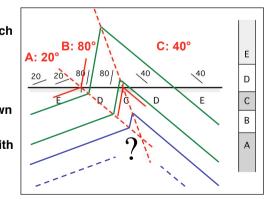
Very low grade rocks: ductile deformation absent


- \rightarrow Folding by flexural slip
- \rightarrow Sharp hinge: Kink or chevron folds

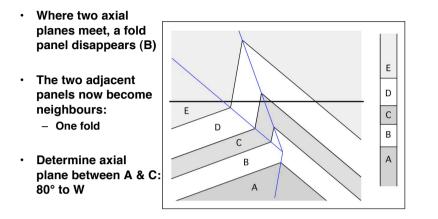
A profile line with some data

14

A profile line with some data

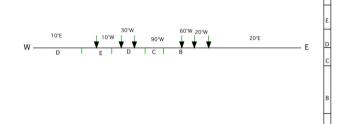


A profile line with some data

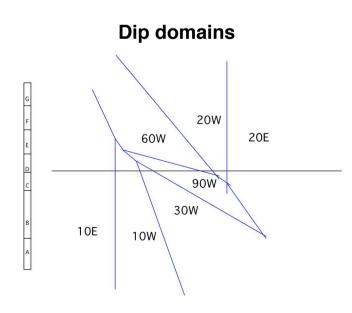

Now fill in unit • boundaries with constant dip in each domain

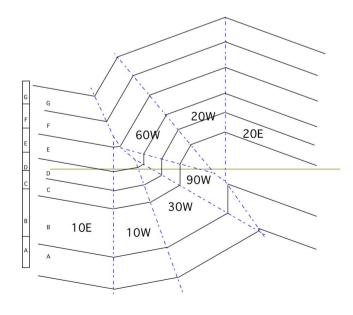
•

- With stratigraphic column we can extend further down
- But how to deal with • crossing axial planes?



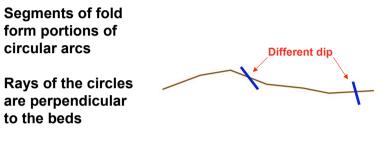
A profile line with some data


Exercise


- An EW-profile
- Draw dip domains
- Draw profile with all units

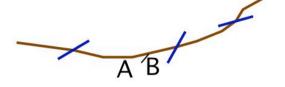
17

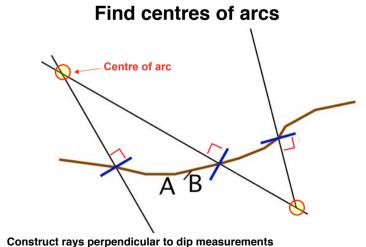
19


Parallel folds with curved hinges

- Folds do not always have sharp hinges and straight limbs (chevron folds)
- The may have smoothly curving hinges

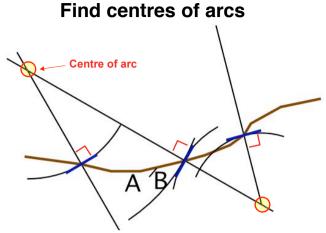
Circular arc method


- Dip domain method cannot be used for smoothly curved layers
- Instead: circular arc method



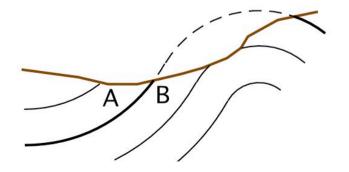
Centre of arc -

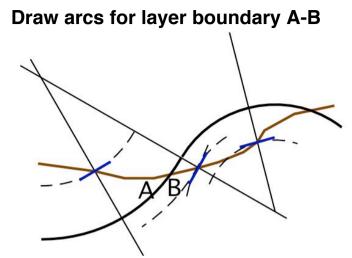
Finding the arc segments


- Profile with
 - 3 dip measurements
 - One lithological boundary A-B

Intersections of rays define centres of arcs

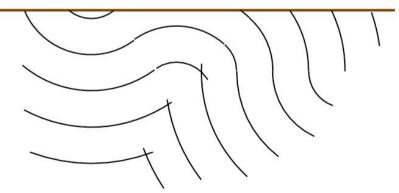
٠



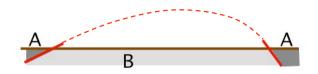

· Construct rays perpendicular to dip measurements

Intersections of rays define centres of arcs

25

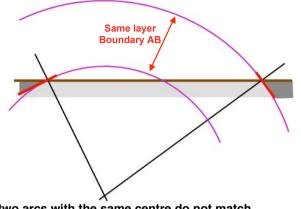


• For each arc centre, find the arc for layer boundary A-B

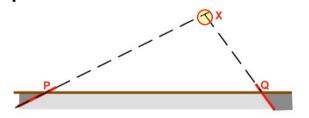

26

Cusps in core of fold

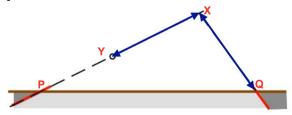
- To maintain constant bed thickness, cusps always form in the core of a fold
- This is an artefact of the method


A profile with dip data and stratigraphy

- Both dip data and stratigraphy are known
- Contact AB on the left should link up with contact BA on right


29

Problems when not enough dip data

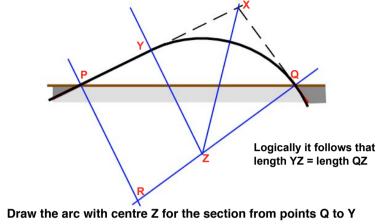


- The two arcs with the same centre do not match
- · We apparently lack dip data between the two measurements
- · We need to interpolate the best we can

Interpolation with linear domain - step 1

Interpolation with linear domain - step 2

• Extend the two dips with straight lines to find point X


- Find point Y on longest section (PX), such that
- Length XY equals XQ

Interpolation with linear domain - step 3

- Draw lines perpendicular to dip at P and Q, which meet at point R
- The perpendicular to dip at Y and the bisector of YX and QX meet on line QR at point Z

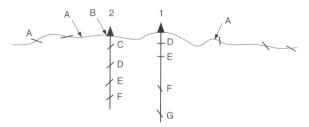
33

Interpolation with linear domain - step 4

· Insert a straight section from points P to Y

•

Exercise



- The profile shows two lithological units and some layer orientations at the lithological boundary
- Draw a profile using the circular arc method
 - You will have to add one interpolated straight section
- Draw layers every 1-2 cm
 - Extend profile both downwards and upwards

Exercise

Draw profiles for this section

- One with the dip domain method
- One with the circular arc method

Fig.7.57. Cross section through the Burma No. 1 and 2 wells. *Short lines* are surface dips. Letters *A*-*G* are marker horizons seen at the locations of dip measurements that can be correlated. *Arrows* point to locations where markers can be identified in outcrop but the dip cannot be measured. The dips in the wells are from oriented cores