

This lecture

- Last lectures
- Mohr circle for strain
- This lecture
- Look at deformation history of individual lines/planes
- Different deformation histories: same result?
- The difference between pure and simple shear
- Stretching \& shortening

The Mohr circle for strain

- A line that makes an angle α with the X-axis
- Stretches by a factor L
- And rotates by an angle β

$$
F_{i j}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The X-axis plots on $\{a,-c\}$

Kinematic vorticity number: $\boldsymbol{W}_{\boldsymbol{k}}$

- We need a "number" which tells us what the type of deformation is
- And that is independent of strain: W_{k}

$$
W_{k}=\frac{W}{R}
$$

$$
\text { The } \mathrm{Y} \text {-axis plots on }\{\mathrm{d}, \mathrm{~b}\}
$$

- $W_{k}=0$
- Pure shear

- $0<W_{k}<1$
- $W_{k}=1$
- General shear
- Simple shear
- Vorticity is the average rotation of lines
- Vorticity is strain dependent
- Here: 7.5°

, c\}

W_{k} and type of strain

Vorticity

Finite strain ratio and area change

- Maximum $\left(\lambda_{1}\right)$ and minimum $\left(\lambda_{2}\right)$ stretch are points on circle furthest and closest from origin

$$
\begin{aligned}
R_{f}= & \frac{\lambda_{1}}{\lambda_{2}} \\
\Leftrightarrow R_{f} & =\frac{L+R}{L-R}
\end{aligned}
$$

Area change (ΔA)

$$
\Delta A=\lambda_{1} \lambda_{2}-1
$$

Exercise

- The position gradient tensor is: $\quad F_{i j}=\left(\begin{array}{cc}2 & -0.5 \\ 0.25 & 0.7\end{array}\right)$
- Draw the Mohr circle

Exercise

- The position gradient tensor is:

$$
F_{i j}=\left(\begin{array}{cc}
2 & -0.5 \\
0.25 & 0.7
\end{array}\right)
$$

- Draw the Mohr circle
- How much do the X and Y axes stretch and rotate?
- What are $R_{\mathrm{f}}, \Delta A$, and W_{k} ?
- What are the orientations of the finite stretching axes (FSAs) in the undeformed state?
- Draw the box shown here:
- What does it look like in the deformed state?
- In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

Exercise

- The position gradient tensor is: $\quad F_{i j}=\left(\begin{array}{cc}2 & -0.5 \\ 0.25 & 0.7\end{array}\right)$
- How much do the X and Y axes stretch and rotate?
- X-axis: $e_{(x)}=2.02, \omega_{(x)}=7.0^{\circ}$
- Y-axis: $\boldsymbol{e}_{(y)}=0.86, \omega_{(y)}=35.5^{\circ}$

Exercise

- The position gradient tensor is: $\quad F_{i j}=\left(\begin{array}{cc}2 & -0.5 \\ 0.25 & 0.7\end{array}\right)$
- What are $R_{\mathrm{f}}, \Delta A$, and W_{k} ?

$$
R_{f}=2.06 / 0.74 \quad=2.78
$$

$$
W_{k}=-0.366 / 0.662=-0.55
$$

$$
\Delta A=2.06 \cdot 0.74-1=0.52
$$

Exercise

- What are the orientations of the finite stretching axes (FSAs) in the undeformed state?
- e_{1} makes angle of $-26.2 / 2=-13.1^{\circ}$ with the X-axis
- And rotated 15.3°

Exercise

- Draw the box shown here:
- What does it look like in the deformed state?

- In the undeformed and in the deformed state show the orientations that rotate to the left and to the right

Pure shear

- Pure shear deformation with FSA's parallel to $X-Y$
- $\lambda_{1}=1.62 \quad R_{f}=2.61 \quad \Delta A=0$ (no area change)
- $\lambda_{2}=0.62$
- X makes angle of 58.3° with x-axis
- The x-axes rotates 26.6°

Different paths to same result

Pure shear + rotation

Pegmatite vein at Cap de Creus

What are strain and kinematics?

