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Abstract

This study presents zircon ages and geochemical and Nd-isotopic data for metagranites and quartzites from the
Susong high-pressure metamorphic zone in the Dabie—Sulu ultrahigh-pressure collisional belt. This belt belongs to the
eastern part of the Qinling—Dabie orogenic belt that formed during Early Mesozoic collision of the North and South
China Blocks. Two metagranites give zircon U—-Pb model ages of 785+7 and 205412 Ma, likely representing a Late
Proterozoic magmatic event and an Early Mesozoic overprint. They have low initial eng-values (—12.4 and —11.1 at
780 Ma), favouring a crustal origin. Flat heavy rare earth elements (REE) patterns (Gdn/Yby ~ 1.2) probably reflect
that melting took place at a shallow crustal section where heavy-REE-bearing mineral phases are unstable. All zircons
of three quartzites yield young discordant U—Pb ages and define a discordia with U—Pb model ages of 784 +6 and
213 +3 Ma, identical to those of the metagranites. We assume that all detrital zircons had lost radiogenic Pb prior to the
Early Mesozoic overprint, probably facilitated by fluid participation during a metamorphic event contemporaneous
with the intrusion of the metagranites. This simultaneous metamorphic and magmatic event was probably related to a
rift setting along the periphery of the Yangtze (South China) Block during Late Proterozoic.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

The Dabie—Sulu terrain represents the eastern
¥ Corresponding author part of the Qinling—Dabie orogenic belt that
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Blocks and possible intervening microplates (e.g.
Klimetz, 1983; Liu and Hao, 1989; Ma, 1989;
Zhang, 1997; Meng and Zhang, 2000). Numerous
structural and tectonic models have been proposed
to interpret the orogenic processes that built up
this huge belt (e.g. Mattauer et al., 1985; Hsii et al.,
1987; Ma, 1989; Huang and Wu, 1992; Yin and
Nie, 1993; Lee et al., 1997b; Meng and Zhang,
2000). Radiometric data achieved in recent years
favour an Early Mesozoic collision (e.g. Mattauer
et al., 1991; Liet al., 1993, 2000; Ames et al., 1993;
Eide et al., 1994; Cong et al., 1995). This corre-
sponds to the change from marine to continental
sedimentation in the Yangtze block (e.g. Enkin et
al., 1992).

In the Dabie area, numerous radiometric studies
were carried out on rocks associated with the
ultrahigh-pressure (UHP) metamorphism to con-
strain the collision time and the exhumation of the
UHP rocks (e.g. Li et al., 1993; Eide et al., 1994;
Hacker et al., 1995, 1998; Hacker and Wang, 1995;
Ames et al., 1996; Chavagnac and Jahn, 1996; Xue
et al., 1997; Rowley et al., 1997; Xu et al., 2000;
Chavagnac et al., 2001). A part from numerous
ages around 220-230 Ma that date the collision
time, several chronological studies, especially U-—
Pb zircon dating demonstrate that at least three
events at around 450 Ma, 700—-800 Ma, and >
1000 Ma are recorded in various metamorphic
rocks from the Dabie Mountains (¢.g. Ames et al.,
1996; Rowley et al., 1997; Hacker et al., 1998; Xie
et al., 2001). A U—Pb upper-intercept age of 447
Ma of zircons from an UHP eclogite near Maowu
was considered to represent the age of crystal-
lisation of the protolith (Rowley et al., 1997).
Similar ages have been also obtained on an
orthogneiss from the South Dabie zone and an
amphibolite and schist from the Susong high-
pressure (HP) metamorphic zone (Xie et al.,
2001). Although similar magmatic and meta-
morphic ages were reported in the western part
of the Qinling—Dabie belt (e.g. Kroner et al., 1993;
Lerch et al., 1995; Xue et al., 1996) and interpreted
as reflecting Siluro-Devonian metamorphism ac-
companying arc magmatism (Zhai et al., 1998), it
is somewhat problematic to interpret the Early
Palacozoic ages for the Dabie area however.
Nevertheless, the majority of zircon U-Pb

upper-intercept ages reported in previous studies
from UHP eclogites and orthogneisses of the
Dabie—Sulu area range about from 700 to 800
Ma (e.g. Ames et al., 1993; Rowley et al., 1997;
Xue et al., 1997; Hacker et al., 1998; Chavagnac et
al., 2001). These ages are commonly considered as
crystallisation ages of protoliths of the eclogites
and are related to an extension environment (e.g.
Ames et al., 1996). In contrast, geochronological
studies on other metamorphic zones of the Dabie—
Sulu terrain are less performed heretofore. Conse-
quently, the evolution of the basements within this
orogenic belt prior to the Early Mesozoic collision
has been less recognized. Here we present radio-
metric data for gneisses of the Susong zone to
reveal an earlier magmatic and metamorphic
history. We observe that zircons from both ortho-
and para-gneisses give U—Pb model ages cluster-
ing at about 780 Ma. This phenomenon is inter-
preted as evidence for a contemporanecous Late
Proterozoic magmatic-metamorphic event along
the northern margin of the Yangtze block, which
probably was related to the break-up of the Late
Proterozoic supercontinent, Rodinia.

