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Strain 2. The Mohr circle for strain

Calculating extension

and rotation

Let's consider pure shear deformation with the FSAs parallel to the coordinate axes, as

shown in figure 1. For each unit vector with angle !  relative to e1, we will now

determine the extension and rotation as a function of the amount of strain and !.

Figure 1. Undeformed and deformed state,

with finite stretching axes parallel to the x-

and y-axis. A vector p oriented at an angle !

deforms to a vector q at angle !' to e1. The

vector has rotated an angle ".

With the conditions above, we can write the simplified equations that relate the

undeformed unit vector (p) to the deformed one (q):

! 

qx = e1px = e1 cos(")

qy = e2py = e2 sin(")
(1)

The length of the unit vector p is by definition one, which means that the length of the

deformed vector q is equal to its extension: e(!).

The angle " between p and q can be determined with the dot product or cross product:

! 

|q | cos(") = p # q$ e(% ) cos(") = cos(%)e1 cos(%) + sin(%)e2 sin(%) (2)

! 

|q | sin(") = q # p$ e(% ) sin(") = e1 cos(%)sin(%) & e2 sin(%)cos(%) (3)

These two equations should hopefully look familiar. If not, check the equations for the

stress tensor in the lecture notes "Structural Geology", which are of exactly the same

type. There we showed that these equations actually describe a circle if we rewrite

them the right way:

! 

e
(" ) cos(#) =

e
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+ e
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e
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$ e
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2
cos(2") (4)

! 

e(" ) sin(#) =
e1 $ e2
2

sin(2") (5)

The Mohr circle for

finite strain

Equation for a circle with

its centre on the x-axis:

x = A + Rcos(#)

y = Rsin(#)

Exactly the same way as for stress, we have now derived equations that describe the

strain with a Mohr circle:

Centre of circle:

! 

A =
e
1
+ e

2

2
(6a)

Radius of circle:

! 

R =
e
1
" e

2

2
(6b)

Angle to use:

! 

" = 2# (6c)

x-axis:

! 

x = e
(" ) cos(#) (6d)

y-axis:

! 

y = e(" ) sin(#) (6e)

With these definitions we can draw the Mohr circle for finite strain (Fig. 2).

Figure 2. Mohr circle for strain, showing how the extensions, original orientation (!) and

rotation of lines (") appear in the Mohr circle.

It should be stressed here that the Mohr circle construction used here was derived for a

pure shear deformation with the FSA’s parallel to the x- and y-axis of our reference

frame: lines parallel to these axes do not rotate. The position gradient tensor for such a

deformation is symmetric as the values away from the diagonal are all zero. We have

seen before that this is not always the case for finite strain. In case of simple shear, for

instance, we have a non-zero value away from the diagonal. How to deal with this is

explained below.
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deformation is symmetric as the values away from the diagonal are all zero. We have

seen before that this is not always the case for finite strain. In case of simple shear, for

instance, we have a non-zero value away from the diagonal. How to deal with this is

explained below.

The Mohr circle for

general strain

Figure 3 shows two deformations of one and the same Asaphus trilobite. In the one

case we have simple shear deformation and in the other case pure shear. Both

deformations lead to the same finite shape of the deformed trilobite. The first lesson we

learn from this is that we cannot simply discern pure and simple shear from the finite

shape of an object or the strain ellipse alone. Any deformation type can lead to the

same fine shape. It all depends on the orientation of the object that is deformed relative

to the applied deformation. The absolute amount of deformation, expressed in the ratio

of the finite stretching axes (Rf), must however be the same.

Figure 3. Deformation of an Asaphus trilobite. (a) Oblique simple shear deformation to a shear strain of $=0.69, resulting in

a finite strain ratio (Rf) of 2.02 (see strain ellipse). (b) Pure shear deformation, also to Rf=2.02. Notice that both deformations

lead to exactly the same finite shape of the trilobite.

Figure 4 shows the deformation of the same trilobite as figure 3, but to a dextral shear

strain of $=1, parallel to the horizontal x-axis (Fig. 4b). The finite strain ratio (Rf) is

2.62. Because simple shear deformation is non-coaxial, the material lines that form the

finite stretching axes (FSAs) rotate. The line of maximum extension (e1=1.618) rotated

by "=26.6°, from %=58.3° to %’=31.7°. In figure 4c we applied a pure shear

deformation, also to a finite strain ratio of 2.62. For the pure shear deformation we used

a reference frame (X,Y ) at %=58.3° to the x,y reference frame, with maximum

elongation parallel to the X-axis. Because the FSAs in pure shear do not rotate (coaxial

deformation), the finite strain ellipse has its long axis still oriented parallel to the X-

axis, or at %=58.3° to the x-axis.

Figure 4. (a) Undeformed state of an Asaphus trilobite, together with a circle that represents the undeformed strain ellipse.

