This lecture

Methods of

Structural Geology

The Mohr circle for strain

- A line that makes an angle α with the X-axis
- Stretches by a factor L
- And rotates by an angle β

$$
F_{i j}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The X -axis plots on $\{\mathrm{a},-\mathrm{c}\}$
The Y -axis plots on $\{\mathrm{d}, \mathrm{b}\}$

Kinematic vorticity number: $\boldsymbol{W}_{\boldsymbol{k}}$

- We need a "number" which tells us what the type of deformation is
- And that is independent of strain: W_{k}

$$
W_{k}=\frac{W}{R}
$$

Finite strain ratio and area change

- Maximum $\left(\lambda_{1}\right)$ and minimum $\left(\lambda_{2}\right)$ stretch are points on circle furthest and closest from

$$
\begin{aligned}
R_{f} & =\frac{\lambda_{1}}{\lambda_{2}} \\
\Leftrightarrow R_{f} & =\frac{L+R}{L-R}
\end{aligned}
$$

Area change (ΔA)

$$
\Delta A=\lambda_{1} \lambda_{2}-1
$$

W_{k} and type of strain

- $W_{k}=0$
- $0<W_{k}<1$
- $W_{k}=1$
- Pure shear
- General shear
- Simple shear

Exercise

- The position gradient tensor is: $\quad F_{i j}=\left(\begin{array}{cc}2 & -0.5 \\ 0.25 & 0.7\end{array}\right)$
- Draw the Mohr circle
- How much do the X and Y axes stretch and rotate?
- What are $R_{\mathrm{f}}, \Delta A$, and W_{k} ?
- What are the orientations of the finite stretching axes (FSAs) in the undeformed state?
- Draw the box shown here:
- What does it look like in the deformed state?
- In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

Exercise

- The position gradient tensor is
$F_{i j}=\left(\begin{array}{cc}2 & -0.5 \\ 0.25 & 0.7\end{array}\right)$
- Draw the Mohr circle

Exercise

- The position gradient tensor is: $\quad F_{i j}=\left(\begin{array}{cc}2 & -0.5 \\ 0.25 & 0.7\end{array}\right)$
- How much do the X and Y axes stretch and rotate?
- X-axis: $e_{(x)}=2.02, \omega_{(x)}=7.0^{\circ}$
- Y-axis: $e_{(y)}=0.86, \omega_{(y)}=35.5^{\circ}$

Exercise

- The position gradient tensor is:
- What are $R_{\mathrm{f}}, \Delta A$, and W_{k} ?

$$
\begin{array}{ll}
R_{f}=2.06 / 0.74 & =2.78 \\
W_{k}=-0.366 / 0.662 & =-0.55 \\
\Delta A=2.06 \cdot 0.74-1 & =0.52
\end{array}
$$

(+52\%)

Exercise

- Draw the box shown here:
- What does it look like in the deformed state?

- In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

Pure shear

- Pure shear deformation with FSA's parallel to $X-Y$
- $\lambda_{1}=1.62$
- $\lambda_{2}=0.62$
$R_{f}=2.61$
$\Delta A=0$ (no area change)
- X makes angle of 58.3° with x-axis
- The x-axes rotates 26.6°

Different paths to same result

Pure shear + rotation

(d)

- - Adding rigid-body rotation of 26.6° brings deformed x -axis back to horizontal (0° rotation)
Rigid-body rotation means rotating all lines by same amount:
Rotate Mohr circle around origin
- Result = simple shear (or is it?)

Simple shear $\stackrel{?}{=}$ pure shear + rotation

- With pure shear at 58.3° to the x-axis
- The line // x-axis first shortens and then stretches again
- At $R_{f}=2.62$ it has a stretch of exactly $e_{(x)}=1$
- With simple shear // x-axis
- The line // x-axis does not stretch or shorten ever

Pegmatite vein at Cap de Creus

- Pegmatite vein cuts main foliation $\left(\mathrm{S}_{01}\right)$
- Tourmaline rim present

Simple shear \neq pure shear + rotation

- With pure shear at 58.3° to the x-axis
- The line // x-axis first shortens and then stretches again
- At $R_{f}=2.62$ it has a stretch of exactly $e_{(x)}=1$
- With simple shear // x-axis
- The line // x-axis does not stretch or shorten ever

What are strain and kinematics?

- Pegmatite vein no stretch: $e_{(v)} \approx 1.0$
- In tourmaline rim main foliation $\left(\mathrm{S}_{01}\right)$ originally at 90° to vein
- S_{01} at 25° to vein away from rim: rotated 65° clockwise

Simple shear // vein

- Let us assume simple shear // vein
- Vein does not stretch: $e_{(v)}=1.0$
- Vein does not rotate $\beta_{(v)}=0^{\circ}$
- In simple shear, the Mohr circle lies exactly on the horizontal axis.
- Draw the Mohr circle

Iililil Sin Simple shear // vein

- Let us assume simple shear // vein

Simple shear // vein

What is the position gradient tensor
What are the stretches and rotations
of the FSA's?
orientations of the FSA's relative to
the vein?

- What are the shear strain and R_{f} ?

- $\gamma=2.13$
- $R_{f}=6.4$
- What is the position gradient tensor

$$
F=\left(\begin{array}{cc}
1 & 2.13 \\
0 & 1
\end{array}\right)
$$

- What are the stretches and rotations of the FSA's?
- $e_{1}=2.53, \beta=47^{\circ}$
- $e_{2}=0.40, \beta=47^{\circ}$

What are the original and finite orientations of the FSA's relative to the vein?

- $e_{1}=68.5^{\circ}, e_{1 \text { (finite) }}=68.5-47=21.5^{\circ}$
- $e_{2}=-21.5^{\circ}, e_{2(\text { finite })}=-21.5-47=-68.5^{\circ}$

Case 2: foliation does not rotate

- Now suppose the foliation did not rotate
- Define foliation // x-axis
- Draw the new Mohr circle
- What is the vorticity number?
- What is the position gradient tensor?
- Is this scenario likely?
- Consider the stretch history of the vein
- (still assume no area change)

Case 2: foliation does not rotate

- Now suppose the foliation did not rotate
- Define foliation // x -axis
- Draw the new Mohr circle
- What is $W_{k} ? \mathbf{0 . 4 5}$
- What is the position gradient tensor?

$$
F=\left(\begin{array}{cc}
2.35 & -0.91 \\
0 & 0.42
\end{array}\right)
$$

- Is this scenario likely?
- Consider the stretch history of the vein