2. Geological background

The Dabie terrain is made up of several major
tectonically juxtaposed units, i.e. from north to
south, the Beihuaiyang low-grade metamorphic
zone, the North Dabie gneiss zone (dome unit;
Hacker et al., 1995), the South Dabie UHP
metamorphic zone, and the Susong HP meta-
morphic zone (Fig. 1). It is bounded to the north
by the basement of the North China Block, which
is covered by Mesozoic volcano-sedimentary
rocks, and to the south by the Yangtze foreland
fold and thrust belt that is composed mainly of
Palaeozoic to Triassic clastic and carbonate strata
(Liou et al., 1995). Cretaceous post-collisional
granitoids intrude into all the major zones (Ma
et al., 1998).

The Susong HP metamorphic zone comprises
metamorphosed quartz sandstone, schist, marble,
biotite gneiss, quartz-rich amphibolite and meta-
phosphorite (Liou et al., 1995). This zone is also
known as the South Dabie HP unit (e.g. Carswell
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Fig. 1. Simplified geological map of the study area (e.g. AGS, 1999; Liou et al., 1995; Hacker et al., 1998). Abbreviations: ND, North
Dabie; SD, South Dabie; UHP, ultrahigh-pressure; HP, high-pressure; XMF, the Xiaotian-Mozitan fault; TMF, the Taihu-Mamiao
fault; QLF, the Queyueling-Longshan fault; XGF, the Xiangfan-Guangji fault.

et al., 1997) or the Susong Metamorphic Complex
(e.g. Liou et al., 1995). The southern boundary of
the Susong zone is marked by the Xiangfan-
Guangji fault (e.g. Liou et al., 1995; Dong et al.,
1998). Whether the northern boundary is marked
by the Taihu-Mamiao fault or the Queyueling-
Longshan fault is still discussed. As the same rock
suite can be observed on both sides of the
Queyueling-Longshan fault, it is suggested that
the boundary of the Susong HP zone and the
South Dabie UHP zone extends from the north of

Huangzhen eastward through the dam of the
Hualiangting reservoir (Zhai et al., 1995). The
rock assemblage between the two faults, mainly
quartz schists and quartzites, has also been defined
as the Dabie Schist Group (e.g. AGS, 1999) and
regarded as part of the Dabie Formation or the
Dabie Metamorphic Complex. The rock sequences
south of the Queyueling-Longshan fault are de-
fined as the Susong Formation, which contains a
characteristic phosphorite-bearing metamorphic
sequence.
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Within the Susong zone, metamorphic grade in
general changes southwards from amphibolite-
eclogite-facies through amphibolite-facies to
greenschist-facies. Based on the different meta-
morphic conditions, the Susong zone was further
subdivided into three units (Liou et al., 1995).
Estimated metamorphic temperatures vary from
~ 500 °C in the northern unit, ~430 °C in the
central unit, to ~300 °C in the southern unit
(Liou et al., 1995). The northern unit is composed
of thick metamorphosed magnetite-bearing quartz
sandstone with thin layers of mica schist and
granitic gneiss. Lenses of quartz eclogite occur
within the sandstone along the northern margin.
These eclogites underwent metamorphism under
conditions of ~600-635 °C and 18 kbar and
were referred to as cold eclogites that are different
from the hot eclogites exposed in the South Dabie
UHP zone (Okay, 1993). The central unit com-
prises magnetite-bearing quartz sandstone, mar-
ble, quartzite, garnet-biotite gneiss, quartz
hornblendite, metaphosphorite, and kyanite-bear-
ing quartzite, interlayered with each other. The
dominant rocks in the southern unit are chlorite—
sericite schist, greenschist, and fine-grained biotite
gneiss.

In contrast to the South Dabie UHP zone,
geochronological investigations of rocks from the
Susong zone are still in a reconnaissance stage. Xie
et al. (2001) reported zircon U—Pb ages of a schist
and amphibolite sample, south of the Queyueling-
Longshan fault. Intercept ages of the schist are
401+24 and 11644210 Ma and three zircon
fractions from the amphibolite give 2°°Pb/***U
ages ranging from ~ 450 to ~ 2400 Ma. Two Rb—
Sr ages of 844 +73 Ma (whole-rock isochron) and
231448 Ma (whole-rock/phengite isochron) as
well as a K—Ar phengite age of 211 Ma were
reported for metamorphic rocks from the south-
eastern part of this zone (Sang et al., 1987).

3. Analytical methods

Whole-rock powder was obtained by crushing
and splitting about 5-10 kg of samples. Zircons
were separated from the crushed rocks using a
shaking table, a Frantz isodynamic separator and

heavy liquids and finally handpicked under a
binocular microscope. Zircon grains studied by
cathodoluminescence (CL) investigation were
mounted in epoxy resin and polished down to
expose grain centres. The CL images were ob-
tained using a microprobe JEOL JXA-8900RL at
the University of Tiibingen, working at 15 kV.
Major and trace element concentrations of whole-
rock samples were analysed on fused glass discs by
X-ray fluorescence spectrometry (XRF) at Uni-
versity of Tibingen. Loss of ignition (LOI) was
determined after igniting sample powder at
1000 °C for 1 h. Concentrations of rare earth
elements (REE) and selected trace elements were
determined by ICP-mass spectrometry (ICP-MS)
at Memorial University, St. John’s, Newfound-
land, using the HF-HNO; digestion of sample
powder and the analytical methods within the
precision and accuracy described by Jenner et al.
(1990). The ICP-MS and XRF data on the
elements of Rb, Sr, Ba, Y, Zr, and Nb as well as
the ICP-MS and isotope dilution data on the
elements of Sm and Nd were used to check the
dissolution procedure.

