
Systembezogene Themen

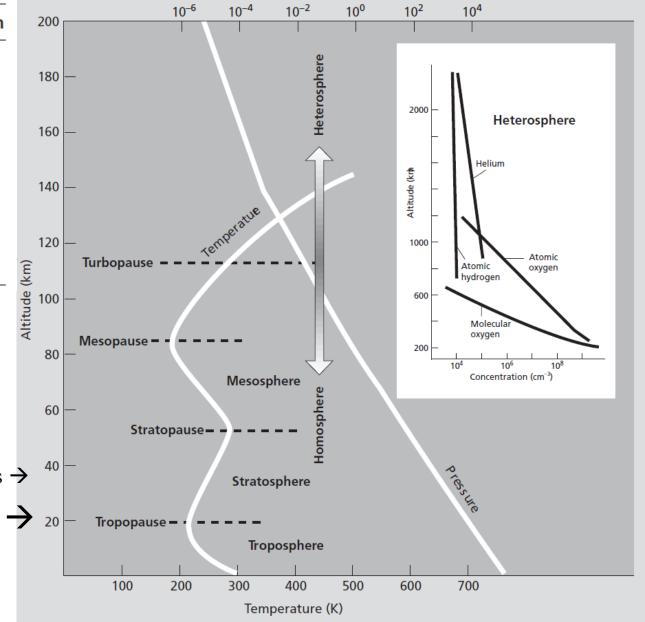
- 1. Atmosphäre
- 2. Kontinentale Kruste
- 3. Böden und Verwitterungsprozesse
- 4. Binnengewässer
- 5. Ozeane (Marine Geochemie)

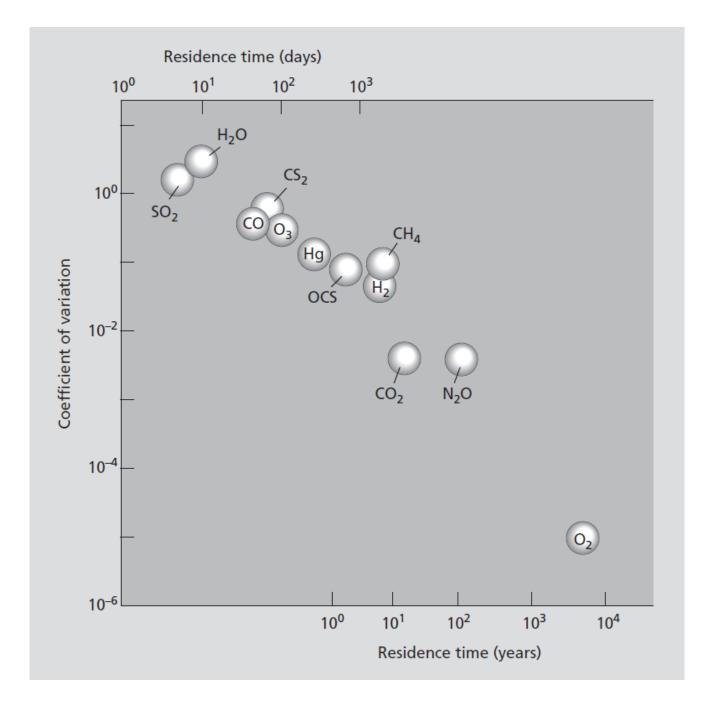
Die Atmosphere

Relative Größen der wichtigsten Reservoire der Erde

Einheiten: 10²⁴g

Vertikale Unterteilung der Atmosphäre


Gas	Concentration
Nitrogen	78.084%
Oxygen	20.946%
Argon	0.934%
Water	0.5-4%
Carbon dioxide	360 ppm
Neon	18.18 ppm
Helium	5.24 ppm
Methane	1.7 ppm
Krypton	1.14 ppm
Hydrogen	0.5 ppm
Xenon	0.087 ppm


Barometrische Höhenformel:

$$p(H) = p_0 \, \exp\left(\frac{-H}{7990 \,\mathrm{m}}\right)$$

Red Blue Stratos →

Ozonschicht >

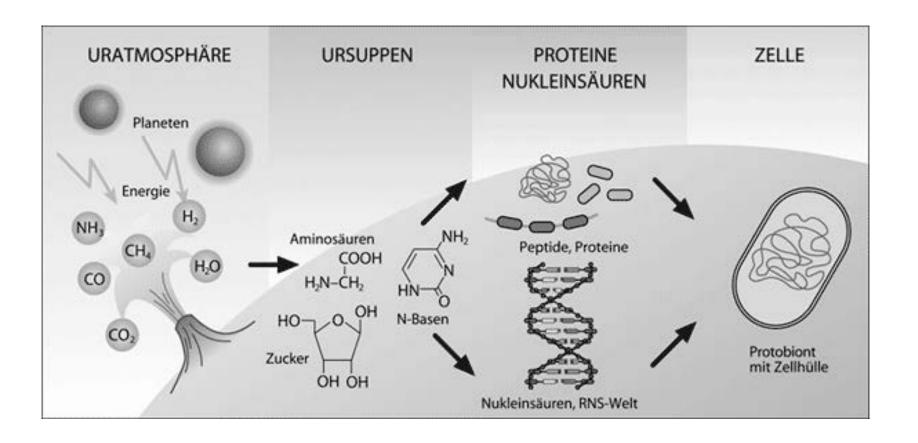
Atmosphären heute

Die Atmosphären der Planeten heute:				
	Venus	Erde	Mars	
Luftdruck Oberfläsbe [ber]	100	1	0.06	
Luftdruck Oberfläche [bar]				
Oberflächentemperatur [°C]	480	15	-60	
Kohlendioxid	93-98 %	0.03 %	95.3 %	
Stickstoff	2-5 %	78.1 %	2.7 %	
Sauerstoff	~30 ppm	20.9 %	0.13 %	
Kohlenmonoxid	~20 ppm	0.05-0.2 ppm	0.07 %	
Wasserdampf	0.1 %	1.00 %	0.03 %	
Argon	~60 ppm	0.93 %	1.60 %	

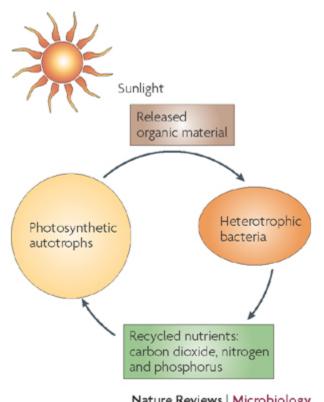
Uratmosphäre

```
Wasserstoff (H<sub>2</sub>)
Helium (He)
wenig Methan (CH<sub>4</sub>), Ammoniak (NH<sub>3</sub>) und Edelgase
```

Atmosphäre vor 4 Ga


```
Wasserdampf (H<sub>2</sub>O) 80%
Kohlenstoffdioxid (CO<sub>2</sub>) 10 %
Schwefelwasserstoff (H<sub>2</sub>S) 5-7%
Stickstoff (N<sub>2</sub>)
Wasserstoff (H<sub>2</sub>),
Kohlenmonoxid (CO), Helium, Methan, Ammoniak
```

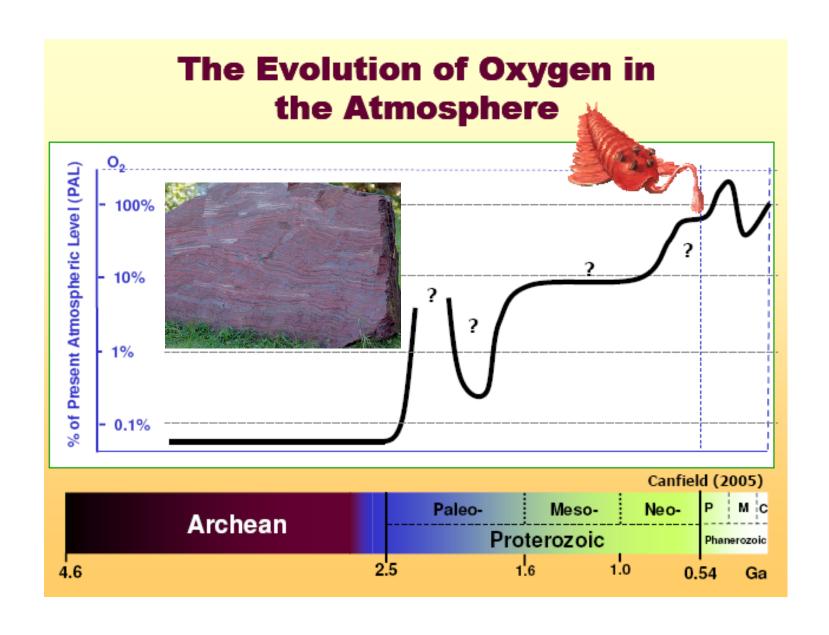
Entstehung des Lebens


Geochemie - Biochemie

"lebend": ein sich (auf einer Mineraloberfläche) vervielfältigendes Reaktionssystem

"Zutaten": NH₃, CH₄, KCN, CO, Fe²⁺, Ni²⁺

Entstehung des Lebens



Does the Earth act like a single living entity (Gaya theory, James Lovelock) or as a randomly driven geochemical system?

Nature Reviews | Microbiology

Autotrophe (selbsternährend) Reaktionen $6H_2S + 6CO_2 \longrightarrow 6S + C_6H_{12}O_6 + 6H_2O_1$ $6H_2O + 6CO_2 \longrightarrow C_6H_{12}O_6 +$

Freier Sauerstoff in der Atmosphäre

Eintrag und Veränderung durch anthropogene Aktivitäten

- Eintrag neuer
 "Umweltchemikalien"
- Veränderung natürlicher Kreisläufe

Antropogene Schadstoffe in der Atmosphäre

			Environmental
Name	Formula	Use	impact
DDT (2,2-bis (<i>p</i> -chlorophenyl)- 1,1,1-trichloroethane	CI H-C-CCI ₃	Pesticide	Unselective poison, concentrates up food chain
PCBs (polychlorinated biphenyls)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dielectric in transformers; hydraulic fluids and many other uses	Resistant to breakdown carcinogens
	(x are possible chlorine positions)		
TBT (tributyl tin)	(CH₃(CH₂)₃)₃Sn	Antifouling agent in marine paints	Affects sexual reproduction of shellfish
CFCs (chlorofluorocarbons)	e.g. F-11, CCl₃F	Aerosol propellant, foam blower	Destruction of stratospheric ozone

System Atmosphäre

Austausch durch:

- 1. geochemische
- 2. biologische
- 3. anthropogene

Prozesse

Table 3.2 Sources for particulate material in the atmosphere. From Brimblecombe (1986).

Source	Global flux (Tg yr ⁻¹)
Forest fires	35
Dust	750
Sea salt	1500
Volcanic dust	50
Meteoritic dust	1

$$H_2SO_{4(in\; aerosol)} + NaCl_{(in\; aerosol)} \rightarrow HCl_{(g)} + NaHSO_{4(in\; aerosol)}$$

Biologen gebildete Spurengase

Biogene Stickstoffquellen:

Ammoniak und CO₂:

$$NH_2CONH_{2(aq)} + H_2O_{(1)} \rightarrow 2NH_{3(g)} + CO_{2(g)}$$

Lachgasfreisetzung durch mikrobielle Aktivität in Böden:

$$2NH_{3(g)} + 2O_{2(g)} \rightarrow N_2O_{(g)} + 3H_2O_{(g)}$$

Organosulfide:

Dimetylsulfid, Quelle: marines Phytoplankton:

$$(CH_3)_2S^+CH_2CH_2COO^+_{(aq)} \rightarrow (CH_3)_2S_{(g)} + CH_2CHCOOH_{(aq)}$$

Carbonylsulfid:

$$CS_{2(g)} + H_2O_{(g)} \rightarrow OCS_{(g)} + H_2S_{(g)}$$

Spurengase in der Atmosphäre

Table 3.3 Naturally occurring trace gases of the atmosphere. From Brimblecombe (1986).

