Symmetry in Physics

References

  • 1
    Baake M, Kramer P, Schlottmann M, and Zeidler D,
    Planar patterns with fivefold symmetry as sections of periodic structures in 4-space, In J Mod Phys B 4 (1990) 2217-68
  • 2
    Bohr H,
    Zur Theorie der fastperiodischen Funktionen I, Acta Mathematicae 45 (1925) 29-127
  • 3
    Bohr H,
    Zur Theorie der fastperiodischen Funktionen II, Acta Mathematicae 46 (1925) 101-214
  • 4
    Bravais A,
    Les systemes formes par des points distribues regulierement sur un plan ou dans l' espace, J Ecole Polytech 19 (1850) 1-128
  • 5
    de Bruijn N G,
    Algebraic theory of Penrose's non-periodic tilings of the plane I, Proc Koninklijke Nederlandse Akademie van Wetenschapen, 84 (1981) 39-52
  • 6
    de Bruijn N G,
    Algebraic theory of Penrose's non-periodic tilings of the plane II, Proc Koninklijke Nederlandse Akademie van Wetenschapen 84 (1981) 53-66
  • 7
    Brown H, Bülow R, Neubüser J, Wondratschek H and Zassenhaus H,
    Crystallographic groups of 4-dimensional space, Wiley, New York 1978
  • 8
    Conway J H and Sloane N J A,
    Sphere packings, lattices and groups, Springer New York 1988
  • 9
    Danzer L,
    Three-dimensional analogues of the planar Penrose tilings and quasicrystals, Discrete Math 76 (1989) 1-7
  • 10
    Dürer Albrecht,
    Unterweisung der Messung, Nürnberg 1525, reprint Nördlingen 1983
  • 11
    Everitt B, 3-manifolds from Platonic solids. Topology and its Applications 138 (2004), 253-63
  • 12
    Gummelt P,
    Penrose tilings as coverings of congruent decagons, Geometriae Dedicata 62 (1996) 1-17
  • 13
    Guyot P, Kramer P, and de Boissieu M,
    Quasicrystals, Rep Prog Phys 54 (1991) 1373-1425
  • 14
    Hermann C,
    Kristallographie in Räumen beliebiger Dimensionszahl, Acta Cryst 2 (1949) 139-145
  • 15
    Janner A,
    Modulated space groups, in: Proc 5th Int Coll Group theoretical Methods in Physics, Montreal 1976, Academic Press, New York
  • 16
    Kepler J,
    Gesammelte Werke KGW 1-24, Ed. Max Caspar, München starting 1937
  • 17
    Kepler J,
    Strena seu de nive sexangula in: [16] KGW IV (1941): KLeinere Schriften 1602-1611
  • 18
    Kepler J,
    Mysterium Cosmographicum in; [16] KGW I (1937)
  • 19
    Kepler J,
    Harmonices Mundi Libri V in: [16] KGW VI (1940)
  • 20
    Kramer P,
    Non-periodic Central Space Filling with Icosahedral Symmetry using Copies of Seven Elementary Cells, Acta Cryst A 38 (1982) 257-64
  • 21
    Kramer P and Neri R,
    On periodic and non-periodic space fillings obtained by projection, Acta Cryst A 40 (1984) 580-587
  • 22
    Kramer P and Kramer L,
    Diffraction and layer structure of a quasilattice
    Z. Naturforsch. 40 a (1985) 1162-1163
  • 23
    Kramer P,
    Nichtperiodische Quasikristalle mit fünfzähliger Symmetrie, Phys. Blätter 41 (1985) 103-4
  • 24
    Kramer P,
    Grundgedanken zur Symmetrie im Werk von Johannes Kepler, in: [48] (1986) Band 1, p. 115-27
  • 25
    Kramer P and Kramer L,
    Icosahedral tiling model projected from the 6-dimensional hypercubic lattice, photograph, in: [48] (1986) Band 3, p. 91
  • 26
    Kramer P,
    On the theory of a non-periodic quasilattice associated with the icosahedral group,
    I: Z Naturf 40 a (1985) 775-788, II: Z Naturf 41 a (1986) 897-911
  • 27
    Kramer P,
    Atomic order in quasicrystals is supported by several unit cells, Mod Phys Lett B 1 (1987) 7-18
  • 28
    Kramer P and Schlottmann M,
    Dualization of Voronoi domains and klotz construction; a general method for the generation of proper space filling, J Phys Math and Gen A 22 (1989) L1097-l1102
  • 29
    Kramer P, Papadopolos Z and Zeidler D,
    The root lattice D_{6} and icosahedral quasicrystals, in: Frank A, Seligman T H and Wolf B, (eds.), Group theory in Physics, American Institute of Physics Conf Proc 266, New York 1992, 179-200
  • 30
    Kramer P, Papadopolos Z, Schlottmann M and Zeidler D,
    Projection of the Danzer tiling, J Phys Math and Gen A 27 (1994) 4505-17
  • 31
    Kramer P, Quandt A, Schlottmann M, and Schneider T,
    Atomic clusters and electrons in the Burkov model of AlCuCo, Phys Rev B 51 (1995) 8815
  • 32
    Kramer P, Quandt A, Schneider T and Teuscher H,
    Simulation of Mössbauer absorption spectra for decagonal AlCuCo, Phys Rev B 55 (1997)
  • 33
    Gazeau J-P and Kramer P,
    From quasiperiodic tilings with \tau-inflation to \tau-wavelets,
    Mat Sci Eng 294-296 (2000) 425-8
  • 34
    Kramer P, Papadopolos Z, Eds.