For Nd and Sm isotope analyses, light REE
(LREE) were isolated on quartz columns by
conventional ion exchange chromatography with
a 5-ml resin bed of AG 50W-X12 (200—400 mesh)
and Sm and Nd were separated from each other
and other REE on quartz columns using 1.7-ml
Teflon powder as cation exchange medium. For
U-Pb analyses, single zircons or populations
consisting of two to three morphologically iden-
tical grains were mechanically abraded following
the Krogh method (1982). After the abrasion, they
were washed shortly in warm 7 N HNO; and
warm 6 N HCI, prior to dissolution to remove
surface contamination. Then, a mixed 2*>Pb—2*>U-
tracer solution was added to the grain. Dissolution
was performed in PTFE vessels in a Parr digestion
bomb (Parrish, 1987) at 200 °C for 7 days in 22 N
HF and for 1 day in 6 N HCI to assure re-
dissolution of the fluorides into chloride salts.
Separation and purification of U and Pb were
carried out on Teflon columns with a 40-pl bed of
AGI1-X8 (100-200 mesh) anion exchange resin.
The technique used for single zircon Pb evapora-
tion is that developed by Kober (1986). The Pb
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isotopes were dynamically measured in a sequence
of 206-207-208-204-206-207 with a secondary
electron multiplier. Common lead correction fol-
lowed Cocherie et al. (1992). The -calculated
207pb/**°Ph ages are based on the means of all
measurements evaluated and the errors are given
in 2¢ standard deviation. Further details on the
analytical techniques are given in Chen et al.
(2000, 2002).

All isotopic measurements were made on a
Finnigan MAT 262 mass spectrometer at the
University of Tibingen. Sm and Nd were loaded
on Re-filaments and measurements were per-
formed in a double-filament configuration.
Nd/"Nd  ratios  were normalised  to
MONd/'"Nd ratio of 0.7219. Analyses of the
Ames metal gave a '¥Nd/'"*Nd ratio of
0.512125+0.000010 (n = 24), close to the reference
value of 0.512147+40.000007 (Roddick et al.,
1992). Measured '**Nd/'"**Nd ratios of samples
were normalised to this reference value. Total
procedural blanks were <50 pg for Sm and Nd.
Pb was loaded with a Si-gel onto a Re-filament
and measured at ~ 1300 °C in a single-filament
configuration, while U was loaded with 1IN HNO;
onto a Re-filament and measured in a double-
filament configuration. Total procedural Pb and U
blanks were <10 pg. A factor of 19, per atomic
mass unit for instrumental mass fractionation was
applied to all Pb analyses, using NBS 981 as
reference material. Initial common Pb remaining
after correction for tracer and blank was corrected
using values from the Stacey and Kramers (1975)
model. The U-Pb data were evaluated with the
Pbdat program (Ludwig, 1988) and regression of
U-Pb discordia was done following the regression
treatment of Wendt (1986). All errors are given as
20, Repeated measurements on zircon standard
91500 gave nearly concordant U-Pb ages of
1065.6 +2.2 Ma (Chen et al., in press), consistent
with the U—Pb age of 1065.44+0.3 Ma obtained in
different laboratories (Wiedenbeck et al., 1995).
The Pb evaporation analyses on zircon 91 500 and
Phalaborwa zircon (South Africa) yielded
207pp/2%Ph ages of 1063 +5 and 2054.1+0.5 Ma,
respectively, consistent with the reported values
(Wiedenbeck et al., 1995; Kroner et al., 1993).

4. Samples and analytical results
4.1. Samples

Analysed samples were collected from the north-
ern part of the Susong zone (Fig. 1). Rocks from
this part were subjected to amphibolite-facies
metamorphism. Two metagranite samples TH-11
and TH-12 were collected along a new road near
the Mashigou village. Both samples are leuco-
cratic, foliated, homogeneously medium-grained
and consist of quartz, feldspar, biotite, muscovite
and accessory apatite and zircon. Sample TH-9 is a
light grey, foliated quartzite and contains > 50%
quartz, > 20% feldspar, about 5% magnetite, and
about 5% muscovite and chlorite. Samples TH-15,
TH-16, TH-19, and TH-20 are light grey or green
to pink, slightly to strongly foliated quartzites,
which are composed of about 70% quartz, 10%
feldspar, 5—10% muscovite, and 2—5% magnetite.
All the quartzites contain zircon and apatite as
accessory phases.

4.2. Geochemical composition

Major and trace element concentrations of
whole-rock samples are given in Table 1. Normal-
ised concentrations of REE and other trace
elements of two metagranite (TH-11 and TH-12)
and two quartzite (TH-16 and TH-19) samples are
shown in Fig. 2. The metagranites are plotted in
the monzogranite field in a quartz-plagioclase-K-
feldspar diagram (LeMaitre, 1989), according to
their modal compositions. They contain about 76
wt.% SiO, and 8.1-8.7 wt.% (K,O+Na,0O) and
have K,O/Na,O ratios of 1.3-1.4 and A/CNK
ratios of about 1.1 (mole Al,O3/(CaO+Na,O+
K,0)). Five quartzite samples contain about 76—
78 wt.% SiO, and 6.3-8.0 wt.% (K,O+Na,0).
They have variable K,O/Na,O ratios ranging from
about 0.6 to 1.8.

