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Figure 1. Population of Asaphus trilobites before and after a homogeneous deformation event. The amount of strain is

visualised by a circle in the undeformed state, which has been deformed to the strain ellipse in the deformed state. Note that

all deformed trilobites look different, although they all experienced exactly the same amount of deformation.

Strain

Homogeneous strain

Strain

Strain is the change of shape resulting from stresses acting on a volume of material.

Deformation involves four components

1. Rigid body translation

2. Rigid body rotation

3. Relative rotation of material lines with respect to each other

4. Stretching and shortening of material lines

All of these four occur in the example of figure 1. The first two do not produce a

change of shape of an object and are normally difficult to determine. The trilobites may

have been incorporated on the shelf in front of one continent, which then drifted and

rotated across the globe. This would already constitute a rigid body translation and

rotation. So, when we speak about strain, we essentially only speak of the last two

components of deformation.

Strain normally varies from point to point within a rock. However, we can also

normally define a small area within the heterogeneous strain field, where we can

approximately say that strain is homogeneous. Homogeneous strain in a volume means

that all material points within that volume experienced the same amount of strain.

Below, we look at the description of homogeneous strain, and will see that one can also

use a Mohr circle construction here.

Finite strain

Incremental strain

Strain rate

Finite strain

Producing strain takes time, typically hundreds of thousands to millions of years in

geology. We of course always see the end product of deformation in the rock record.

Our task is to figure out what happened: we analyse the strain that we observe in the

rock and try to quantify it. This way we can reconstruct the situation before

deformation and in general get more insight into the events that produced the strain.

A period of straining produces a certain amount of strain at the end, which we call the

finite strain. The finite strain is the sum of many small increments of strain. The

amount of strain accumulated during a small increment of time is the incremental

strain.  The strain rate is the rate of strain accumulation and has unit [s-1].
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Position gradient tensor

The position gradient tensor

Figure 2 shows a general case of homogeneous deformation of a small volume of

material. The position of material points in the undeformed state can be described by a

vector (p). After deformation, each particle will have a new position in space, which

can also be represented by a vector (q). As we already know, we can use a tensor to

convert one vector into another. The same holds for position vectors during strain. If

we do not have any rigid body translation, the particle in the origin of our reference

system remains there: p = (0,0) goes to q = (0,0).

Figure 2. Example of homogeneous

deformation. Two vectors p1 and p2 deform

to different vectors q1 and q2. The figure

shows that in homogeneous deformation any

straight line remains a straight line.

If the above holds, i.e. we do not take rigid body translation into account, we can

describe the relationship between p and q with a tensor multiplication:

! 

qi = Fij p j (1)

Written out in full this means that we have 2 equations (in 2 dimensions):

! 

qx = Fxx px + Fxy py

qy = Fyx px + Fyy py
(2)

The tensor Fij is called the position gradient tensor, which converts the position of a

material point in the undeformed state to the one in the deformed state.

Pure shear

Simple shear

Area change (dilation)

Rotation

Main types of strain

There are four main types of strain, which each have their particular type of position

gradient tensor.  These are end-member types, meaning that in reality one usually has a

combination of two or more of these types. The four types are described below for the

2-dimensional case:

Pure shear: 
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Area change: 
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Rotation: 
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Extension

Rotation

Stretching, shortening and rotation of lines

Strain causes a change of length of lines. We can define the extension (e) of a line

which had length l0 before deformation and l1 after deformation with:

! 

e =
l
1
" l

0

l
0

(3)

A line that does not change its length has e=1, a stretching line has e>1 and a

shortening line has e<1.

Strain also causes a rotation ! of lines, which is the difference between the orientation

of a line in the undeformed and deformed state.

Finite strain ellipse

Finite stretching axes

Finite strain ratio

Plane strain

Finite stretching axes

A circle subjected to homogeneous strain always deforms to an ellipse (or a circle,

which is also an ellipse). This ellipse we call the finite strain ellipse. In 3 dimensions

the equivalent is the strain ellipsoid. As any ellipse, the strain ellipse has principal

axes, perpendicular to each other. These axes represent the maximum and minimum

extensions: e1 and e 2 respectively in 2 dimensions. These axes we call the finite

stretching axes (FSAs).