	Residence time	Concentration (ppb)
Carbon dioxide	4 years	360 000
Carbon monoxide	0.1 year	100
Methane	3.6 years	1600
Formic acid	10 days	1
Nitrous oxide	20–30 years	300
Nitric oxide	4 days	0.1
Nitrogen dioxide	4 days	0.3
Ammonia	2 days	1
Sulphur dioxide	3–7 days	0.01-0.1
Hydrogen sulphide	1 day	0.05
Carbon disulphide	40 days	0.02
Carbonyl sulphide	1 year	0.5
Dimethyl sulphide	1 day	0.001
Methyl chloride	30 days	0.7
Methyl iodide	5 days	0.002
Hydrogen chloride	4 days	0.001

Reaktivität von Spurensubstanzen

Das Hydroxyl-Radikal (OH-Radikal) spielt eine wichtige Rolle für den Abbau von Treibhausgasen wie Methan, von Ozon und Luftverunreinigungen

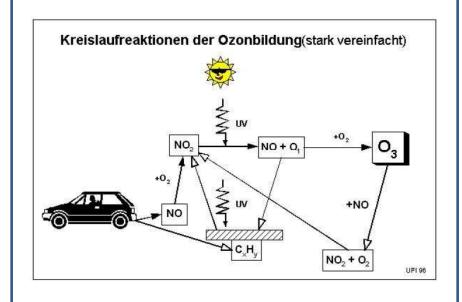
-> chemisches Waschmittel der Atmosphäre

$$O_{3(g)} + hv \rightarrow O_{2(g)} + O_{(g)}$$

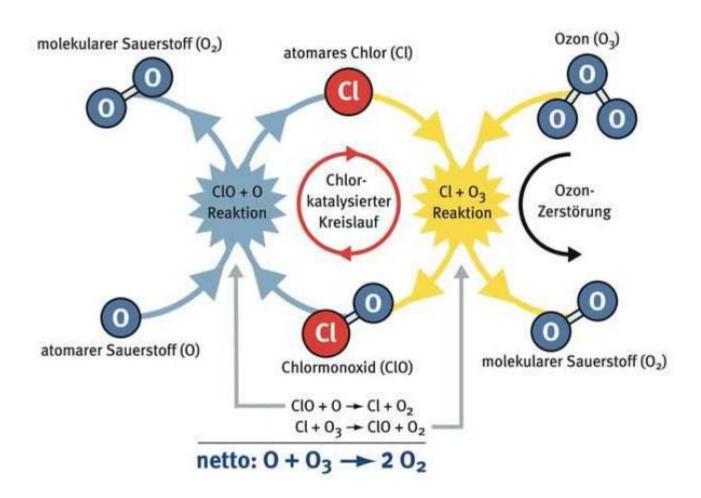
 $O_{(g)} + H_2O_{(g)} \rightarrow 2OH_{(g)}$

Reaktivität von Spurensubstanzen

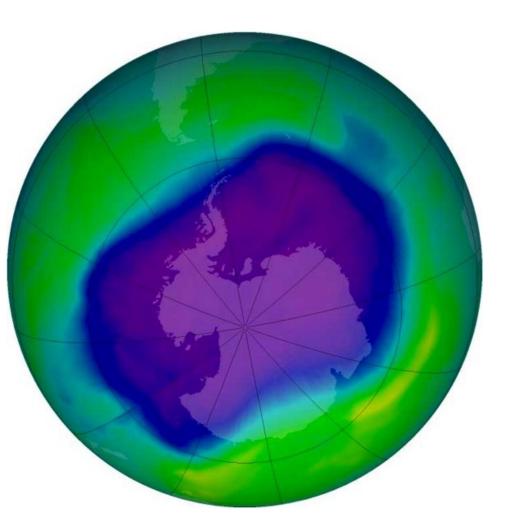
Ozon – nützlich und gefährlich


Flourchlorkohlenwasserstoffe (FCKW)

reagieren nicht mit OH. Reagieren mit Ozon-Molekül in der Stratosphäre:


$$CI + O_3 \rightarrow CIO + O_2$$

Chloroxid zerfällt wieder in ein Chlor-Atom und Sauerstoff und kann erneut ein Ozon-Molekül angreifen. Auf diese Weise kann ein einziges Chlor-Atom bis zu 100 000 Ozon-Moleküle zerstören! Ozonbildung in Bodennähe durch Reaktionen von Stickstoffoxiden (NO, NO₂) aus Abgasen unter dem Einfluß von UV-Licht:


$$NO_2 \rightarrow NO + O$$

 $O + O_2 \rightarrow O_3$

Chemischer Ozonabbau

Chemischer Ozonabbau

Ozonloch über der Antarktis im September 2006

Table 3.3 Naturally occurring trace gases of the atmosphere. From Brimblecombe (1986).

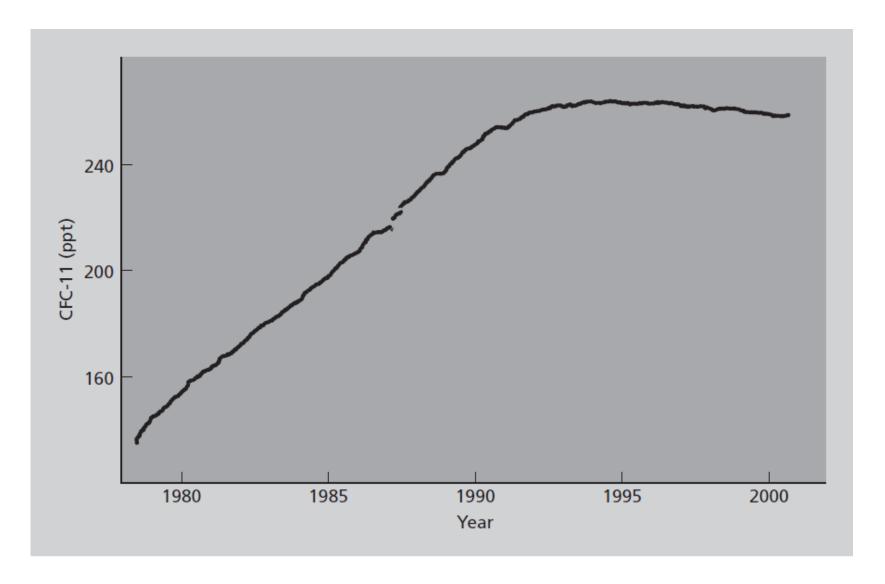
	Residence time	Concentration (ppb)
Carbon dioxide	4 years	360 000
Carbon monoxide	0.1 year	100
Methane	3.6 years	1600
Formic acid	10 days	1
Nitrous oxide	20–30 years	300
Nitric oxide	4 days	0.1
Nitrogen dioxide	4 days	0.3
Ammonia	2 days	1
Sulphur dioxide	3–7 days	0.01-0.1
Hydrogen sulphide	1 day	0.05
Carbon disulphide	40 days	0.02
Carbonyl sulphide	1 year	0.5
Dimethyl sulphide	1 day	0.001
Methyl chloride	30 days	0.7 CH ₃ Cl
Methyl lodide	5 days	0.002
Hydrogen chloride	4 days	0.001

Beispiel Freon 11:

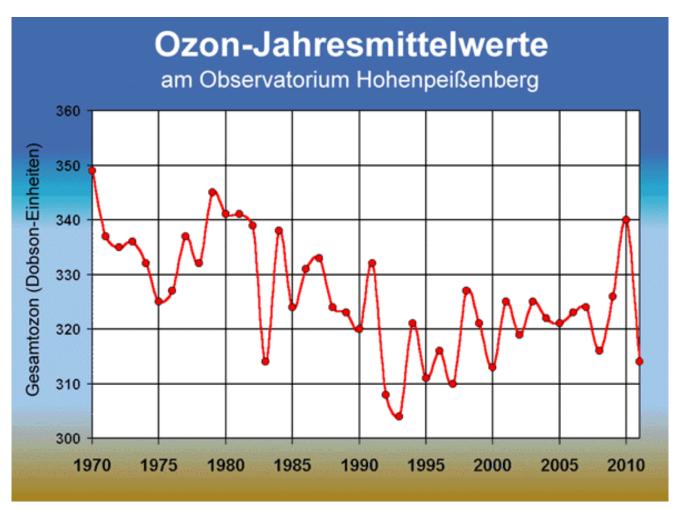
$$CFCl_{3(g)} + hv \rightarrow CFCl_{2(g)} + Cl_{(g)}$$

$$CF_2Cl_{2(g)} + hv \rightarrow CF_2Cl_{(g)} + Cl_{(g)}$$

Bildung freier Cl-Atome:


$$O_{3(g)} + Cl_{(g)} \rightarrow O_{2(g)} + ClO_{(g)}$$

$$ClO_{(g)} + O_{(g)} \rightarrow O_{2(g)} + Cl_{(g)}$$


Das Ozonloch über der Antarktis

Abschied vom Ozonloch

Fig. 3.7 Concentrations of CFC-11 measured at ground level, Cape Grim, Tasmania. Note that concentrations of CFC-11 have been falling in the 1990s following the rapid increase during the 1980s. Copyright CSIRO Australia, May 2002.

Der Knick im Jahre 1991 durch Ausbruch des Vulkans Pinatubo (Philippinen). Abnahme im Jahre 1982 durch Ausbruch des Vulkans El Chichón (Mexiko).

London smog (sm[oke and f]og)

Jack the Ripper in the London Fog

London smog (sm[oke and f]og)

$$^{\circ}4CH'+5O_{2(g)} \rightarrow 4CO_{2(g)} + 2H_2O_{(g)}$$

fuel + oxygen \rightarrow carbon dioxide + water

$$^{\circ}4CH^{'}+3O_{2(g)} \rightarrow 4CO_{(s)} + 2H_{2}O_{(g)}$$

coal + oxygen \rightarrow carbon monoxide + water

Fuel	S (% by weight)
Coal	7.0-0.2
Fuel oils	4.0-0.5
Coke	2.5-1.5
Diesel fuel	0.9-0.3
Petrol	0.1
Kerosene	0.1
Wood	Very small
Natural gas	Very small

London smog (sm[oke and f]og)

$$4\text{FeS}_{2(s)} + 11O_{2(g)} \rightarrow 8\text{SO}_{2(g)} + 2\text{Fe}_2O_{3(s)}$$

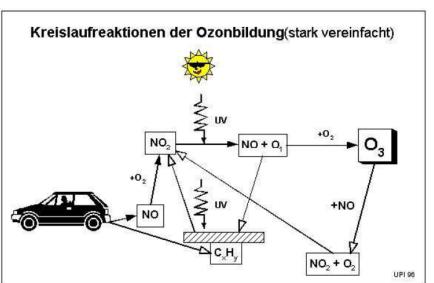
$$\mathrm{SO}_{2(g)} + \mathrm{H}_2\mathrm{O}_{(1)} \leftrightarrows \mathrm{H}^+_{(aq)} + \mathrm{HSO}^-_{3(aq)}$$

$$2HSO_{3(aq)}^{-} + O_{2(aq)} \rightarrow 2H_{(aq)}^{+} + 2SO_{4(aq)}^{2-}$$

Auswirkungen der Luftverschmutzung

Portalfigur (Schloß Herten)

1908


1969

$$H_2SO_{4(aq)} + CaCO_{3(s)} + H_2O_{(l)} \rightarrow CO_{2(g)} + CaSO_{4(s)} \cdot 2H_2O_{(l)}$$

Anwesenheit von Stickoxiden kann H_2SO_4 -Bildung beschleunigen:

$$SO_{2(g)} + NO_{2(g)} + H_2O_{(l)} \rightarrow NO_{(g)} + H_2SO_{4(aq)}$$

Los Angeles smog – secondary pollution

$$O_{(g)} + N_{2(g)} \to NO_{(g)} + N_{(g)}$$

$$N_{(g)} + O_{2(g)} \rightarrow NO_{(g)} + O_{(g)}$$

an der Luft wird NO zu braunem NO₂ oxidiert

NO₂ dissoziiert bei Bestahlung mit Sonnenlicht:

$$NO_{2(g)} + hv \rightarrow O_{(g)} + NO_{(g)}$$

Ozonbildung:

$$O_{(g)} + O_{2(g)} \rightarrow O_{3(g)}$$

Ozon - sekundärer Schadstoff

$$CH_{4(g)} + 2O_{2(g)} + 2NO_{(g)} \xrightarrow{bv} H_2O_{(g)} + HCHO_{(g)} + 2NO_{2(g)}$$

Table 3.5 Comparison of Los Angeles and London smog. From Raiswell et al. (1980).