Two analysed metagranite samples similarly
have a steep LREE and flat heavy REE (HREE)
pattern, as expressed by Lan/Y by ratios of 6.5-8.2
and Gdn/Yby ratios of about 1.2, when normal-
ised to chondrite (Fig. 2a). They also exhibit a
strong negative Eu-anomaly (Eu/Eu* ~0.11-
0.24; Eu* = (Smy X GdN)llz), which can indicate
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Table 1

Whole-rock major and trace element concentrations of metagranites and quartzites from the Susong HP metamorphic zone

Sample TH-11 metagra- TH-12 metagra- TH-16 quart- TH-19 quart- TH-9 quart- TH-15 quart- TH-20 quart-
nite nite zite zite zite zite zite

SiO, 75.4 75.5 76.3 76.9 75.9 71.7 71.7

TiO, 0.16 0.11 0.16 0.13 0.20 0.16 0.17

AlLO; 13.29 12.58 12.94 12.14 10.44 11.94 12.12

Fe,04 1.28 1.18 2.04 2.01 2.99 1.17 1.49

MnO 0.03 0.04 0.03 0.03 0.06 0.02 0.01

MgO 0.06 b.d. b.d. b.d. 0.25 b.d. b.d.

CaO 0.65 0.27 0.09 0.24 1.01 0.14 0.13

Na,O 3.60 3.46 2.52 4.34 3.89 3.11 2.90

K,0 5.06 4.60 4.54 3.62 2.41 491 4.94

P,Os 0.03 0.01 0.02 0.01 0.02 0.02 0.01

LOI 0.38 0.32 1.14 0.29 1.82 0.27 0.64

Total 100.04 98.13 99.91 99.88 99.17 99.65 100.19

A/CNK 1.06 1.13 1.40 1.06 0.96 1.12 1.17

Ba 408 526 478 788 1192 1226 111

Cr 7 b.d. 10 5 b.d. 2 85

Nb 14 24 53 16 16 12 22

Rb 197 193 183 60 45 116 117

Sr 58 30 17 35 89 40 8

Y 34 31 31 50 50 40 58

Zr 145 122 400 391 644 174 456

Ta 2.0 2.8 4.1 1.2

Cs 2.8 1.5 4.0 0.6

Pb 23.0 23.9 20.9 13.5

Th 23.5 20.0 21.8 9.5

U 2.3 2.1 4.2 0.6

La 41.7 37.1 78.2 65.4

Ce 71.4 62.1 123.4 140.2

Pr 9.0 6.7 22.1 11.9

Nd 28.2 28.9 62.6 54.3

Sm 5.2 6.5 12.5 10.9

Eu 0.4 0.2 1.0 1.2

Gd 5.1 5.7 11.7 9.0

Tb 0.8 1.0 1.3 1.6

Dy 5.3 5.6 6.6 8.7

Ho 1.1 1.3 1.1 2.0

Er 3.2 3.2 3.6 5.9

Tm 0.5 0.6 0.5 0.9

Yb 34 3.8 3.0 5.8

Lu 0.4 0.4 0.4 0.7

(La/Yb)n 8.2 6.5 17.5 7.6

(Gd/Yb)n 1.2 1.2 3.1 1.2

Eu/Eu* 0.24 0.11 0.08 0.37

1475 m/Nd 0.1146 0.1462 0.1158 0.1194 0.1189 0.1241 0.1089

"INd/"Nd - 0.511584 0.511810 0.511916 0.511916 0.511840 0.511927 0.511690

ena (1) —12.4 —11.1 —6.0 —6.4 —-74 —6.6 —9.7

ToMm (Ga) 2.4 2.3 1.9 1.9 2.0 1.9 22

b.d., Below detection limit. Major and trace element concentrations in wt.% and ppm, respectively. A/CNK = mole Al,O3/(CaO+
Na,O +K,0). Errors of the measured '*Nd/'**Nd ratios are < 1.2 x 10>, Initial eng values are calculated for ¢ =780 Ma. Ty
values are calculated assuming a two-stage model of Liew and Hofmann (1988).
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Fig. 2. Normalized trace element concentrations of metagra-
nites and quartzites. Normalizing values for chondrite, primor-
dial mantle, and PAAS are from Sun (1982), Taylor and
McLennan (1985), and McLennan (1989), respectively. Litera-
ture data for shales: Nance and Taylor (1976).

fractionation of plagioclase from the melt(s) and/
or inheritance from the source material. The REE
patterns of two quartzites (TH-16 and TH-19) are
similar to those of the metagranites, but they have

higher REE-contents. These two quartzite samples
are further different from each other in the HREE-
contents. When all four samples are normalised to
the Post-Archaean average Australian sedimentary
rocks (PAAS) (McLennan, 1989), the difference
between the metagranites and quartzites becomes
more evident. The two metagranites show a slight
HREE enrichment but have similar LREE-con-
tents, compared to the PAAS (Fig. 2b). Trace
element concentrations normalised to the primor-
dial mantle show both the metagranites and
quartzites distinctly have negative anomalies of
Nb, Sr, and Ti, which can be observed in rocks
having a crustal origin. The metagranites have
similar patterns of normalised trace element com-
positions, while these two quartzite samples differ
from each other in Rb-, Ba-, and U-contents as
well as in HREE concentrations.

