

This lecture

- Last lecture
 - · Introduction to the Mohr circle for strain
- This lecture
 - Short recap of last lecture
 - Discussion of exercise
 - The difference between pure and simple shear
 - Shortening and stretching

The Mohr circle for strain

- A line that makes an angle α with the X-axis
- Stretches by a factor L
- And rotates by an angle β

Vorticity

- · Vorticity is the average rotation of lines
- Vorticity is strain dependent
 - Here: 7.5°

Kinematic vorticity number: W_k

- · We need a "number" which tells us what the type of deformation is
- And that is independent of strain: W_k

W_k and type of strain

- $W_k = 0$
- $0 < W_k < 1$ General • Pure shear
- $W_k = 1$
- · Simple shear

shear

Finite strain ratio and area change

• Maximum (λ_1) and minimum (λ_2) stretch are points on circle furthest and closest from origin

Exercise

• The position gradient tensor is:

$$F_{ij} = \begin{pmatrix} 2 & -0.5 \\ 0.25 & 0.7 \end{pmatrix}$$

- · Draw the Mohr circle
- How much do the X and Y axes stretch and rotate?
- What are $R_{\rm f}$, ΔA , and W_k ?
- · What are the orientations of the finite stretching axes (FSAs) in the undeformed state?
- Draw the box shown here:
 - What does it look like in the deformed state?
 - In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

Exercise

- The position gradient tensor is:
- $F_{ij} = \begin{pmatrix} 2 & -0.5 \\ 0.25 & 0.7 \end{pmatrix}$

Draw the Mohr circle

Exercise

- The position gradient tensor is: $F_{ij} = \begin{pmatrix} 2 & -0.5 \\ 0.25 & 0.7 \end{pmatrix}$
- · How much do the X and Y axes stretch and rotate?

Exercise

Exercise

- What are the orientations of the finite stretching axes (FSAs) in the undeformed state?
 - e_1 makes angle of -26.2/2 = -13.1° with the X-axis
 - And rotated 15.3°

Exercise

- Draw the box shown here:
 - What does it look like in the deformed state?
 - · In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

Different paths to same result

Pure shear

- Pure shear deformation with FSA's parallel to X-Y
 - $\lambda_1 = 1.62$
 - $R_{f} = 2.61$ $\Delta A = 0$ (no area change) • $\lambda_2 = 0.62$
- X makes angle of 58.3° with x-axis
- The x-axes rotates 26.6°

Pure shear + rotation

- With pure shear at 58.3° to the x-axis
- The line // x-axis first shortens and then stretches again
- At $R_f = 2.62$ it has a stretch of exactly $e_{(x)} = 1$
- With simple shear // x-axis
- The line // x-axis does not stretch or shorten ever

Simple shear ≠ pure shear + rotation

- With pure shear at 58.3° to the x-axis
- The line // x-axis first shortens and then stretches again
- At $R_f = 2.62$ it has a stretch of exactly $e_{(x)} = 1$
- With simple shear // x-axis
- The line // x-axis does not stretch or shorten ever

Pegmatite vein at Cap de Creus

What are strain and kinematics?

- Pegmatite vein no stretch: $e_{(v)} \approx 1.0$
- In tourmaline rim main foliation (S_{01}) originally at 90° to vein
- + S_{01} at 25° to vein away from rim: rotated 65° clockwise

Case 2: foliation does not rotate

- · Now suppose the foliation did not rotate
 - Define foliation // x-axis
- Draw the new Mohr circle
 - What is the vorticity number?
 - What is the position gradient tensor?
- Is this scenario likely?
 - Consider the stretch history of the vein
- (still assume no area change)

Case 2: foliation does not rotate

- Now suppose the foliation did not rotate
 - Define foliation // x-axis
- Draw the new Mohr circle
 - What is *W_k*? **0.45**
 - What is the position gradient tensor?

- · Is this scenario likely?
 - Consider the stretch history of the vein