Characteristic	Los Angeles	London
Air temperature	24 to 32°C	–1 to 4°C
Relative humidity	<70%	85% (+ fog)
Type of temperature inversion	Subsidence, at 1000 m	Radiation (near ground) at a few hundred metres
Wind speed	$<3 \text{m s}^{-1}$	Calm
Visibility	<0.8–1.6 km	<30 m
Months of most frequent occurrence	Aug. to Sept.	Dec. to Jan.
Major fuels	Petroleum	Coal and petroleum products
Principal constituents	O₃, NO, NO₂, CO, organic matter	Particulate matter, CO, S compounds
Type of chemical reaction	Oxidative	Reductive
Time of maximum occurrence	Midday	Early morning
Principal health effects	Temporary eye irritation (PAN)	Bronchial irritation, coughing (SO ₂ /smoke)
Materials damaged	Rubber cracked (O₃)	Iron, concrete

Wichtigste Bestandteile des photochemischen Smogs

Ozon (O_3)

Peroxidradikale (R-CH2O2)

Peroxyacetylnitrat (PAN) C₂H₃NO₅

Verteilung der Edelgase in der Atmosphäre

Tabelle 5.3. Berechnung des Ar/He-Verhältnisses auf Grund des radioaktiven Zerfalls der primordialen Nuklide ⁴⁰K, ²³²Th, ²³⁵U und ²³⁸U

M	Н	t _{1/2}	Zerfallsart	D
²³⁸ U	99,28%	4,49 · 10 ⁹ a	8α	²⁰⁶ Pb + 8He
235U	0,715%	$7,13 \cdot 10^8$ a	7α	$^{207}\text{Pb} + ^{7}\text{He}$
²³² Th	100%	$1,39 \cdot 10^{10}$ a	6α	$^{206}\text{Pb} + 6\text{He}$
⁴⁰ K	0,011%	1,26 · 10 ⁹ a	β-Zerfall K-Eingang	89% ⁴⁰ Ca 11% ⁴⁰ Ar

$$He_h = \sum_i n(\alpha, i) \Delta M_i = \sum_i n(\alpha, i) M_{h,i} \left(exp \left\{ \frac{\ln 2}{t_{1/2, i}} \theta \right\} - 1 \right)$$

He_h = jetzige Anzahl der He-Atome

M_{h,i} = jetzige Anzahl der Mutteratome der Sorte i

 $n(\alpha,i) = Multiplikator, der aus der Zerfallsart folgt$

 $\theta = \text{Erdalter} \ (=4,5 \cdot 10^9 \text{a})$

H_i = Isotopenhäufigkeit von i

Nuklid	Elementkonzentration in der Lithosphäre	Edelgas-Produktion in 4,5 · 10 ⁹ a mol g ⁻¹ -Gestein
238 _U	2,5 ppm	$8,3 \cdot 10^{-8}$
²³⁵ U) 2,5 ppm	$4,1\cdot 10^{-8}$
²³² Th	13 ppm	$4.1 \cdot 10^{-8}$ $8.4 \cdot 10^{-8}$ $He_{h} = 20.8 \cdot 10^{-8}$ $Ar_{h} = 3.3 \cdot 10^{-7}$
		$He_h = 20.8 \cdot 10^{-8}$
⁴⁰ K	2,5%	$Ar_{h} = 3.3 \cdot 10^{-7}$
daraus folgt:	$(Ar/He)_{rad} \simeq 1,6$	

 $(Ar/He)_{Atmosphäre}$ = 1790

Bildung von Stromatolithen (seit ~3 Ga)

Zunahme von O₂ und Abnahme von CO₂ in der Atmosphäre

 $6 CO_2 + 6 H_2O + Lichtenergie \rightarrow C_6H_{12}O_6 + 6 O_2$

Aufg.: CO₂ Emission durch Autos

Der durchschnittliche Benzinverbrauch eines Autos sei 5L pro 100km.

A) Wieviel g CO₂ emittiert dieses Auto pro Kilometer?

Mol-Masse Benzin $C_7H_{16} = (7 \times 12 \text{ g/mol} + 16 \times 1 \text{ g/mol}) = 100 \text{ g/mol}$

1 kg Benzin enthält: - 10 mol C₇H₁₆ Moleküle

- 70 mol Kohlenstoff C

Daraus folgt:

Das Verbrennen von 1 kg Benzin (ungefähr 1 Liter) setzt 70 mol CO₂ frei!

Auf 100 km setzt unser Auto 350 mol CO2...

Mol-Masse $CO_2 = (1 \times 12 \text{ g/mol} + 2 \times 16 \text{ g/mol}) = 44 \text{ g/mol}$

...oder 15400 g CO₂ frei!

Pro gefahrenem Kilometer emittiert unser Auto 154 Gramm CO₂ in die Atmosphäre!

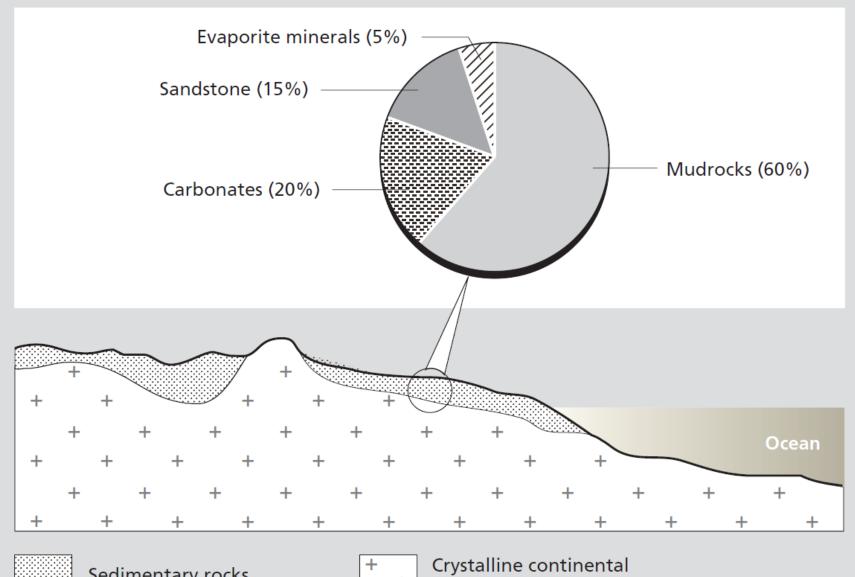
Aufg.: CO₂ Emission durch Autos

B) Wieviel g CaSiO₃ muss verwittert werden, damit dieses CO₂ (154 g) der Atmosphäre wieder entzogen wird?

entzogen
$$CaSiO_3 + 2CO_2 + 3H_2O \rightarrow Ca^{2+} + 2HCO_3^{-} + SiO_2 + H_2O$$

$$Ca^{2+} + 2HCO_3^{-} \rightarrow CaCO_3 + H_2O + CO_2$$
freigesetzt

Pro 1 mol verwittertes CaSiO₃ wird der Atmosphäre 1 mol CO₂ entzogen.


Unser Auto emittiert 350 mol CO₂ pro 100 km oder **3.5 mol CO₂ pro km**. Also müssen **3.5 mol CaSiO₃ verwittert** werden um der Atmosphäre diese emittierte Menge CO₂ wieder zu entziehen.

 $Mol-Masse CaSiO_3 = 116 g/mol (1 x 40 g/mol + 1 x 28 g/mol + 3 x 16 g/mol)$

Pro gefahrenem Kilometer müssen 3.5 mol x 116 g/mol = $\underline{406 \text{ Gramm CaSiO}_3}$ verwittert werden um das emittierte CO_2 zu kompensieren.

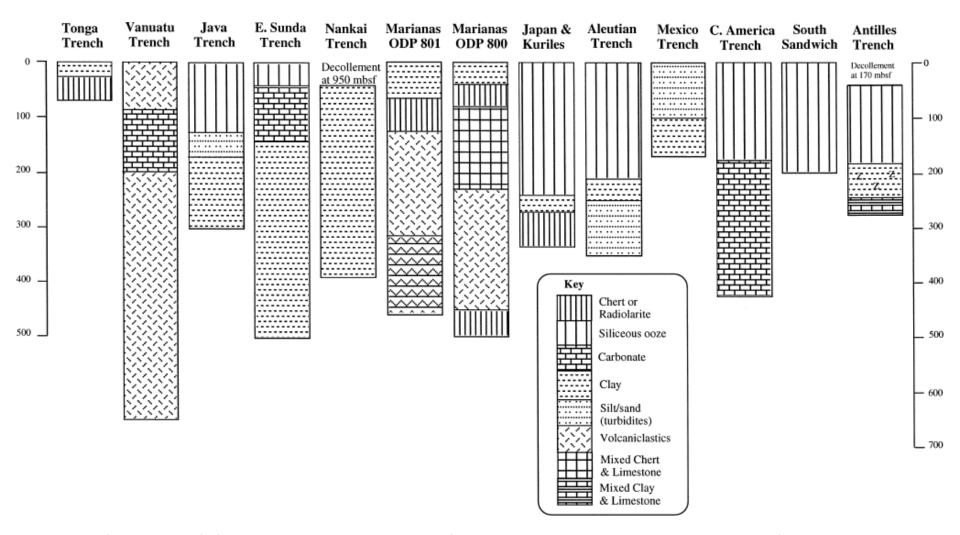
Es gilt zu beachten, dass bei dieser Rechnung das *durch Photosynthese verbrauchte CO*₂ vollständig vernachlässigt wird.

Kontinentale Kruste

Sedimentary rocks

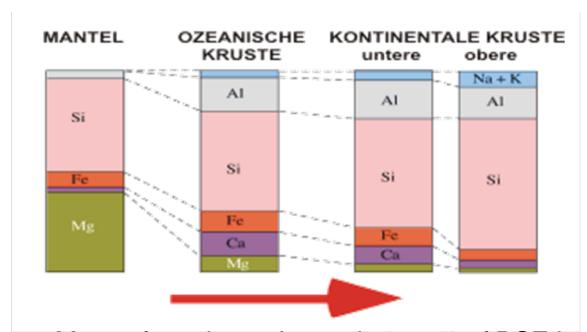
crust

Table 4.1 Average chemical composition of upper continental crust, sedimentary mudrock and suspended load of rivers. Data from Wedepohl (1995) and Taylor and McLennan (1985).

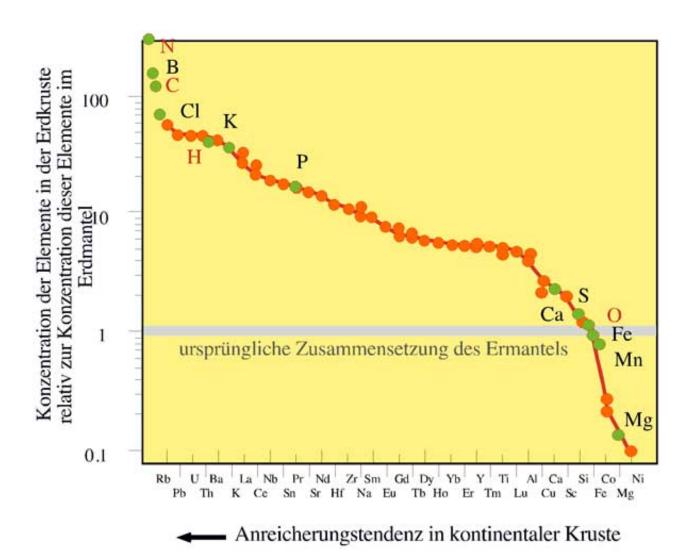

	Average upper continental crust (wt%)*	Average sedimentary mudrock† (Tonstein) (wt%)	Average suspended load (rivers)‡ (wt%)
SiO ₂	65.0	62.8	61.0
TiO ₂	0.6	1.0	1.1
Al_2O_3	14.7	18.9	21.7
FeO	4.9	6.5	7.6
MgO	2.4	2.2	2.1
CaO	4.1	1.3	2.3
Na₂O	3.5	1.2	0.9
K ₂ O	3.1	3.7	2.7
Σ	98.3	99.9	99.4

^{*}A silicate analysis is usually given in units of weight% of an oxide (grams of oxide per $100\,g$ of sample). As most rocks consist mainly of oxygen-bearing minerals, this convention removes the need to report oxygen separately. The valency of each element governs the amount of oxygen combined with it. A good analysis should sum (Σ) to $100\,\mathrm{wt}$ %.