    Coverings of Discrete Quasiperiodic Sets, Springer, Berlin 2003
  • 35
    Kramer P,
    Quasiperiodic systems, in: Encyclopedia of Mathematical Physics, Eds. J-P Francoise, G L Naber, Sh Tsun Tsou, Elsevier, Amsterdam (2006) pp. 308-315
  • 36
    Kramer P, An invariant operator due to F Klein quantizes H Poincare's dodecahedral manifold. J Phys A: Math Gen 38 (2005) 3517-40
  • 37
    Kramer P, Harmonic polynomials on the Poincare dodecahedral 3-manifold. J. of Geometry and Symmetry in Physics 6 (2006) 55-66
  • 38
    Kramer P, Platonic polyhedra tune the 3-sphere: Harmonic analysis on simplices. Physica Scripta 79 (2009) 045008, arXiv:0810.3403
  • 39
    Kramer P, Platonic polyhedra tune the 3-sphere II: Harmonic analysis on cubic spherical 3-manifolds. Physica Scripta 80 (2009) 025902, arXiv:0901.0511
  • 40
    Kramer P, Platonic polyhedra tune the 3-sphere III: Harmonic analysis on octahedral spherical 3-manifolds. Physica Scripta 81 (2010) 025005, arXiv:0908.1000
  • 41
    Kramer P, Platonic topology and CMB fluctuations: Homotopy, anisotropy, and multipole selection rules. arXiv:0909.2758
  • 42
    Lax M, Symmetry principles in solid state and molecular physics. Wiley, New York (1974)
  • 43
    Levine D and Steinhardt P J ,
    Quasicrystals: A new class of ordered structures.
    Phys Rev Lett 53 (1984) 2477-80
  • 44
    Levine D and Steinhardt P J ,
    Quasicrystals. I. Definition and structure.
    Phys Rev B 34 (1986) 596-616
  • 45
    Levine D and Steinhardt P J,
    Quasicrystals. II. Unit-cell configurations. Phys Rev B 34 (1986) 617-47
  • 46
    Mackay A L,
    De Nive Quinquangula: On the Pentagonal Snowflake Kristallogafiya 26 (1981) 910-9, Sov Phys Cryst 26 (1981) 517-22
  • 47
    Mackay A L,
    Crystallography and the Penrose Pattern, Physica 114 A (1982) 609-13
  • 48
    Mazzola G Ed.,
    Symmetrie in Kunst, Natur und Wissenschaft,
    Katalog der Ausstellung Mathildenhöhe Darmstadt 1. Juni bis 24. August 1986
    ,
    Band 1 Texte, Band 2 Kunst, Band 3 Spiel, Natur und Wissenschaft
    Verlag E Roether, Darmstadt 1986
  • 49
    Mosseri R and Sadoc J F,
    Two and three dimensional non-periodic networks obtained from self-similar tiling, in: The structure of non-crystalline materials, Taylor and Francis, London 1982, pp. 137-50
  • 50
    Nelson D R,
    Quasicrystals, Scientific American 255 (1985) 42-51
  • 51
    Penrose R,
    The role of Aesthetics in Pure and Applied Mathematical Research, Bull Inst Math and its Appl 10 (1974) 266-71
  • 52
    Platon,
    Timaios, in: Sämtliche Werke VIII, Insel Verlag, Frankfurt 1991, pp. 197-425
  • 53
    Radin C,
    The pinwheel tilings of the plane, Annals of Math 139 (1994) 661-702
  • 54
    Seifert H and Threlfall W, Lehrbuch der Topologie. Leipzig 1934, Chelsea Reprint, New York 1980
  • 55
    Shechtman D, Blech I, Gratias D, and Cahn J W,
    Metallic phase with long-range orientational order and no translational symmetry,
    Phys Rev Lett 53 (1984) 1951-3
  • 56
    Schwarzenberger R L E,
    N-dimensional Crystallography, Pitman, San Francisco 1980
  • 57
    Wigner E P,
    Group theory and its application to the quantum mechanics of atomic spectra,
    Academic Press, New York 1959
  • 58
    Zassenhaus H,
    Über einen Algorithmus zur Bestimmung der Raumgruppen, Comm Math Helv 21 (1948) 117-141