4.3. Zircon internal structure and ages

Internal structure of zircons was studied with
the CL technique, which allows an examination of
magmatic zoning, inherited xenocryst, and over-
growth in zircon grains (e.g. Hanchar and Miller,
1993). About 60 zircon grains from the metagra-
nites (TH-11 and TH-12) and the quartzites (TH-
16 and TH-19) were studied and the CL images
shown in Fig. 3 are representative of the zircon
populations. All zircon grains used for CL inves-
tigation and for dating purposes are prismatic with
magmatic habit. From the CL photographs, it can
be observed that most grains have two to three
growth stages. Low CL intensity that is identified
at the crystal margin of all grains from the
metagranites and quartzites probably resulted
from a common metamorphic overprint. On the
other hand, different CL features can be observed
in zircon grains from the two rock types. Mag-
matic zoning is better preserved in zircon grains
from the metagranites, whereas zircons from the
quartzites are more strongly overprinted by late
event(s). Recrystallisation prior to the meta-
morphic overprint is commonly observed in zircon
grains from the quartzites. Small xenocrystal
domains can be observed in some grains of the
metagranite TH-11.
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metagranite

Fig. 3. CL photographs of zircon populations of metagranites (samples TH-11 and TH-12) and quartzites (samples TH-16 and TH-
19). Metamorphic rims are commonly observed in all grains. Magmatic oscillatory zoning is better preserved in the grains from the
metagranites. Intense recrystallisation can be observed in most of the grains from the quartzites.

The U—-Pb analytical data are given in Table 2
and plotted in concordia diagrams (Figs. 4 and 5).
All analysed zircon fractions (comprising up to
three grains) from metagranites and quartzites give
U-Pb ages with different degrees of discordance.
Four of five fractions from metagranite TH-11
gave 2’Pb/**Pb ages of between 730 and 770 Ma.
The other one yielded an older *°’Pb/**°Pb age of
846 Ma, probably indicating that old inherited
core was present in this fraction. This fraction
distinctly has a low Th/U ratio (corresponding to
low 2%Pb*/*°°Pb* ratio of 0.11), probably suggest-
ing a different origin from other analysed zircon
fraction. A discordia line defined by the first four
data points gives U-Pb intercept ages of 799+ 23/
—18 and 246+ 59/—62 Ma. This lower-intercept

model age is within the large error similar to the
time of the collision between the South and North
China Blocks, dated at about 230-220 Ma (e.g. Li
et al., 1993; Ames et al., 1993, 1996; Eide et al.,
1994; Hacker and Wang, 1995; Chavagnac et al.,
2001). Assumed that the analysed zircons were
subjected to Pb-loss simultaneously with the Early
Mesozoic collision, the data points are calculated
again using a forced regression through 220+10
Ma, which approximately represents the collision
time, and hence a more fixed upper-intercept
model age of 791 +5 Ma can be obtained. Simi-
larly, one of six zircon fractions from the meta-
granite TH-12 has a lower 2*Pb*/?°°PB* ratio of
0.12 and an older **’Pb/*°°Pb age of 998 Ma,
indicating the existence of an inherited core. The
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Table 2

Zircon U-Pb analytical data of metagranites and quartzites from the Susong HP metamorphic zone

Atomic ratios

Apparent ages (Ma)

Sample 206Pb/204Pb U Pb Pb* ZOSPb*/206Pb* 206Pb/*238U 207Pb*/235U 207Pb*/206Pb* 206Pb*/238U /207Pb*/235U 207Pb*/206pb*
(ppm)  (ppm)  (ppm)

Metagranites

TH-11

(1) Big, thick, 1 gr 908 182 22.5 21.6 0.32 0.09961 + 0.8747 + 0.06369+12 612 638 731
200 177

(2) Long, thick, 1 gr 696 135 17.0 16.1 0.26 0.10462 + 0.9229 + 0.06398+17 641 664 741
212 188

(3) Long, thin, 2 grs 730 177 24.3 23.2 0.26 0.11435+ 1.0237 + 0.06492+19 698 716 772
233 211

(4) Fine, short, 2 grs 215 147 22.0 17.7 0.24 0.10672 + 0.9382+ 0.06376 £52 654 672 734
218 208

(5) Fine, short, 2 grs 1079 115 12.1 11.7 0.11 0.10025 + 0.9299 + 0.06727+20 616 668 846
204 192

TH-12

(1) Big, thick, 1 gr 1120 336 32.8 31.6 0.20 0.08647 + 0.7462 + 0.06259+12 535 566 694
174 151

(2) Long, thick, 1 gr 1277 235 253 24.6 0.22 0.09407 + 0.8242 + 0.06355+10 580 610 727
189 166

(3) Fine, long, 3 grs 749 198 16.4 15.9 0.23 0.08026 + 0.6878 + 0.06216+£23 498 532 680
164 143

(4) Fine, short, 2 grs 814 185 13.8 13.5 0.19 0.06748 + 0.5693 + 0.06119+20 421 458 646
158 135

(5) Short, thick, 1 gr 7209 470 35.8 35.7 0.12 0.07356 + 0.7346 + 0.07242+5 458 559 998
148 146

(6) Long, 2 grs 1546 230 21.3 20.6 0.21 0.08188 + 0.7024 + 0.06222 +8 507 540 682
164 142

Quartzites

TH-15

(1) Small, short, 2 1575 186 10.3 10.1 0.16 0.05189 + 0.4100+83 0.05730+16 326 349 503

ars 105

(2) Fine, long, 2 grs 1016 120 8.1 7.8 0.24 0.05817 + 0.4688+99 0.05845+23 365 390 547
121

(3) Short, 1 gr 2653 197 12.8 12.7 0.24 0.05794 + 0.4738+98 0.05931+27 363 393 579
117

(4) Long, 2 grs 2110 193 11.8 11.7 0.24 0.05478 + 0.4341+88 0.05747+16 344 366 510
111

9I—1 (Z00Z) 00 Y210asay ubLIQUIDIILG | [V 12 UY) "