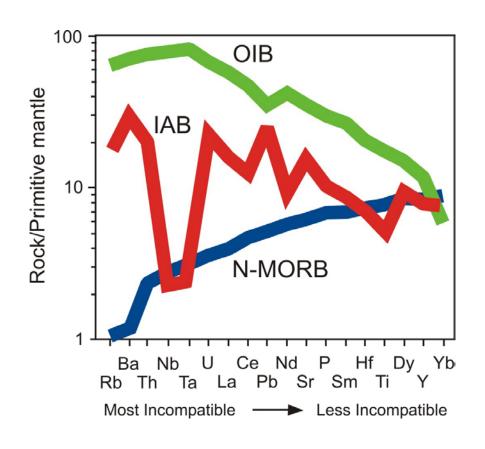
[†]This analysis represents terrigenous mudrock (i.e. does not include carbonate and evaporite components), a reasonable representation of material weathered from the upper continental crust.

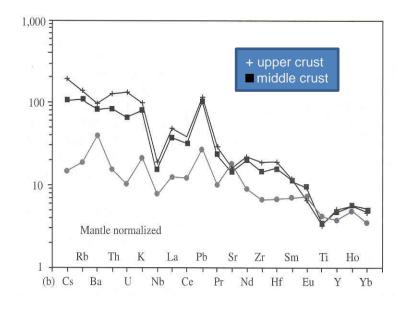

[‡]Average of Amazon, Congo, Ganges, Garronne and Mekong data.

Global sediment subduction (GLOSS)


GLOSS dominated by terrigenous material: 76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H₂O⁺, and therefore similar to upper continental crust

Geochemie der Kruste




Mass of continental crust is 0.57% of BSE but it contains 35% of ist potassium!

Elementverteilung zwischen Kruste & Mantel

Elementanomalien der Kruste

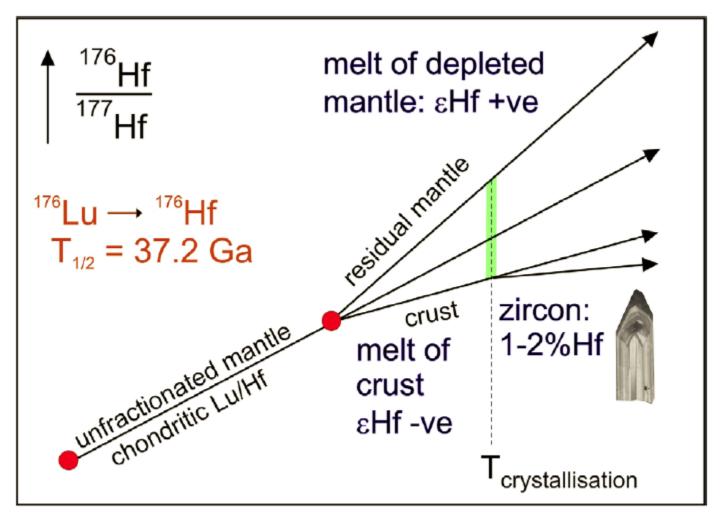
Merkmale kontinentaler Kruste

Continental crust growths magmatically, constitutes only 0.6% of the silicate Earth, has an average andesitic composition, is highly differentiated and buoyant

Enriched in incompatible components compared to primeval chondritic composition, i.e.:

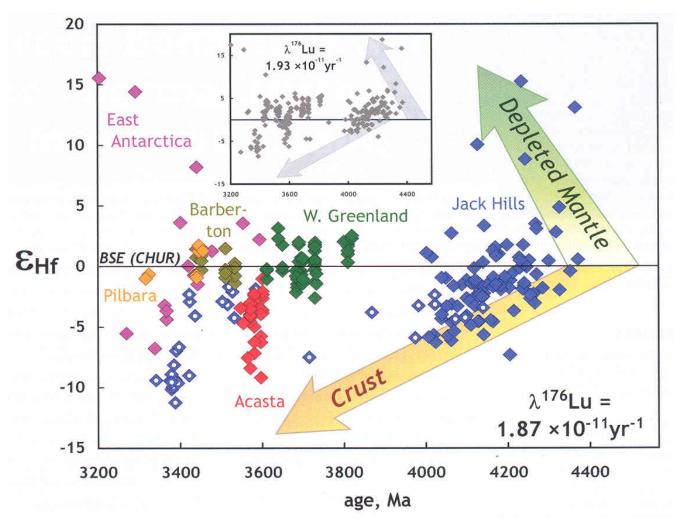
→ Important reservoir for many scarce elements (ore deposits)

Other features: negative anomalies for Nb and Ta and high Pb contents, low Nb/U...


Old average age: ~2 Ga

→ Archean magmatism contributed greatly to the formation of the continental crust

Earth has considerably cooled since its formation


→ rates and processes of magma generation (plume-related versus arc-related) and crust formation have changed

Hf-Isotopie

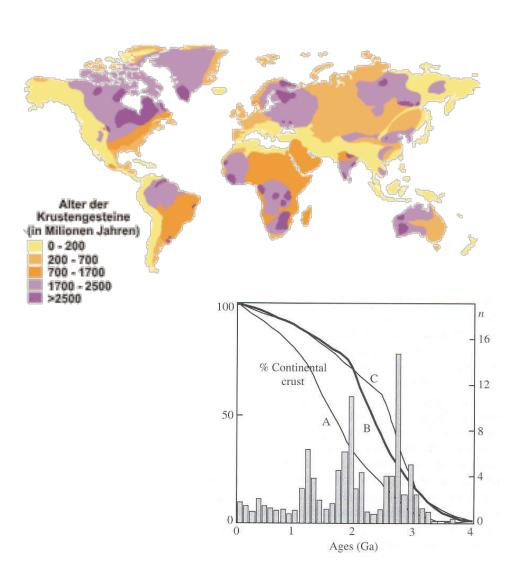
Mantel-Kruste Differentiation der Erde – Hf Zirkon

$$\varepsilon_{Hf} = \left[\frac{\left(\frac{^{176}Hf}{^{177}Hf} \right)_{Probe}}{\left(\frac{^{176}Hf}{^{177}Hf} \right)_{Chondrite}} - 1 \right] \times 10^{4}$$

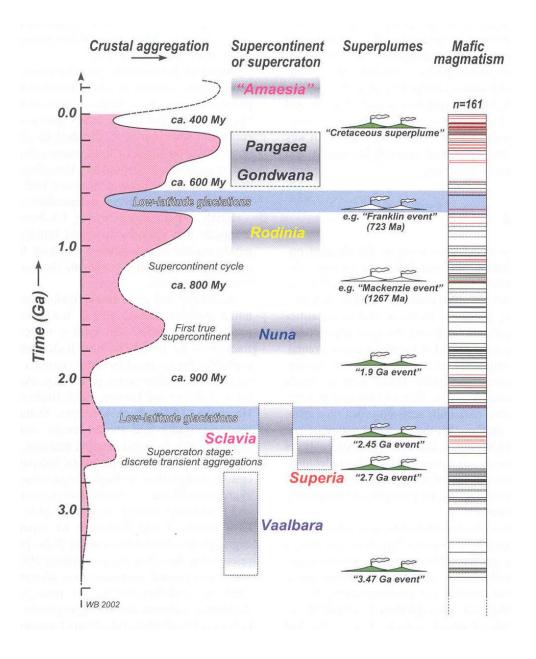
Scherer, Whitehouse, Münker: Elements 3, 2007

Krustenwachstum

The most dramatic shift in the generation of continental crust began ~2.7 by ago. This crust formation period was followed by additions of continental crust at:


~1.9 by ~1.2 by 0.5 – 0.3 by

Large crustal volumes formed during short time periods


Global episodicity explained by:

1. Supercontinent cycle hypothesis

- a) Break apart of supercontinent
- b) Higher subduction rates
- c) Formation of new continental crust

Superkontinente der Erdgeschichte

Bleeker: Lithos 71, 2003

Die 3 Schritte bis zur modernen Kruste

Basaltic crust generated by partial melting of mantle peridotite

1st. crust formation step – separation of basaltic rocks from the mantle

This crust was locally hydrated and transferred (in greater depth) into amphibolite/eclogite

Melting of basaltic crust during (1) subduction and/or (2) magmatic underplating (high heat flow) → generation of tonalites, trondhjemites and (differentiated) granodiorites

2nd. crust formation step – stratification into more evolved upper crust and mafic residual lower crust

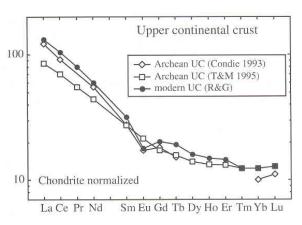
Melting of TTG's and of sedimentary rocks → granite production and enrichment of SiO₂, Na₂O und K₂O

3rd. crust formation step – evolved modern continental crust

Die heutige Kruste

Modern Earth's crust has a bulk andesitic composition: ~61% SiO₂ Mg number (Mg#, molar Mg/(Mg + Fe)) is ~ 55

modern crust is stratified But bulk crust is more differentiated than any magma in equilibrium with the upper mantle


Crustal growth by:

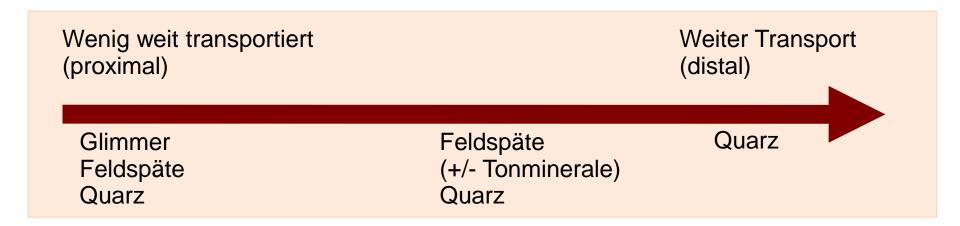
- -- tectonic accretion of island arcs or oceanic plateaus i.e., addition of basalt. The basalts are ultimately reprocessed into felsic continental crust by intracrustal differentiation (fractional crystallization, remelting, weathering and erosion, etc.)
 - → crust formation takes place in several stages

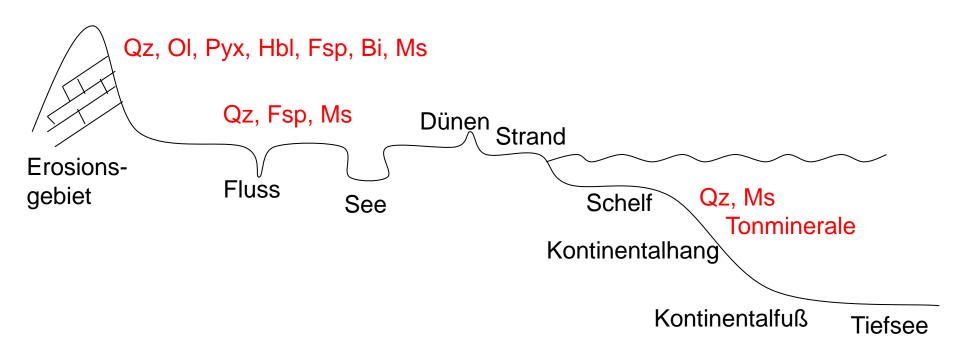
Oberkruste

- -- enriched in light REE
- -- Eu-anomaly
- -- flat heavy REE

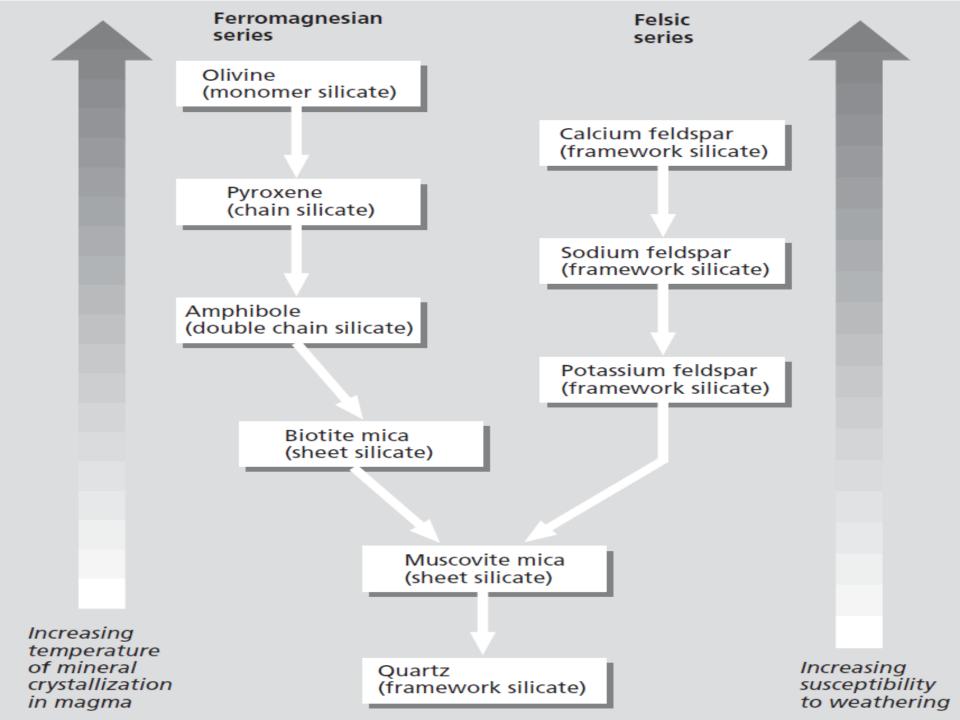
This is different from TTG's but similar to most post-Archean granitic rocks → fundamental role of such granites in shaping the compositional structure of the crust