One reference frame (x,y) is parallel to the box containing Asaphus. The other reference frame (X,Y) makes an angle of

%=58.8° with the x,y-frame. This reference frame is parallel to those material lines that will become the FSAs. (b) State after

a simple shear deformation with $=1 parallel to the x-axis. The strain ellipse has an axial ratio of Rf=2.62. (c) State after pure

shear deformation with Rf=2.62 with principal stretching axes parallel to the X- and Y-axis. Because of the pure shear

deformation, the material lines that make the FSA’s did not rotate. (d) State after a right hand rigid-body rotation of "=26.6°

of the pure shear deformed Asaphus shown in (c). Notice that the situation in (d) is exactly the same as in (b).
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In the previous section we have seen how to construct a Mohr circle for finite strain for

pure shear with the principal stretching axis parallel to the axes of our reference frame.

This means we can draw the Mohr circle for the pure shear deformation in our X,Y-

reference frame (Fig. 5).  Our two principal extensions are e1=1.62 and e2=0.62. The

Mohr circle has a radius of one in this case.

Figure 5. Mohr circle for the deformation

shown in figure 4b. FSAs are parallel to the

X- and Y-axes. The horizontal x-axis makes

an angle of 58.8° with the X -axis. Using

double angles in the Mohr circle, we can find

the position of the x-axis in the circle. The

extension (ex) of the x-axis (distance from

origin in diagram) is exactly one. The x-axis

has rotated to the left by 26.6°.

The Mohr circle tells us the extension of any line and its rotation. The x-axis made an

angle of 58.3° with the X-axis, so we can now measure double that angle to find the

extension and rotation of the x-axis. Because of our definition of the sign of angles

(Fig. 2), we measure 2&58.8° clockwise from the point representing the X-axis. This

point lies at a distance of exactly one from the origin, meaning that the x-axis neither

stretched nor shortened (ex=1). It has rotated 26.6° anti-clockwise, as we can see in

figure 4c.

Adding  r ig id-body

rotation to the Mohr

circle for strain

In figure 4d we added a right-hand, 26.6° rigid-body rotation to the pure-shear

deformed Asaphus. The result is now exactly the same as that of simple shear

deformation parallel to the x-axis (Fig. 4b). This means that simple shear finite strain

can be described by a summation of a pure shear strain and a rigid-body rotation. This

can be generalised to an important observation:

“Any general finite strain can be described by a combination of a pure

shear component and a rigid-body rotation component”

Now don’t think that this means that there is no difference between pure shear and

other types of deformation, because there is a difference! However, if we only compare

the undeformed state and the finite deformed state, we may not always see the

difference. This is the case here. Later we will have a closer look at the meaning of

simple shear, pure shear and general shear.

Rigid-body rotation Rigid-body rotation means that we rotate all lines by exactly the same angle, without

stretching or shortening any line. We can do this in a Mohr diagram. The distance from

the origin of a point on the Mohr circle represents its extension. The angle the line from

the origin to that point makes with the horizontal axis in the diagram is the angle that

the line, represented by that point, rotated. To add a rotation, without any stretching or

shortening, then just means rotating the Mohr diagram around the origin. All points on

the circle then get a certain rotation angle added or subtracted, but their elongations

remain unchanged. This is done in figure 6, where we rotated the diagram by 26.6°,

which puts the point representing the x-axis on the horizontal axis, at a unit distance

from the origin. This means the x-axis did not stretch and did not rotate. Because the

deformed state in figure 4b is the same as in figure 4d, figure 6 actually shows the

Mohr circle for dextral simple shear parallel to the x-axis. The shear strain is one,

meaning the y-axis rotated by tan(1) = 45°.
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Figure 6. Mohr circle for dextral

simple shear parallel to x-axis.

Constructed by rotating the diagram of

figure 5 by 26.6°. The x-axis now lies

on the horizontal axis, at a distance

one from the origin. The y-axis lies at

a distance of 1.41 from the origin,

meaning it stretched by 41% and it

rotated 45°.

Vorticity

Vorticity

The Mohr circle for simple shear does not lie centred on the horizontal axis. In fact, all

points on the circle lie on (x-axis) or above the horizontal, meaning all lines rotated in

the same direction. The average rotation of all material lines is given by the line that

goes through the centre of the circle, here 26.6°. This is of course the same as the rigid

body rotation we added after our pure shear step. In pure shear, the average rotation is

0°, because just as many lines rotate to the left as to the right. If we then add a constant

rotation angle to all lines, naturally we get that the average rotation is exactly that angle

(26.6° here). This average rotation we call the vorticity.

Clearly, the position of the Mohr circle relative to the horizontal axis in the diagram

tells us something about the vorticity of deformation. If the circle is centred on the

horizontal axis, vorticity is zero and we have pure shear. If the circle is not centred on

the horizontal axis, average rotation is not zero and vorticity is non-zero. This is the

case for general shear. If the circle just touches the horizontal (as in Fig. 6) we have the

special case of simple shear.

Size of the Mohr circle Maximum and minimum extension (e1 and e2 respectively) are given by the points

furthest and closest to the origin. These points lie on the line through the origin and the

centre of the circle (marked with X and Y in figure 6). The bigger the circle, the bigger

the difference between maximum and minimum elongation, and hence the absolute

finite strain or finite strain ratio (Rf=e1/e2).