>
o
=
O
r
m
=z
v
s
m
)
7]

[XIPE 9TTIN VO dd/P9TTWEIIJ/SI[ONIE/UIBIIIJ/UOUURYS/AUIDS IOIAS[H/:A

199010 1€



Table 2 (Continued)

(5) Long, 1 gr

TH-16
(1) Thick, short, 1 gr

(2) Thick, short, 1,
or

(3) Long, 2 grs

(4) Long, 1 gr

(5) Small, short, 3

ars
(6) Small, long, 2 grs

TH-19
(1) Short, 1 gr

(2) Long, 1 gr
(3) Long, 2 grs

(4) Fine, long, 3 grs
(5) Fine, short, 2 grs

(6) Thin, long, 2 grs

1380

1199

1250

637

1216

646

966

456

370

1649

1886
1986

1863

212

627

668

689

752

450

424

254

248

211

218
199

180

13.7

68.4

70.6

62.9

87.7

36.3

343

14.8

13.6

10.1
10.8

9.2

13.5

67.7

57.9

84.0

10.0
10.7

9.1

Atomic ratios

Apparent ages (Ma)

0.25

0.20

0.20

0.19

0.18

0.19

0.17

0.14

0.15

0.15

0.13
0.19

0.15

0.05639+
114

0.09597 +
243
0.09316 +
188
0.07806 +
168
0.10407 +
220
0.06909 +
158
0.07239 +
170

0.05030 +
109
0.04632 +
100
0.05147 +
104

0.04533 +£92
0.05030+
105

0.04923 +99

0.4478 +91

0.8389 +
213
0.8140 +
167
0.6758 +
147
0.9049 +
193
0.5971 +
139
0.6190 +
146

0.3931 +95
0.3529+80
0.4098 +84

0.3478 +71
0.3956 +£80

0.3866+80

0.05759+12

0.06339+15
0.06336 £15
0.06279 +23
0.06306+11
0.06267 £26

0.06201 +18

0.05668 +57
0.05525+33
0.05774+£20

0.05565+11
0.05704 +13

0.05696 +£20

354 376
591 619
574 605
485 524
638 654
431 475
451 489
316 337
292 307
324 349
286 303
316 338
310 332

514

722

721

701

710

697

675

479

423

520

439
493

490

Errors are given as 20,,. gr, grain; grs, grains. Concentrations of U and Pb are calculated with estimated zircon weights. The 2°°Pb/?**Pb ratios are measured values.

Row analytical data were calculated with the ‘Pbdat’ program Ludwig (1988).
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Fig. 4. Zircon U-PDb concordia diagram; (a) metagranite TH-11 and (b) metagranite TH-12.

other five fractions have **’Pb/*°°Pb ages between
646 and 727 Ma and define a discordia that gives
intercept ages of 774+413/—12 and 191+18/—19
Ma. When the forced regression through 220+10
Ma is also applied to these data, similar to the
method for sample TH-11, an upper-intercept age
of 794+5 Ma is obtained. These two zircon
fractions containing inherited cores give upper-
intercept model ages of 943 +13 and 1332 +32 Ma
(Fig. 4), when a forced regression through 220+10
Ma is considered.

Analyses of seventeen zircon fractions were
performed on three quartzites (samples TH-15,
TH-16 and TH-19). All of them unexpectedly give
young °’Pb/??Pb ages between 422 and 722 Ma,
similar to those of the metagranites. Zircon frac-
tions from samples TH-15 and TH-19 yielded
more discordant U-Pb ages than those from
sample TH-16 and regressions of these data give
less precise upper-intercept ages. Five data points
of sample TH-15 define a discordia giving inter-
cept ages of 826+95/—85 and 238+22/—29 Ma
(Fig. 5a). The discordia regressed through six data
points of sample TH-19 yields intercept ages of
863+4+93/—86 and 229+13/—17 Ma (Fig. 5b).
When the regression is forced through 220+10
Ma, the data of the two samples yield upper-
intercept ages of 773+23/—22 and 820421 Ma,
respectively. Six zircon fractions of sample TH-16
define a discordia with intercept ages of 727 +4

and 72 +14 Ma (Fig. 5c). When forced regression
through 220 Ma is applied, the data give an upper-
intercept age of 794 +5 Ma. This age is similar to
the 2°7Pb/>°Pb evaporation ages obtained from
two zircon grains (Fig. 5d; Table 3). Two other
grains from the same sample give younger
207pp/2%Pb  evaporation ages of 750+24 and
730+20 Ma, probably indicating an influence of
later metamorphic overprint.

4.4. Nd isotopic composition

The Nd isotopic compositions of seven samples
are given in Table 1. Nd model ages (Tpwm) are
calculated using a two-stage model, following the
approach of Liew and Hofmann (1988). Two
metagranite samples have model ages of 2.3-2.4
Ga, whereas five quartzite samples have younger
model ages between 1.9 and 2.2 Ga. These results
are similar to the data formerly reported from the
Dabie Mountains (Ma et al., 2000) and generally
fall in the Tpy range of sedimentary rocks from
the northwestern Yangtze Block as well (Chen and
Jahn, 1998). Initial eng-values of two metagranites
calculated back to 780 Ma are —12.4 and —11.1,
which are slightly lower than the eng-values of five
quartzite samples that range from —9.7 to —6.0,
when also calculated back to 780 Ma for a
comparison.
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Fig. 5. Zircon U=Pb concordia diagram and **’Pb/?*°Pb histogram; (a) quartzite TH-15, (b) quartzite TH-19, and (c) and (d) quartzite
TH-16.