Treatise on Geochemistry, Vol 3: The Crust


Eu (like Sr) accommodated in plagioclase, and thus is sensitive to intracrustal differentiation processes

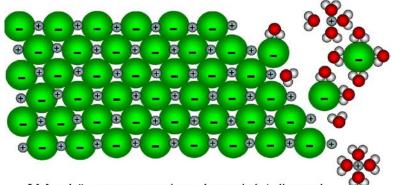

Can granitic plutons represent new crust? - yes, by

- -- fractional crystallization of basaltic liquid
- -- mixing between crustal and mantle-derived magmas
- -- partial melting of young, mantle-derived mafic protoliths in the crust


Die Pedosphäre

Verwitterung – physikal., chem., biol.

Orthoklas → Kaolinit (Verwitterungsneubildung)



Chem. Verwitterung: Lösungsverwitterung

Die Lösungsverwitterung bewirkt die Lösung (Korrosion) von Gesteinen, die relativ leichtlösliche Alkali- und Erdalkalisalze wie z.B. Chloride, Nitrate, Sulfate und/oder Karbonate enthalten

 $NaCl_{(s)} \stackrel{H_2O}{\leftrightharpoons} Na_{(aq)}^+ + Cl_{(aq)}^-$

Die Vorstufe der Lösungsverwitterung ist die **Hydratation**; die randlichen Ionen des Kristallgitters werden in Kontakt mit Wasser hydratisiert

Abb.: Lösevorgang eines Ionenkristalls und Hydratation der Ionen

Chem. Verwitterung: Karbonatverwitterung

Die Karbonatverwitterung ist ein besonderer Fall der Lösungsverwitterung

Zur Lösung der Karbonate muß kohlensäurehaltiges Wasser vorhanden sein

$$CaCO_3 + H_2O + CO_2 (H_2CO_3 \text{ oder H}^+ + HCO_3^-) \rightarrow Ca^{2+} + 2HCO_3^-$$

CO₂ entsteht im Boden durch Organismen. Im Boden ist die CO₂-Konzentration wegen der Atmung (Dissimilation) der Bodenorganismen wesentlich höher als in der Atmosphäre.

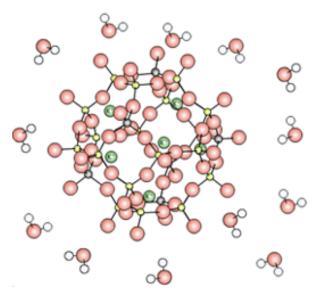
Die **Kohlensäure** wird durch die Atmung der Pflanzenwurzeln und Bodenorganismen ständig neu gebildet (daher auch Kohlensäureverwitterung oder saure Hydrolyse).

Zerfall organischer Substanz

$$CH_2O_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(l)}$$

$$CO_{2(g)} + H_2O_{(l)} \leftrightharpoons H_2CO_{3(aq)}$$

$$H_2CO_{3(aq)} \leftrightharpoons H^+_{(aq)} + HCO_{3(aq)}^-$$


CO₂ Partialdruck im Bodengas kann den in der Atmosphäre um 2 Größenordungen übersteigen → Porenlösungen saurer als Oberflächenwässer → Kaolinitminerale

Chem. Verwitterung: Hydrolyse

- Hydrolyse bezieht sich auf Reaktionen bei denen eine (oder beide) der O-H Bindungen des Wassers bricht.
- Die Hydrolyse gehört zu den wichtigsten Reaktion der chemischen Verwitterung. Triebkraft dieser Verwitterungsart ist die Reaktion eines Minerals mit den Wassermolekülen bzw. H+-Ionen der Lösung, die sich an die Grenzflächenionen von Kristallen anlagern und Kationen (z.B. K) aus dem Kristallgitter ersetzen:

$$KAISi_3O_8 + H^+ + 9/2H_2O \rightarrow 1/2AI_2Si_3O_5(OH)_4 + K^+ + 2H_4SiO_4$$

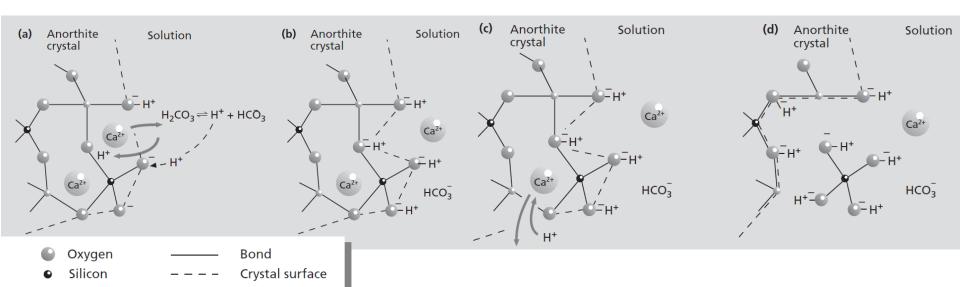
$$Kaolinit$$

Wichtiger Schritt bei der Hydrolyse ist die Dissoziation von Wasser zu H⁺ und OH⁻.

Der Betrag der Hydrolyse nimmt mit sinkendem pH und steigenter Temperatur zu, was zu einem vermehrten Abbau des Kalifeldspats führt.

Orthoklas, umgeben von Wassermolekülen

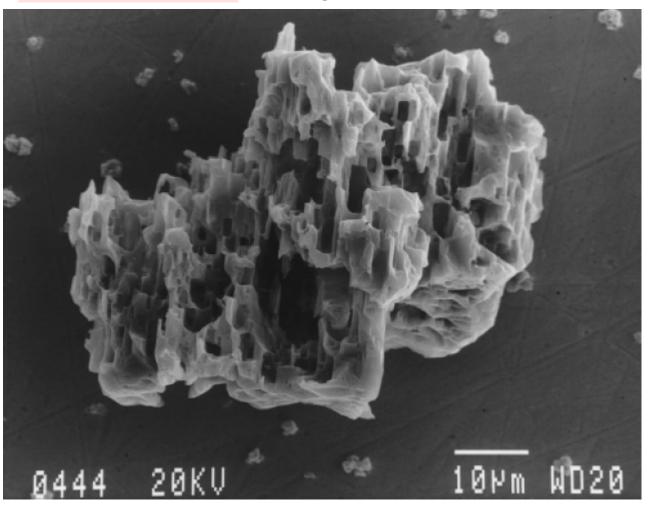
Chem. Verwitterung: Saure Hydrolyse


$$H_2O + CO_2 \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^- \rightarrow 2H^+ + CO_3^{2-}$$

CO₂ entsteht im Boden durch Organismen

Aluminium

$$Mg_2SiO_{4(s)} + 4H_2CO_{3(aq)} \rightarrow 2Mg_{(aq)}^{2+} + 4HCO_{3(aq)}^{-} + H_4SiO_{4(aq)}$$

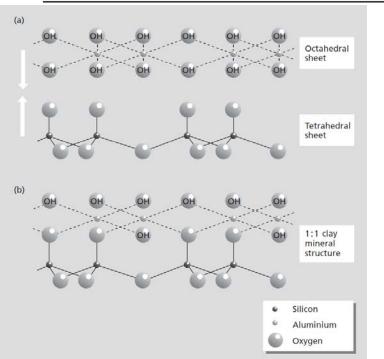

$$CaAl_2Si_2O_{8(s)} + 2H_2CO_{3(aq)} + H_2O_{(1)} \rightarrow$$

 $Ca_{(aq)}^{2+} + 2HCO_{3(aq)} + Al_2Si_2O_5(OH)_{4(s)}$

Chem. Verwitterung: Saure Hydrolyse, Albit

$$2\text{NaAlSi}_{3}\text{O}_{8(s)} + 9\text{H}_{2}\text{O}_{(l)} + 2\text{H}_{2}\text{CO}_{3(aq)} \rightarrow$$

$$Al_{2}\text{Si}_{2}\text{O}_{5}(\text{OH})_{4(s)} + 2\text{Na}_{(aq)}^{+} + 2\text{HCO}_{3(aq)}^{-} + 4\text{H}_{4}\text{SiO}_{4(aq)}$$


Chem. Verwitterung: Oxidationsverwitterung

$$2 \text{FeS}_{2(s)} + 7 \frac{1}{2} \text{O}_{2(g)} + 7 \text{H}_2 \text{O}_{(l)} \rightarrow 2 \text{Fe}(\text{OH})_{3(s)} + 4 \text{H}_2 \text{SO}_{4(aq)}$$

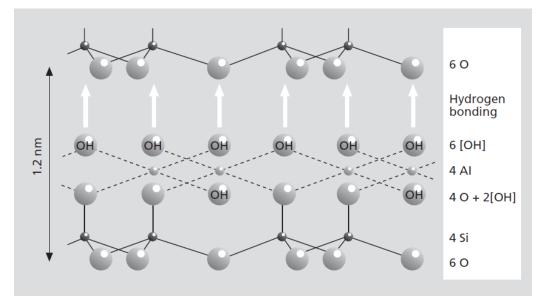

Fe₂SiO_{4(s)} +
$$\frac{1}{2}$$
O_{2(g)} + 5H₂O_(l) \rightarrow 2Fe(OH)_{3(s)} + H₄SiO_{4(aq)}
(fayalite)
(Fe(II)) (Fe(III))

Table 4.5 Simplified classification of clay minerals. After Martin *et al.* (1991) with kind permission from the Clay Minerals Society.

Layer type	Group	Common minerals	Octahedral character	Interlayer material
1:1	Serpentine-kaolin	Kaolinite	Dioctahedral	None
2:1	Smectite	Montmorillonite	Dioctahedral	Hydrated exchangeable cations
	True (flexible) mica	Biotite	Trioctahedral	Non-hydrated monovalent cations
		Muscovite, illite	Dioctahedral	
	Chlorite	Chamosite	Trioctahedral	Hydroxide sheet

Kaolinitstruktur

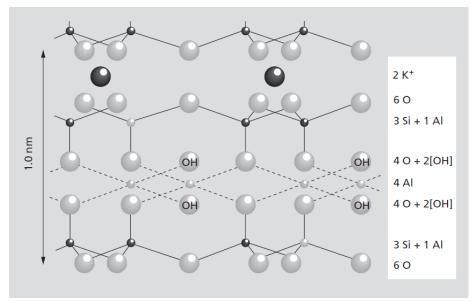


Table 4.5 Simplified classification of clay minerals. After Martin *et al.* (1991) with kind permission from the Clay Minerals Society.

