

This lecture

- Last lectures
 - Mohr circle for strain
- This lecture
 - Look at deformation history of individual lines/planes
 - · Different deformation histories: same result?
 - · The difference between pure and simple shear
 - Stretching & shortening

The Mohr circle for strain

- A line that makes an angle α with the X-axis
- Stretches by a factor L
- And rotates by an angle β

Vorticity

- · Vorticity is the average rotation of lines
- Vorticity is strain dependent
 Here: 7.5°

Kinematic vorticity number: W_k

- We need a "number" which tells us what the type of deformation is
- And that is independent of strain: W_k

W_k and type of strain

Finite strain ratio and area change

 Maximum (λ₁) and minimum (λ₂) stretch are points on circle furthest and closest from origin

Area change (ΔA) $\Delta A = \lambda_1 \lambda_2 - 1$

 $F_{ij} = \begin{pmatrix} 2 & -0.5 \\ 0.25 & 0.7 \end{pmatrix}$

Exercise

- The position gradient tensor is:
- $F_{ij} = \begin{pmatrix} 2 & -0.5 \\ 0.25 & 0.7 \end{pmatrix}$
- Draw the Mohr circle
- How much do the X and Y axes stretch and rotate?
- What are $R_{\rm f}$, ΔA , and W_k ?
- What are the orientations of the finite stretching axes (FSAs) in the undeformed state?
- Draw the box shown here:
 - What does it look like in the deformed state?
 In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

Exercise

- The position gradient tensor is:
- · Draw the Mohr circle

Exercise

• The position gradient tensor is:

$$=\begin{pmatrix} 2 & -0.5\\ 0.25 & 0.7 \end{pmatrix}$$

 F_{ij}

How much do the X and Y axes stretch and rotate?
 X-axis: e_(x) = 2.02, ω_(x) = 7.0°

Exercise

Exercise

- What are the orientations of the finite stretching axes (FSAs) in the undeformed state?
 - e_1 makes angle of -26.2/2 = -13.1° with the X-axis
 - And rotated 15.3°

Exercise

- Draw the box shown here:
 - What does it look like in the deformed state?
 In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

- Pure shear deformation with FSA's parallel to X-Y
 - $\lambda_1 = 1.62$ • $\lambda_2 = 0.62$ $R_f = 2.61$ $\Delta A = 0$ (no area change)
- X makes angle of 58.3° with x-axis
- The x-axes rotates 26.6°

Pure shear + rotation

 (c)
 (d)
 (e)
 (f)
 (f)

Simple shear $\stackrel{?}{=}$ pure shear + rotation

- With pure shear at 58.3° to the x-axis
- The line // x-axis first shortens and then stretches again
- At $R_f = 2.62$ it has a stretch of exactly $e_{(x)} = 1$
- With simple shear // x-axis
- The line // x-axis does not stretch or shorten ever

What are strain and kinematics?

- Pegmatite vein no stretch: $e_{(v)} \approx 1.0$
- In tourmaline rim main foliation (S $_{\rm 01}$) originally at 90° to vein
- + $~S_{_{01}}$ at 25° to vein away from rim: rotated 65° clockwise

Case 2: foliation does not rotate

- Now suppose the foliation did not rotate
 Define foliation // x-axis
- Draw the new Mohr circle
 - What is the vorticity number?
 - What is the position gradient tensor?
- Is this scenario likely?
- Consider the stretch history of the vein
- (still assume no area change)

The Mohr circle for strain

- A line that makes an angle α with the X-axis
- Stretches by a factor *L*
- And rotates by an angle β

Shortened

Always stretched

then stretched

 $F_{ij} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

The X-axis plots on **{a,-c}** The Y-axis plots on **{d,b}**

Shortening, then stretching

• Some layers may appear both stretched and shortened: folding AND boudinage

Instantaneous stretching & shortening: simple shear

- The instantaneous stretching axes (ISA's) are at 45° to the shear plane
- There a 4 quadrants
 2 of instantaneously shortening lines
 - 2 of instantaneously stretching lines
- ⁷ The orientations of ISA's do not change during steady-state deformation
- Lines rotate and may rotate from a shortening field into a stretching field

Instantaneous stretching & shortening: simple shear

- Always shortened, then stretched Always stretched
- Draw two Mohr circles for progressive simple shear
 - One for γ=1
 - One for $\gamma = 2$

Determine for both finite shear strains the fields of

- Lines that always shortened
- · Lines that shortened, then stretched
- · Lines that stretched, then shortened
- Lines that always stretched
- Lines that have a finite stretch of e>1

Now for pure shear

- Repeat the previous exercise for pure shear
- Use as the position gradient tensor:

- · Compare the result with that for simple shear
- Can you think of field observations that help to determine the kinematics of flow?

Pure versus simple shear

- · Pure shear:
 - Shortened, then stretched lines distributed symmetrically around FSA
- · Simple shear:
 - Shortened, then stretched lines distributed asymmetrically around FSA

Practical determination in the field

- Stretching/shortening can be measured in the field,
 E.g. from veins
- Plot all measurements in stretch-direction plot
 - E.g. 0.8 in direction 040°
 - + Equals 0.8 in direction 220°

Practical determination in the field

Practical determination in the field

- Example of result for many measurements
- Draw best-fit ellipse through data
 - **e**₁ = 2.4
 - **e**₂ = 0.4
 - *R*_{*f*} = 6

Practical determination in the field

Only stretching

Only

irst shortening

Then stretching

shortening

- Example of result for many measurements
- Draw best-fit ellipse through data
- **e**₁ = 2.4
- $e_2 = 0.4$
- $R_{f} = 6$
- · So, what can you say about the kinematics of deformation?

- · The above Asaphus trilobite is deformed
- · What is the finite strain ratio?
 - · We need to know the original shape

- We know that a normal *Asaphus* has a length-width ratio of 100 / 71.5
- The pleura are at 90° to the long axis of the trilobite
- · What is the finite strain ratio?

· Let us define the x-axis // to the axis of the trilobite

. . .

- Current length is 129 mm
 Assume original length 100 mm
 - **e**_{axis} = 129/100 = **1.29**
- Current width // pleura is 59.6 mm
 Original width 71.5 mm
 - **e**_{pleura} = 59.6/71.5 = **0.83**
- Pleura rotated $\beta_{pleura} = -29^{\circ}$ (anti-clockwise)

Draw the Mohr circle

For strain

Assuming that the xaxis did not rotate, what is the position gradient tensor?

- Draw the Mohr circle for strain
- Assuming our original size assumption was correct, what is the area change?
- Assuming that the *x*-axis did not rotate, what is the position gradient tensor?
- Now assume there was NO area change
- What is the position gradient tensor (F)?
- What was the original size of the trilobite?
- · Finally, draw the Mohr circle for reverse deformation
 - From the deformed state to the <u>un</u>deformed state
 - What is the position gradient for reverse strain $({\ensuremath{\mathsf{F}}}^{\mbox{-}1})$