Table 3

Single zircon evaporation data of quartzite TH-16

Grain Number of ratios Mean 2°’Pb/?%Pb value (20,,) 207pb/2%Ph age (Ma)
1 169 0.06560+51 794 +16

2 130 0.06526+72 783 +23

3 210 0.06366+72 730424

4 144 0.06425+61 750 +20
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5. Discussion L L
0131 metagranites & quartzites
5.1. Origin of the metagranites t1 =214 +3 Ma
onl (2=787 +4 Ma 1
Both the metagranites and quartzites have (MSWD=2.2)
analogous Nd isotopic compositions (&ng-value 2
and Tpy) to the metasedimentary rocks from the “N:\: 0.09 .
Yangtze Block (Chen and Jahn, 1998), consistent & quartzites
with a commonly shared opinion that the Susong < t1=213 +3 Ma
HP metamorphic zone is part of this block. The 00Ty 2 =784_16 Ma 7
. L (MSWD=2.7)
metagranites have lowe.r initial sNd-vglues (—124 metagraniies
to —11.1), compared with the quartzites (—9.7 to 0.05 t1 =205 +12 Ma
—6.0), probably indicating a predominant crustal @ metagranite 2 =785 £7 Ma
material origin. The characteristics of trace ele- 00312 S (SNEERY
ment and REE contents of both quartzites and 0.2 0.4 06 0.8 1.0 12

metagranites are comparable with those of average
shales (e.g. Nance and Taylor, 1976). The quart-
zites but are different from the metagranites
further in REE-contents, especially in LREE-
concentrations. These differences in trace element
and Nd isotopic compositions between the meta-
granites and quartzites do not favour that proto-
liths of the metagranites originated exclusively
from sedimentary rocks, whose isotopic and geo-
chemical characteristics are represented e.g. by the
quartzites. They must have been produced partly
from an older crustal component underneath, if a
component similar to the quartzites was involved
into the granite formation.

The metagranites display fractionation between
LREEs and HREEs, but low Gdn/Yby ratios
suggest that the fractionation of HREE-bearing
mineral phases, e.g. garnet and amphibole, was of
minor importance in the source. This feature
implies that the melts were formed at shallow
crustal levels where such mineral phases are
unstable, in contrast to many granitoids that
originate from a thickened crust in a convergent
or collisional setting. Such granitoids often have a
highly fractionated HREE composition (high
Gdn/Yby value), due to the presence of garnet
and/or amphibole in the sources at HPs (e.g. Kay
et al., 1994; Kay and Abbruzzi, 1996).

5.2. Late Proterozoic magmatism

The U—Pb zircon age data of the metagranites
and quartzites in this study are the first ones

207pp,235y

Fig. 6. A compilation of zircon U-Pb ages from the meta-
granites and quartzites shown in a concordia diagram. Data are
the same as shown in Fig. 4 and Fig. 5. Except for two zircon
fractions containing inherited radiogenic Pb, regression of all
analytical data of the metagranites and quartzites defines a
discordia line (MSWD = 2.2) with intercept ages of 787 +4 Ma
and 214+3 Ma. When data of two rock types are separately
regressed, similar upper- and lower-intercept ages are derived,
i.e. 784+6 Ma and 213+3 Ma for the quartzites (MSWD =
2.7) and 78547 Ma and 205+12 Ma for the metagranites
(MSWD =1.1).

reported for the northern part of the Susong HP
metamorphic zone. The U-Pb upper-intercept
ages of zircons from two different rock types,
two metagranites and three quartzites, are con-
strained at around 770-790 Ma, especially when
forced regressions through 220+10 Ma are con-
sidered. A distribution of all data in a concordia
diagram is shown in Fig. 6. From this data array,
it can be observed that all analysed zircon
fractions, except for two of the metagranites,
which obviously contain an inherited radiogenic
Pb component, define the same discordia trend.
Zircons from the two metagranites occupy the
upper part of the array, whereas zircons from the
quartzites mainly inhabit the lower part. This
feature can be explained as different responses of
zircons from different rock types to the meta-
morphic overprint of about 220 Ma. Zircons from
the quartzites underwent a more extensive Pb-loss,
probably resulting from higher fluid activities that
facilitated metamictisation of zircon crystals and
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subsequently led to radiogenic Pb-loss (e.g. Nas-
dala et al., 1995). The data array defines a
discordia with intercept ages of 787+4 and
214 +3 Ma, respectively. Separate regressions of
the data sets from the metagranites and quartzites
yield similar model ages, especially the identical
upper-intercept ages (Fig. 6).

The lower-intercept age of 214 Ma is slightly
younger than the UHP metamorphism ( ~ 230—
220 Ma) that represents the collision between the
Yangtze (South China) and North China Blocks
(e.g. Ames et al., 1993; Li et al., 1993, 2000;
Chavagnac and Jahn, 1996; Chavagnac et al.,
2001; Rowley et al., 1997, Hacker et al., 1998;
Webb et al., 1999). Nevertheless, the 214 Ma age is
coincidental to the time of an early exhumation of
the UHP metamorphic rocks (e.g. Nie et al., 1994,
Webb et al., 1999; Hacker et al., 1998; Xu et al.,
2000). Thus, the 214 Ma age can either represent
the timing of a late HP metamorphism or the
exhumation of UHP—HP metamorphic rocks.