Layer type	Group	Common minerals	Octahedral character	Interlayer material
1:1	Serpentine – kaolin	Kaolinite	Dioctahedral	None
2:1	Smectite True (flexible) mica	Montmorillonite Biotite	Dioctahedral Trioctahedral	Hydrated exchangeable cations Non-hydrated
	Chlorite	Muscovite, illite Chamosite	Dioctahedral Trioctahedral	monovalent cations Hydroxide sheet

Muskovitstruktur

Bodenbildung

$$S = f(G, E, B) dt$$

Faktoren:

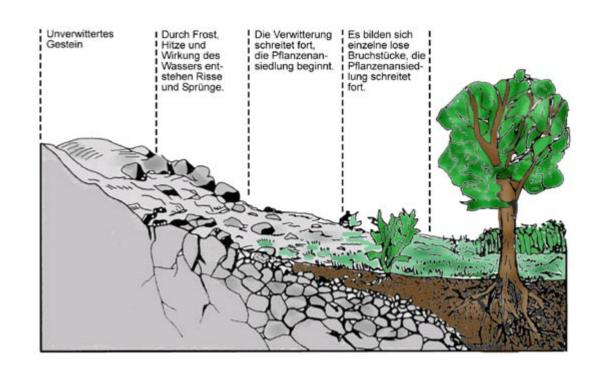
G = Geologie

E = Umwelt

B = Biologie

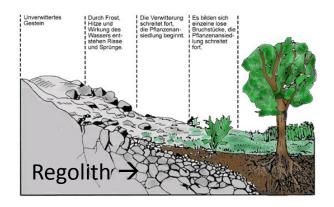
S = f(a, k, r, v, o) dt

Schlüsselfaktoren:


a = Ausgangsgestein

k = Klima

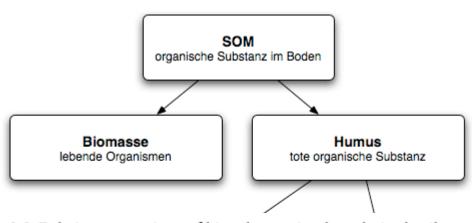
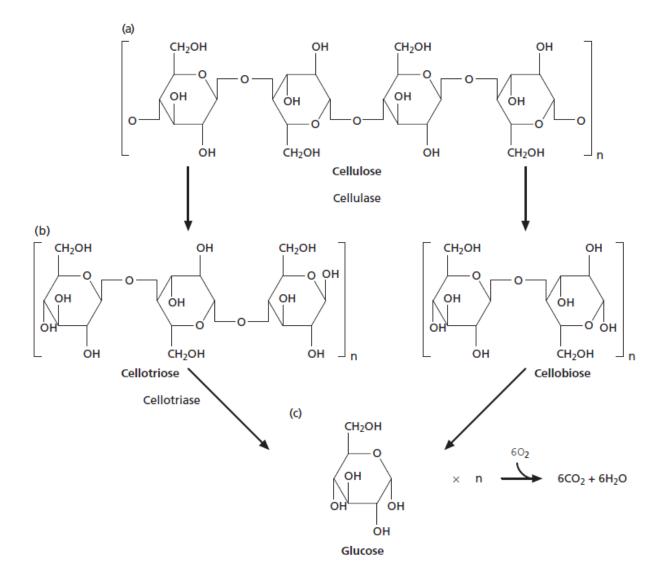
r = Relief

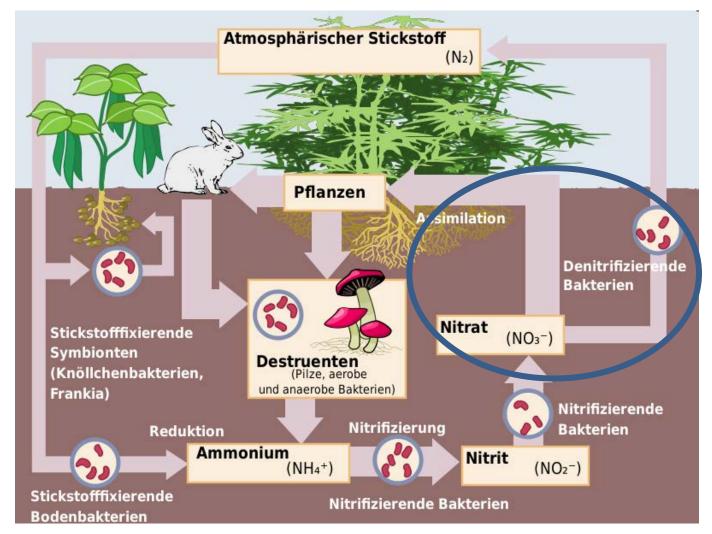

v = Vegetation

o = Organismen

Vegetation – organische Bodensubstanz

Böden enthalten etwa 5 % organisches Material, SOM = soil organic matter (partikulär bzw. adsorptiv) DOM = dissolved organic matter (gelöst) Humus (Zellulose, Lignin) = Makromoleküle aus C, H, O, P, N und S


Table 4.6 Relative proportions of biopolymers in plant-derived soil organic matter.

Plant residues	Percentage in soils
Cellulose	50
Hemicelluloses	20
Lignin	15
Protein	5
Carbohydrates and amino acids	5
Pectin	1
Waxes and pigments	1

Aerober Abbau von Zellulose im Boden

Abbau organischer Substanz im Boden

Pilze Bakterien Actinomyzeten

(1)
$$NH_4^+ + 1.5 O_2 \longrightarrow NO_2^- + H_2O + 2H^+$$
 (2) $NO_2^- + 0.5 O_2 \longrightarrow NO_3^-$

(3)
$$5CH_2O + 4NO_3^- \longrightarrow 2N_2 + 4HCO^{3-} + CO_2 + 3H_2O$$

Table 4.7 Order of bacterial reactions during microbial respiration of organic matter based on energy yield. Modified from Berner (1980), reprinted by permission of Princeton University Press.

Bacterial reaction	ΔG° (kJ mol ⁻¹ of CH ₂ O)
Aerobic respiration: important in all oxygenated Earth surface environments	
$CH_2O + O_2 \rightarrow CO_2 + H_2O$	-475
Denitrification: most important in terrestrial and marine environments impacted by anthropogenic inputs from fertilizers	
$5\text{CH}_2\text{O} + 4\text{NO}_3^- \rightarrow 2\text{N}_2 + 4\text{HCO}_3^- + \text{CO}_2 + 3\text{H}_2\text{O}$	-448
Manganese reduction: minor reaction important in some marine sediments	
$CH_2O + 3CO_2 + H_2O + 2MnO_2 \rightarrow 2Mn^{2+} + 4HCO_3$	-349
Iron reduction: can be significant in some soils and marine sediments with high iron contents from contamination or weathering flux (e.g. Amazon Delta)	
$CH_2O + 7CO_2 + 4Fe(OH)_3 \rightarrow 4Fe^{2+} + 8HCO_3^- + 3H_2O$	-114
Sulphate reduction: major process in anaerobic marine sediments, especially on continental shelves	
$2CH_2O + SO_4^{2-} \to H_2S + 2HCO_3^-$	-77
Methanogenesis: important process in freshwater wetlands, waterlogged soils and in deeply buried low-sulphate marine sediments	
$2CH_2O \rightarrow CH_4 + CO_2$	-58

Note: Free energy value for organic matter (CH2O) is that of sucrose.

Reisfelder: Schornsteine für Methan

Für etwa 10 bis 25 Prozent der weltweiten Methan-Emissionen sind Mikroorganismen in den Böden gefluteter Reisfelder verantwortlich. Kohlenstoff für das Methan stammt hauptsächlich aus Wurzeln und Pflanzenresten.

In überschwemmten Reisfeldern tummeln sich Bakterien im Schlamm.

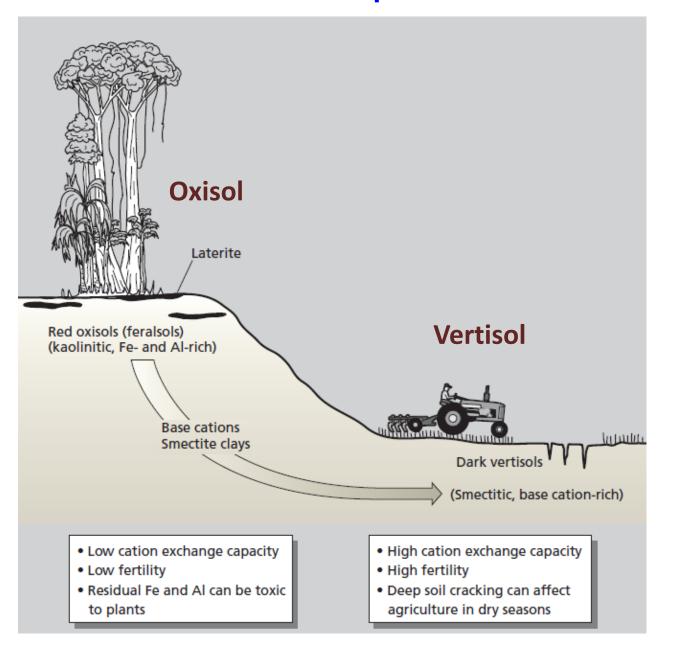
Je länger die Felder überflutet sind, desto geringer sind die Konzentrationen von Sauerstoff und desto mehr Methan wird produziert.

Vertisols swelling clay soil. Through shrinking and swelling deep cracking; soil material consistently mixes itself

Table 4.8 Mobility of different chemical species in relation to rock weathering. Modified from Polynov (1937).

	Species	Mobility*	Comments [†]
Group I	Cl⁻ SO ₄ ²-	100 57	Soluble anions easily leached by water
Group II	Ca ²⁺ Na ⁺ Mg ²⁺ K ⁺	3.00 2.40 1.30 1.25	Relatively soluble cations, easily leached by water
Group III	SiO ₂	0.20	Relatively insoluble element, typically present as quartz grains
Group IV	Fe_2O_3 Al_2O_3	0.04 0.02	Highly insoluble elements present as Fe and Al oxides

^{*} Most mobile = 100.


Oxisols (ferralsols and laterite soils) occur in tropical rain forest, 15-25 degrees north and south of the equator

Bodenwelten: Tropische Böden

Chemical Index of Alteration: CIA

$$CIA = Al_2O_3 / (Al_2O_3 + CaO^* + Na_2O + K_2O) \times 100$$

Table 4.9 Chemical index of alteration (CIA) values for various crustal materials. Data from Nesbitt and Young (1982), Maynard *et al.* (1991) and Taylor and McLennan (1985).

Material	CIA
Clay minerals Kaolinite Chlorite Illite Smectite	100 100 75–85 75–85
Other silicate minerals Plagioclase feldspar Potassium feldspar Muscovite mica	50 50 75
Sediments River Garonne (southern France) suspended load Barents Sea (silt) Mississippi delta average sediment Amazon delta muds Amazon weathered residual soil clay	75* 65* 64* 70–75 85–100
Rocks Average continental crust (granodiorite) Average shales Basalt Granite	50 70–75 30–40 45–50

^{*}Value calculated using total CaO rather than CaO* (see text).