The Mohr circle and the

position gradient tensor

If you know the position gradient tensor (eq. 20), you can actually immediately draw

the Mohr circle for finite strain. The position gradient tensor in the X-Y-reference frame

for the pure shear deformation shown in figures 4c and 6 is:

! 

Fps =
1.62 0

0 0.62

" 

# 
$ 

% 

& 
' 

This means that a vector with coordinates {1,0} (unit vector parallel to X-axis) deforms

to {1.62,0}. The perpendicular unit vector {0,1} (parallel to the Y-axis) deforms to

{0,0.62}. Now look at the coordinates in the Mohr diagram (Fig. 5), the points

representing the X- and Y-axis get: {0,1.62} and {0,0.62}. The elongation values 1.62

and 0.62 appear in both the position gradient tensor and in the coordinates of the

reference frame axes in the Mohr diagram.

Now we do the same for simple shear deformation (Figs. 4b and 6), which has a shear

strain of one, giving a position gradient tensor (in our x,y-reference frame):

! 

F
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1 1

0 1
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& 
' 

Vector {0,1} now deforms to {0,1} and has coordinates {0,1} in the Mohr diagram.

Vector {1,0} deforms to {1,1} and has coordinates {1,1} in the diagram. It looks like

we can use the coordinates of the deformed unit vectors parallel to our reference frame

axes to construct our Mohr circle.

Let’s now consider a general 2-dimensional position gradient tensor:

! 

F =
a b

c d

" 

# 
$ 

% 

& 
' (7)
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Vector {1,0} deforms to {1&a + 0&b,1&c+0&d} = {a,c} (8a)

Vector {0,1} deforms to {0&a + 1&b,0&c+1&d} = {d,b} (8b)

It now turns out that the coordinates of the points representing the reference frame axes

are in fact {a,-c} for the x-axis and {b,d} for the y-axis. Check for yourself if this is

true for the example of the deformed trilobite above.

The axes of our reference frame make an angle of 90° with each other, meaning that

they should lie at 180° from each other, measured along the outline of the Mohr circle

(double angles!). This means that the two points should lie opposite to each other on

the circle. This also means that when we have the points, we can draw a circle, with its

origin halfway between the two points.

Figure 7. If you know the position gradient tensor (a,b,c,d), you can draw the Mohr circle for

finite strain. First plot the x- and y-axis with coordinates {a,-c} and {d,b} in the diagram. Then

you can construct the circle, using the fact that the circle must go through the two points and that

these point lie opposite each other on the circle.

Figure 7. If you know the

position gradient tensor

(a,b,c,d), you can draw the

Mohr circle for finite strain.

First plot the x- and y-axis

with coordinates {a,-c} and

{d,b} in the diagram. Then

you can construct the circle,

using the fact that the circle

must go through the two

points and that these point lie

opposite each other on the

circle.

Figure 8. Mohr circle for finite strain for a

general finite strain case, defined by the

four values of the position gradient tensor

(a,b,c,d).
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The general Mohr circle

for finite strain

Figure 8 shows a Mohr circle for a general finite strain case with a position gradient

tensor as defined in equation 8. As described above, the circle can be constructed if the

position gradient is known. The radius R of the circle is given by:

! 

R = 1

2
a " b( )

2

+ d + c( )
2

(30)

The centre of the circle has coordinates {S,Q}, with:

! 

S = 1

2
a + b( ) (31)

! 

Q = 1

2
d " c( ) (32)

L is the distance from the origin of the graph to the centre of the circle:

! 

L = S
2

+Q
2

(33)

Kinematic vorticity

number

General shear

We have seen before that the hight of the centre of the circle (Q) is the vorticity, which

is the average rotation of all material lines. The vorticity depends on the type of

deformation, but also on the amount of deformation. The latter is determined by the

size of the circle (defined by the radius R). It is therefore useful to normalise the

vorticity to the amount of strain. We can do this by defining the kinematic vorticity

number, Wk, defined as:

! 

Wk =
Q

R
(34)

The kinematic vorticity number is positive or negative, depending on the direction of

the shear component. There are some special cases:

• Wk = 0  (Q=0): Pure shear – circle centred on horizontal axis;

• Wk = ±1  (Q=R): Simple shear – circle just touches horizontal axis;

• Wk = !  (R=0): Rigid body rotation only – circle is a point.

The example of figure 8 shows a case of Wk between 0 and 1, which is a case of

general shear between pure and simple shear. The finite strain ration (Rf) can also be

determined directly from the Mohr circle:

! 

Rf =
e
1

e
2

=
L + R

L " R
(34)

Dilation We may be interested to know whether we had an area change or dilation (!A). The

area change is the product of e1 and e2, which can be determined from the circle:

! 

"A = e
1
# e

2
= L + R( ) L $ R( ) = L2 $ 2LR + R2 (35)

If !A>1, we had an increase in area, and if !A<1 we had a decrease in area. Such

change in area may occur by material gain or loss, due to, for example, compaction or

dissolution and precipitation of material. However, often we see dilation in one plane

because of extension or shortening in the third dimension.