As demonstrated by the CL photographs, the
oscillatory zoning of magmatic origin is well
preserved in most zircon grains from the meta-
granites and it can be concluded that the 785+7
Ma upper-intercept age, defined by the two
metagranites (Fig. 6), likely represents the crystal-
lisation time. The Late Proterozoic crystallisation
age of the metagranites is similar to those of
eclogites and orthogneisses in the South Dabie
UHP metamorphic zone (e.g. Ames et al., 1993;
Rowley et al., 1997), in the North Dabie gneiss
zone (e.g. Xue et al., 1997; Hacker et al., 1998),
and in the Beihuaiyang low-grade zone (Hacker et
al., 1998). However, many of the reported upper-
intercept ages have large uncertainties and range
from about 650—850 Ma. Similar ages have also
been reported from the northern margin of the
Yangtze Block (e.g. Kroner et al., 1993; Xue et al.,
1996). They are commonly interpreted as crystal-
lisation ages of the precursor rocks. The precur-
sors of some eclogites from the South Dabie UHP
metamorphic zone were interpreted as magmatic
products of a rift environment between about 700
and 800 Ma (e.g. Ames et al., 1996). Although
there is no obvious evidence favouring an exten-
sion environment in the Dabie area during this
time, several studies show that this break-up can

be traced along the periphery of the Yangtze
Block, e.g. there are bimodal volcanic rocks of
~800-820 Ma at the western margin (e.g. Li et
al., 2001), maficultramafic dykes at the southern
margin (e.g. Li et al., 1999), and mafic dyke
swarms of about 800 Ma in the Wudan Mountains
at the northern margin (e.g. Zhou et al., 1998). It is
believed that the extension and break-up of the
Yangtze Block took place shortly after its com-
plete consolidation during the Jinning orogen
between about 1000 and 850 Ma (e.g. Zhou et
al., 1998) and after the formation of the Late
Proterozoic supercontinent, Rodinia (e.g. Li et al.,
1995). These magmatic activities could be related
to the break-up of Rodinia during Late Proter-
ozoic, if the Yangtze (South China) Block was
once part of the supercontinent, as suggested by
some researchers (e.g. Li et al., 1995; Li and
Powell, 2001).

5.3. Late Proterozoic metamorphism

The rock sequences of the Susong HP meta-
morphic zone are considered to be Middle Proter-
ozoic in age, but the dating results demonstrate
that old ages of detrital zircons from all three
analysed quartzites are completely absent. Both
the wupper-intercept model U-Pb ages and
207pp/*°Pb ages obtained by the evaporation
method are similar to the crystallisation ages of
the metagranites (Fig. 6). This phenomenon im-
plies either a unique sedimentary source or a
nearly complete resetting of zircon U—-Pb system
at around 780 Ma. The first possibility seems
likely, only if the quartzites originated from in situ
weathered Late Proterozoic magmatic rocks that
crystallised simultaneously with the metagranites.
The second possibility implies that Pb-loss from
the zircons is probably related to metamorphism
contemporaneous with the magmatism during
Late Proterozoic.

An argument against Pb-loss is that the rate of
Pb diffusion in zircon is extremely slow, as shown
in several experimental studies (e.g. Lee et al.,
1997a; Cherniak and Watson, 2000). The zircon
U-Pb system is commonly believed to have a very
high isotope closure temperature and theoretically
cannot be reset during metamorphism and altera-
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tion at crustal levels, when only thermal diffusion
is considered as a major factor. However, many
examples show that Pb-loss is demonstrated in
zircons not only from high-grade metamorphic
rocks, but also from low-grade metamorphic or
weathered rocks (e.g. Gebauer and Griinenfelder,
1976; Stern et al., 1966). It has been shown that
Pb-loss can be largely accelerated by recrystallisa-
tion (e.g. Pidgeon, 1992; Pidgeon et al., 1998),
metamictisation (e.g. Nasdala et al., 1995, 1996),
crystal lattice damage (e.g. Davis and Krogh,
2000; Chen et al., in press), and especially fluid
participation (e.g. Villa, 1997; Sinha et al., 1992).
Thus, it is possible that old detrital zircons of the
quartzites lost all radiogenic Pb, depending on
metamorphic conditions e.g. temperature and fluid
activity during the metamorphic overprint. There-
fore, we favour that the zircon age pattern of the
quartzites reflects a syn-magmatic-metamorphic
event rather than a unique sedimentary source.
This metamorphic event probably took place in a
rifting tectonic environment along the periphery of
the Yangtze Block. Deep crustal HT-LP regional
metamorphism can be associated with extensional
tectonics due to unusual heat flow (e.g. Wickham
and Oxburgh, 1985), especially in crustal-penetra-
tive detachment zones (Sandiford and Powell,
1986).

6. Conclusions

Zircon U-Pb ages and geochemical as well as
Nd isotopic data, which are obtained on the
metagranites and quartzites from the northern
part of the Susong HP metamorphic zone, permit
some preliminary conclusions on the evolution of
this zone prior to the collision between the North
and South China blocks.

Protoliths of the metagranites originated from
melting of a Yangtze (South China) crustal section
at around 780 Ma. Identical U—Pb intercept ages
obtained from both metagranites and quartzites
not only suggest a common metamorphic over-
print related to the collision during Early Meso-
zoic, but also indicate a thermal activity at around
780 Ma. This Late Proterozoic event probably
represents simultaneous metamorphism and mag-

matism within a rift setting along the periphery of
the Yangtze Block. The fact that old detrital
zircons are completely absent in the quartzites
probably indicates resetting of the zircon U-Pb
system during this event.
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