CIA values among the rivers from different continents

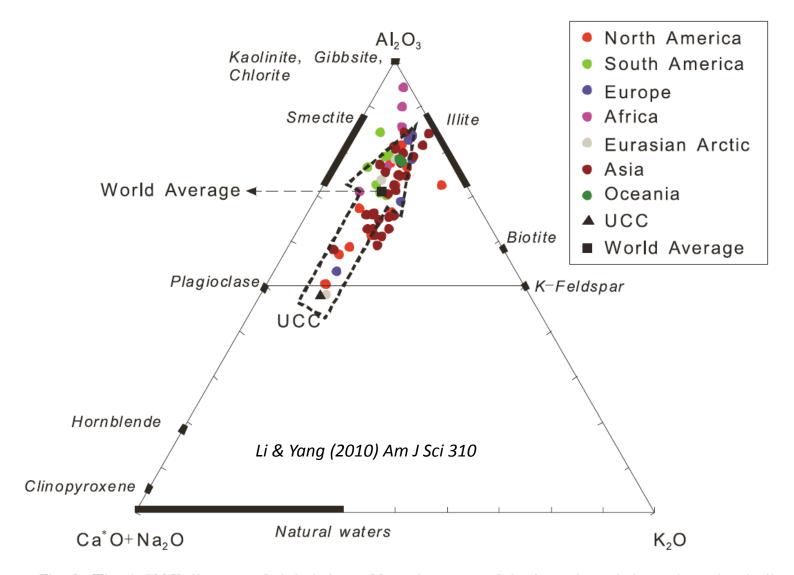
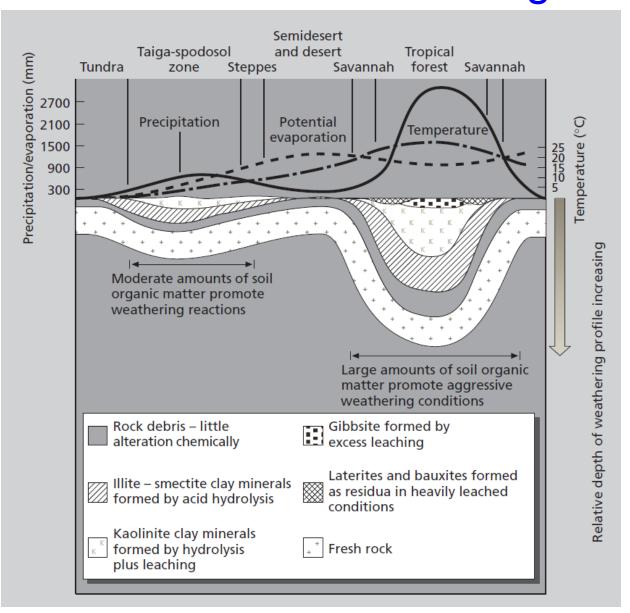
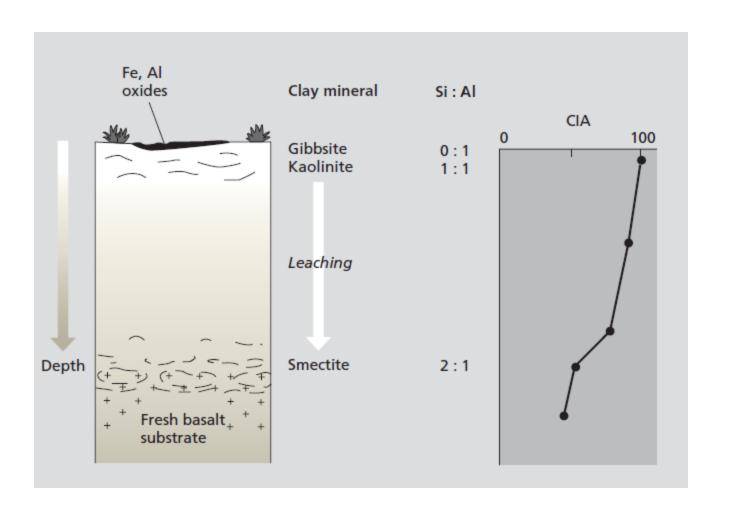
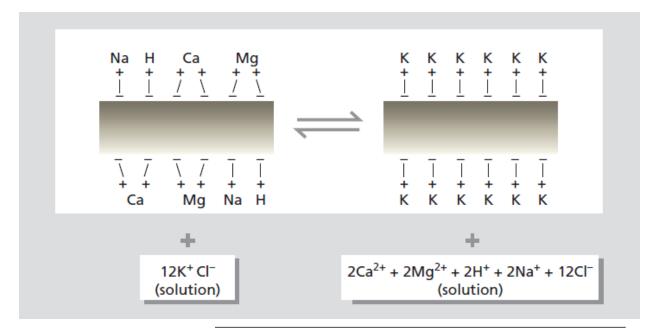




Fig. 3. The A-CN-K diagram of global rivers. Note that most of the investigated rivers show the similar weathering trend in parallel with the A-CN line.

Zusammenhang zwischen Klima, Verwitterung und Tonmineralneubildungen

Basaltverwitterung

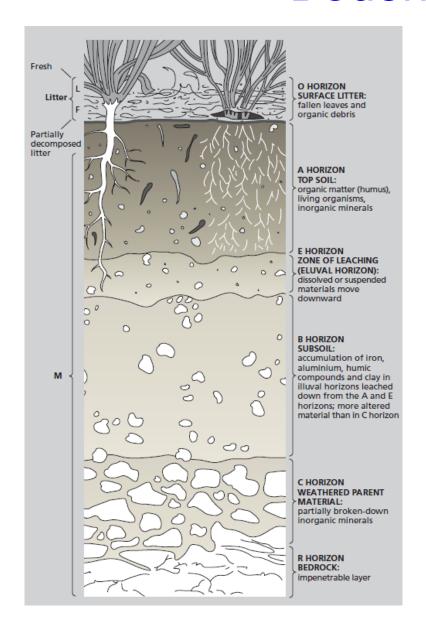
Bodenkolloide & Ionenaustauschkapazität


Bodenpartikel der mineralischen und organischen Bodensubstanz sind an ihren Oberflächen elektrisch

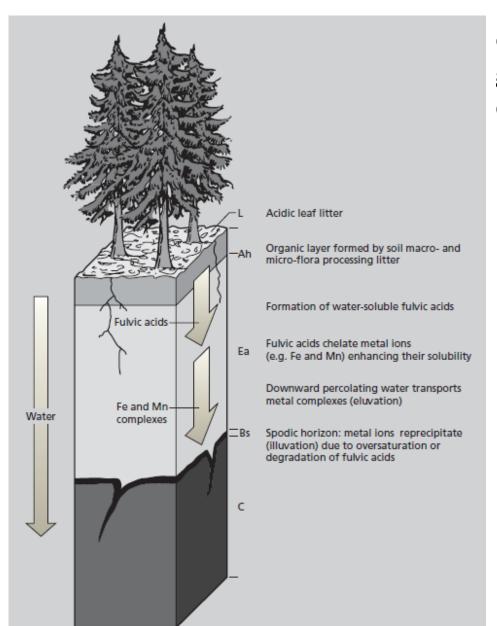
geladen.

Tonminerale und Huminstoffe sind wesentliche Ladungsträger und Ionenaustauscher.

Negative Ladungen überwiegen.


Non-clay	
materials	CEC
Quartz, feldspars	1–2
Hydrous oxides of Al and Fe	4
Organic matter	150–500

CEC = cation
exchance capacity
(microäquivalente
pro g)

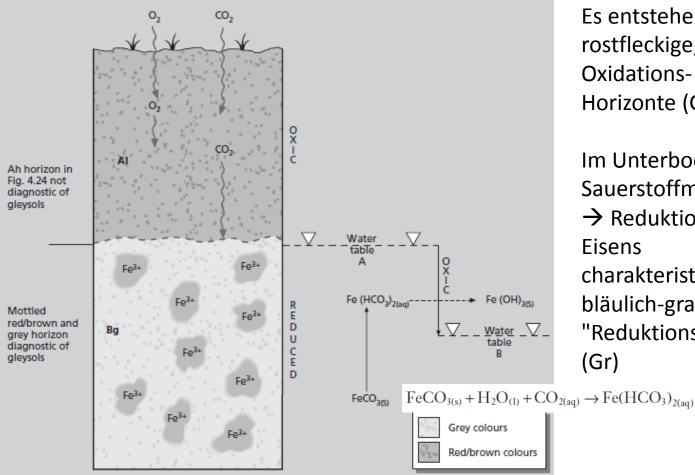

Clay minerals	CEC	Cation exchange site
Kaolinite	3–15	Edge effects
Illite	10–40	Mainly edge effects, plus some interlayer
Chlorite	10–10	•
Smectite	80–150	Mainly interlayer plus some edge effects

Bodenhorizonte

Podzolböden

entstehen auf sauren Ausgangsgesteinen wie Buntsandstein, Granit oder Flugsanden (Heideböden).

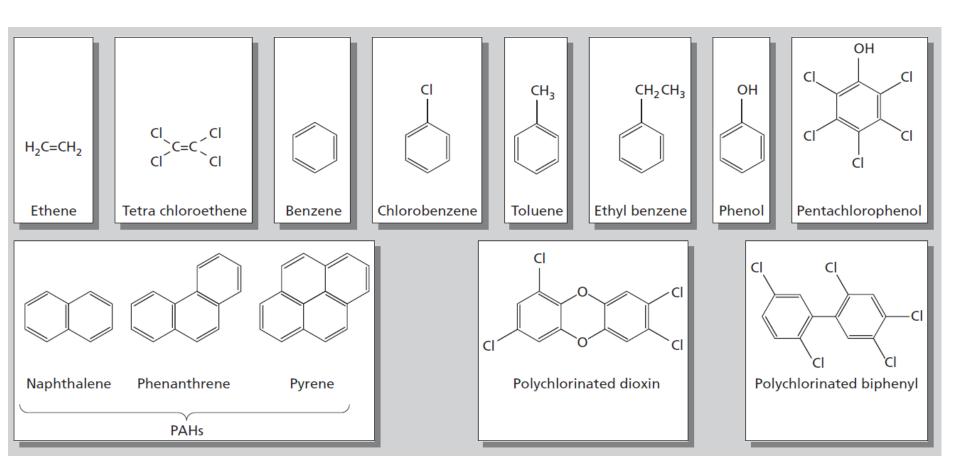
ausgebleichter, aschgrauer Horizont, (Nährstoffe ausgewaschen)


Ortstein (schwarz)

Anreicherungshorizont (ockerbraun)

Grundwasserböden (Gley)

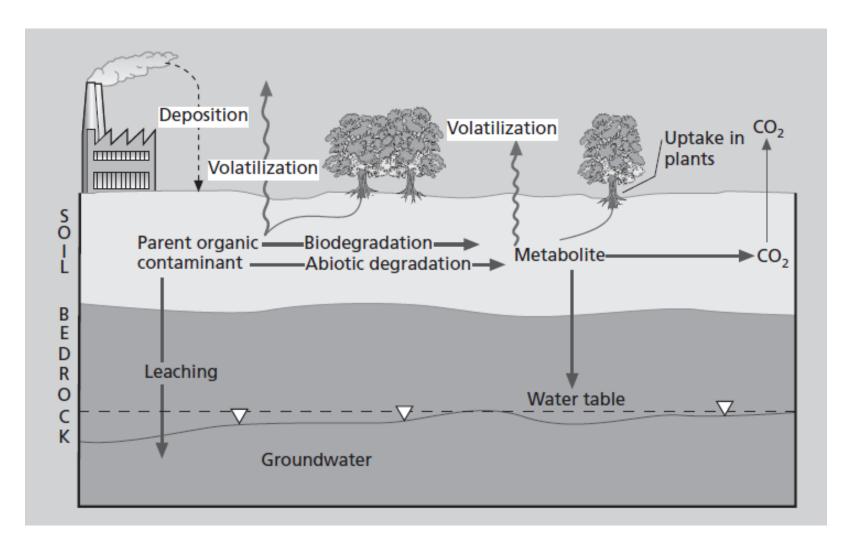
Grundwasserböden sind in der Tiefe ständig mit Wasser gesättigt. Grundwasser führt gelöste Stoffe (Fe) heran und reichert diese in den oberen Bodenhorizonten an



Es entstehen rostfleckige, Oxidations-Horizonte (Go)

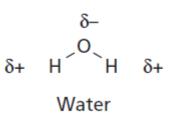
Im Unterboden Sauerstoffmangel → Reduktion des Eisens charakteristische, bläulich-graue "Reduktionsfarben" (Gr)

Schadstoffe in Böden


Beispiele für Schadstoffe in Böden

PAHs = polyzyklische aromatische Kohlenwasserstoffe

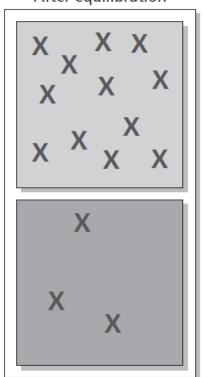
Schadstoffe in Böden



Dampfdruck → Volatilität Löslichkeit → Polarität Hydrophobe Eigenschaften Schadstoff-Abbau