The ratio of the maximum and minimum FSA we call the finite strain ratio (Rf or Rs),

which is of course always equal or greater than one. In three dimensions we can

measure two ratios of FSAs: e1/e2 and e2/e3. The ratio (k) between these two ratios again

depends the shape of the finite strain ellipsoid. Here we can have three cases:

• k > 1 (e1/e2 > e2/e3): The strain ellipsoid is prolate (cigar-shaped)

• k < 1 (e1/e2 < e2/e3): The strain ellipsoid is oblate (pancake-shaped)

• k = 1 (e1/e2 = e2/e3): The strain ellipsoid is neither prolate nor oblate.

If we have no volume change during deformation and there is zero stretching in the

direction of the intermediate FSA (e2=1) we must have that e3=1/e1, which means that

k=1. This case is called plane strain.

Strain from passively deformed objects

In an ideal world, all rocks would have spherical markers embedded in them. With

those one could then determine the finite strain of each deformed rock. As always, the

world is not ideal and we normally do not have such perfect markers. However, some

rocks do have objects in them that can be used as strain markers. Some examples are:

• originally round (sand) grains,

• round worm burrows (Scolithus),

• reduction spots in shales,

• mafic enclaves in granitoids,

• ooids, etc.

Under the assumption that these objects deformed just as much as the whole rock, we

can use their deformed shape to determine the amount of strain. If the objects were

originally spheres (like ooids), the method is straightforward: the finite elliptical shape

is the finite strain ellipse. In many cases however, the objects were not spheres to start

with. At the most one can assume they were originally roughly elliptical.

Consider the population of elliptical objects in figure 2a. They have various shapes and

orientations. After deformation (Fig. 2b) they have changed their shapes, but none of

the objects has exactly the shape of the strain ellipse. It is then more difficult to

determine the true amount of strain.
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Figure 2. Population of elliptical objects with various shapes and orientations. (a) Undeformed state. (b) Deformed state.

White ellipse shows the amount of strain (Rs=2.0).

The Rf-" method The Rf-" method is used for populations of originally approximately elliptical objects,

such as mafic enclaves in granitoids. The method yields the axial ratio (Rs) of the finite

strain ellipse and the orientation of that ellipse. It cannot be used to determine any

volume or area changes as it only gives the shape of the strain ellipse.

The method is based on the idea that an object with an initial ellipticity (Ri) and

orientation ("i) deforms together with the host rock to a different ellipticity (Rf) and

orientation ("). Because initial ellipticities and orientations vary, so will the finite

ellipticities and orientations. However, the finite distributions of Rf and " will not be

random, but depend on the amount of strain (Rs). Take for example a population of

objects with Ri=2 and variable orientations in figure 3. We can plot the angle " against

the ellipticity Rf for all objects. Because all objects started with an ellipticity of 2, the

data lie on the line Rf=2 in the undeformed state (Fig. 3a). After deformation, the

distribution changes (Fig. 3b-c). In general points tend to wander towards a lower " and

higher Rf.

The Rf-" curves for different initial ellipticities can be calculated for different finite

strains (Fig. 4). Measured data can be plotted on these graphs. One then looks which

finite-strain graph fits the data best. The graphs also show a dashed line that encloses

50% of all data points.

Figure 3. Population of objects with initial ellipticity of Ri=2 in the undeformed state (a) and after two stages of deformation

(b & c). Bottom row: associated Rf-" plots.
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Figure 4. Rf-f graphs for different finite strains.
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The Fry method The Fry method does not directly use the shape of objects, but their spacing. In an

isotropic, densely packed aggregate of objects (grains, ooids, etc.), the distances from

the centres of objects to those of their neighbours is the same in all directions (Fig. 5a).

If such an aggregate is deformed, some of the centres approach each other, while some

move apart (Fig. 5b). This is used in the "Fry method".

In the Fry method one plots all the distances between neighbours in a single graph.

This done in the following way:

• Take a sheet of transparent paper and put a mark (small cross) in the middle.

• Put the mark on the centre of one object in an image of the deformed rock.

• Mark all the centres of the surrounding grains on the transparency

• Repeat this procedure for all grains in the image.

After doing this, you have a graph that looks like figure 6a. When all the objects

originally had an approximately equal distance, a blank ellipse should appear around

the central marking: this is the strain ellipse (Fig. 6b).

It should be stressed that this method only works when the object centres were

originally equidistant, i.e. roughly the same everywhere. If this is not the case, you will

not get a sharply bounded white ellipse and the method does not work.

Figure 5. (a) Isotropic aggregate of roughly equal-sized objects (e.g. ooids). (b) Same aggregate, but deformed.

Figure 6. Results of Fry analysis of aggregate of figure 5b. (a) Raw result. (b) Estimated strain ellipse, which has an axial

ratio of 2.
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Exercise