- Pegmatite vein no stretch: $e_{(v)} \approx 1.0$
- In tourmaline rim main foliation $\left(\mathrm{S}_{01}\right)$ originally at 90° to vein
- S_{01} at 25° to vein away from rim: rotated 65° clockwise

Case 2: foliation does not rotate

- Now suppose the foliation did not rotate
- Define foliation // x-axis
- Draw the new Mohr circle
- What is the vorticity number?
- What is the position gradient tensor?
- Is this scenario likely?
- Consider the stretch history of the vein
- (still assume no area change)

Shortening, then stretching

- Some layers may appear both stretched and shortened: folding AND boudinage

Simple shear // vein

- Vein does not stretch: $e_{(v)}=1.0$
- Vein does not rotate $\beta_{(v)}=0^{\circ}$
- Make a Mohr graph and plot the point representing the vein

The Mohr circle for strain

- A line that makes an angle α with the X -axis
- Stretches by a factor L
- And rotates by an angle β

$$
F_{i j}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The X -axis plots on $\{\mathrm{a},-\mathrm{c}\}$
The Y -axis plots on $\{\mathrm{d}, \mathrm{b}\}$

Instantaneous stretching \& shortening: simple shear

- The instantaneous stretching axes (ISA's) are at 45° to the shear plane
- There a 4 quadrants
- 2 of instantaneously shortening lines
- 2 of instantaneously stretching lines

The orientations of ISA's do not change during steady-state deformation

Lines rotate and may rotate from a shortening field into a stretching field

Instantaneous stretching \& shortening: simple shear

- Draw two Mohr circles for progressive simple shear
- One for $\gamma=1$
- One for $\gamma=2$
- Determine for both finite shear strains the fields of
- Lines that always shortened
- Lines that shortened, then stretched
- Lines that stretched, then shortened
- Lines that always stretched
- Lines that have a finite stretch of $e>1$

Pure versus simple shear

- Pure shear:
- Shortened, then stretched lines distributed symmetrically around FSA
- Simple shear:
- Shortened, then stretched lines distributed asymmetrically around FSA

Now for pure shear

- Repeat the previous exercise for pure shear
- Use as the position gradient tensor:

- Compare the result with that for simple shear
- Can you think of field observations that help to determine the kinematics of flow?

Practical determination in the field

- Stretching/shortening can be measured in the field,
- E.g. from veins
- Plot all measurements in stretch-direction plot
- E.g. 0.8 in direction 040°

- Equals 0.8 in direction 220°

Practical determination in the field

- Example of result for many measurements
- Draw best-fit ellipse through data
- $\boldsymbol{e}_{1}=2.4$
- $\boldsymbol{e}_{2}=0.4$
- $\boldsymbol{R}_{f}=6$

Practical determination in the field

- Example of result for many measurements
- Draw best-fit ellipse through data
- $\boldsymbol{e}_{1}=2.4$
- $e_{2}=0.4$
- $\boldsymbol{R}_{f}=6$

- So, what can you say about the kinematics of deformation?

- We know that a normal Asaphus has a length-width ratio of $100 / 71.5$
- The pleura are at 90° to the long axis of the trilobite
- What is the finite strain ratio?

- Draw the Mohr circle for strain
- Assuming our original size assumption was correct, what is the area change?
- Assuming that the x-axis did not rotate, what is the position gradient tensor?
- Now assume there was NO area change
- What is the position gradient tensor (\mathbf{F})?
- What was the original size of the trilobite?
- Finally, draw the Mohr circle for reverse deformation
- From the deformed state to the undeformed state
- What is the position gradient for reverse strain $\left(\mathbf{F}^{-1}\right)$

- The above Asaphus trilobite is deformed
- What is the finite strain ratio?
- We need to know the original shape

- Let us define the x-axis // to the axis of the trilobite

Draw the Mohr

- Current length is 129 mm
- Assume original length 100 mm
- $e_{\text {axis }}=129 / 100=1.29$
- Current width // pleura is 59.6 mm
- Original width 71.5 mm
- $\boldsymbol{e}_{\text {pleura }}=59.6 / 71.5=0.83$
circle
For strain Assuming that the x axis did not rotate, what is the position gradient tensor?
- Pleura rotated $\beta_{\text {pleura }}=-29^{\circ}$ (anti-clockwise)