Biogen: Biodegradation

Abiogen: Hydrolyse, Reduktion, Oxidation, Photooxidation


Volatilität, Polarität, Löslichkeit, Hydrophobizität

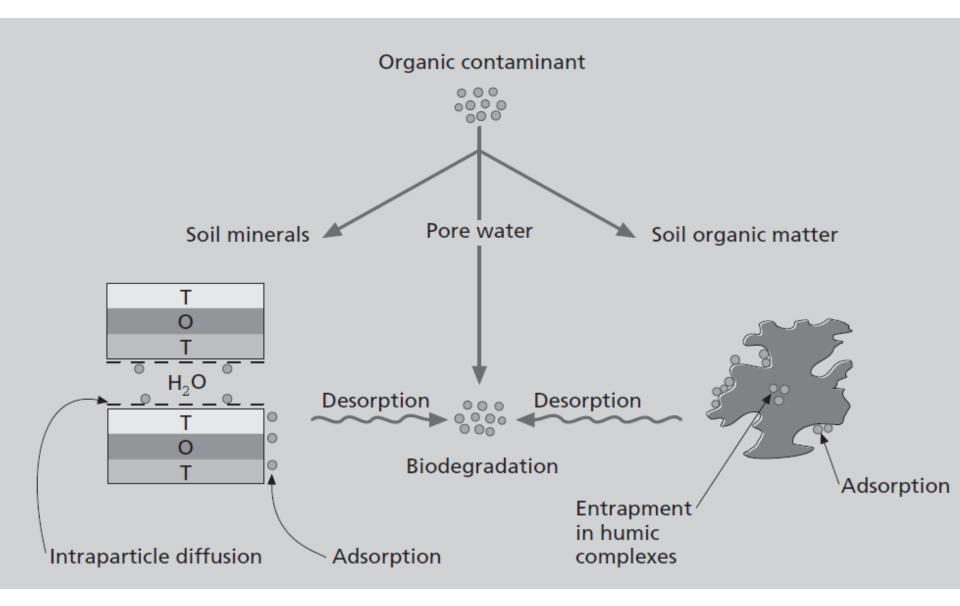
$$H$$
 H
 $H_3C - C - O - H$
 H
Ethanol

Ethane

After equilibration

Octanol (12 Xs)

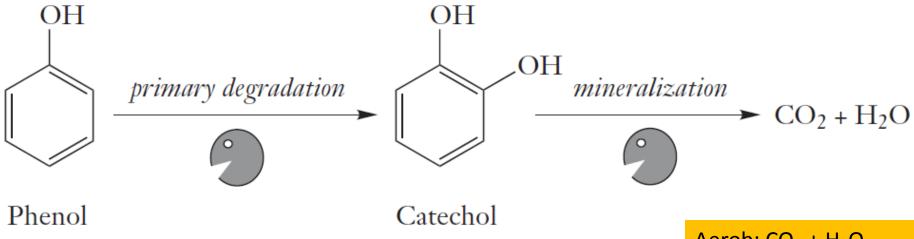
$$K_{OW} = \frac{[octanol]}{[water]} = \frac{[12]}{[3]} = 4$$



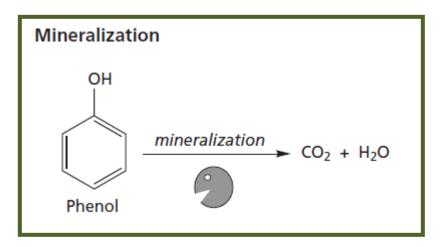
Water (3 Xs)

$$\log K_{OW} = \log 4 = 0.60$$

X = Compound of interest


Abbau & Fixierung

Biologische Verfügbarkeit und "ageing"


Biodegradation

Aerob: $CO_2 + H_2O$

Anaerob: Etanol + CO₂

Biodegradative Prozesse

Biodegradative Prozesse

Co-metabolism
$$CI \longrightarrow CI \longrightarrow CO_2 + H_2O$$

$$PCB \qquad Biphenyl$$

Biodegradative Prozesse

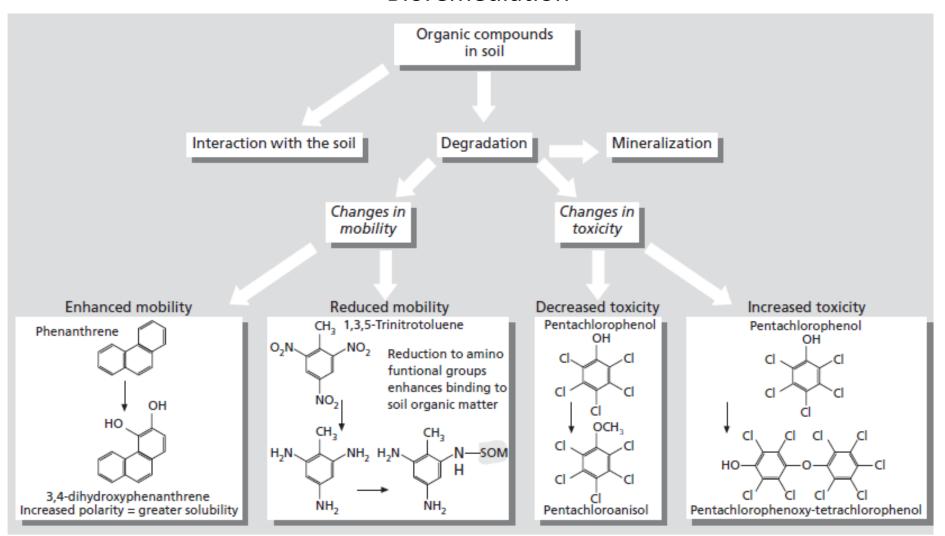
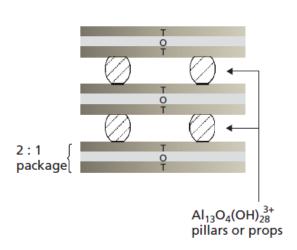
Remediation/ Sanierung

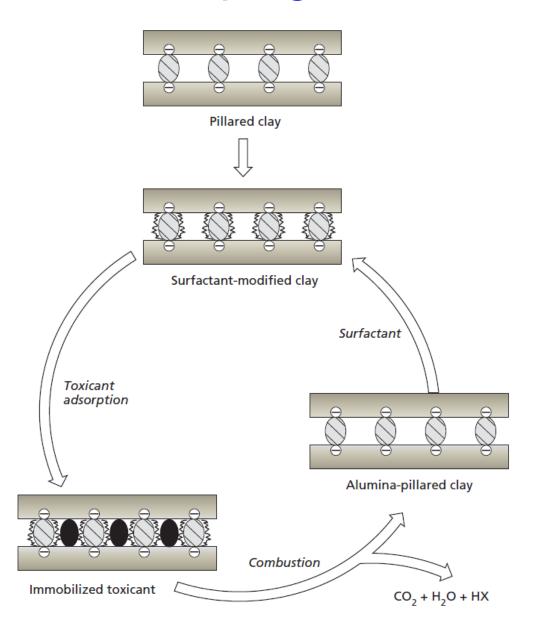
Bodensanierung

Thermische Vor-Ort-Sanierung

Bodensanierung mit Mikroorganismen

Bioremediation

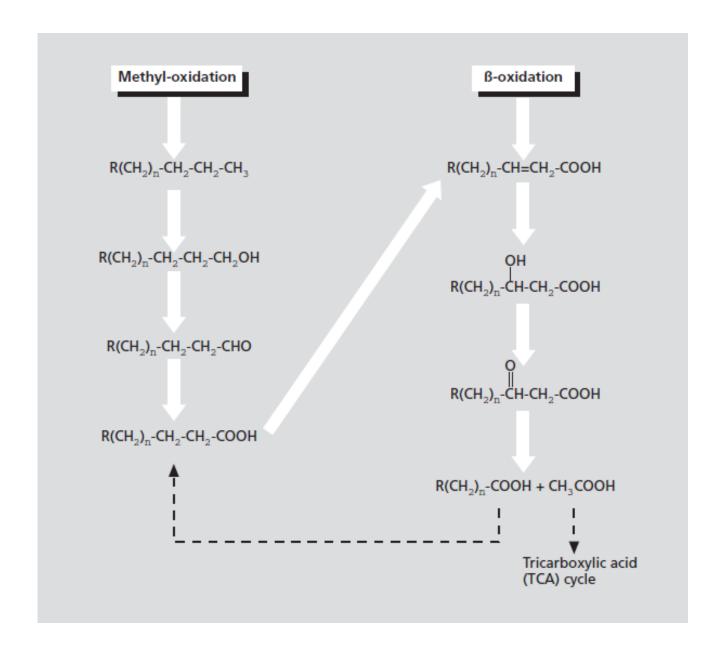

Fig. 4.30 Changes in toxicity and mobility of organic contaminants caused by biodegradation and biotransformation. SOM, soil organic matter.

Tonmineral Doping

Surfactant

Benetzungsmittel (Tensid), z.B.: CH₃(CH₂)₁₆ – COO⁻Na⁺

Sanierung: in-situ vs. ex-situ


Table 4.11 Consideration of typical factors relating to *in situ* or *ex situ* treatment of contaminated land.

In situ	Ex situ
For	Against
Less expensive	More expensive
Creates less dust	Creates dust during excavation
Causes less release of contaminants	May disperse contaminants
Treats larger volumes of soil	Limited in scale—batches treated individually
Against	For
Slower	Faster
Difficult to manage	Easier to manage—ensure results
Not suited to high clay soils or compacted sites	Suited to a variety of sites including high clay and compacted sites

Bioremediation - marine Ölteppiche

Beispiel: Exxon Valdez 1989

Sägewerke Finnland

Ex-situ compost bioremediation

Chlorphenole

pentachlorophenol

Fig. 4.33 Aerobic biodegradation pathways for benzene.

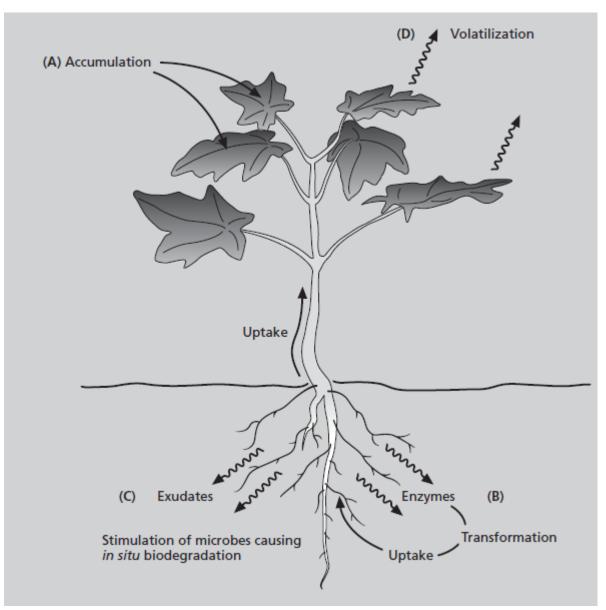
Kreosot-Kontaminationen

Burlington Northern United States Environmental Protection Agency (EPA) Superfund site

Kreosot eingesetzt als Holzschutzmittel für Eisenbahnschwellen und Telefonmasten.

Enthält zahlreiche toxische Verbindungen u.a. polyzyklische aromatische Kohlenwasserstoffe.

Kreosotentfernung im Bioreaktor

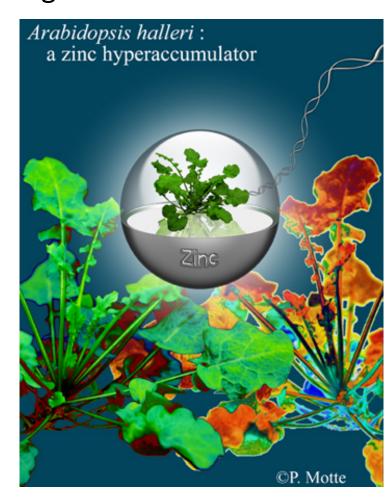

Table 4.12 Bioreactor remediation of creosote (PAH) contaminated soil, adapted from US Environmental Protection Agency technology demonstration sheet EPA/540/S5-91/009.

	Initial PAH concentration (mg kg ⁻¹)	Residual PAH concentration after 12 weeks' treatment (mg kg ⁻¹)	PAH reduction (%)
Two- and three-ring PAHs	1500	30	98
Four- through six-ring PAHs	960	280	70
Total PAHs*	2460	310	87

^{*} Sixteen PAHs listed as priority pollutants by the US EPA (see Fig. 4.32).

Phytoremediation

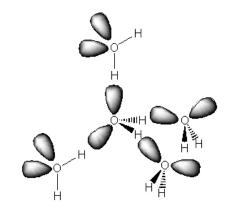
Metall- und Schadstoffakkumulation durch Pflanzen


Phytoremediation durch Hyperakkumulation

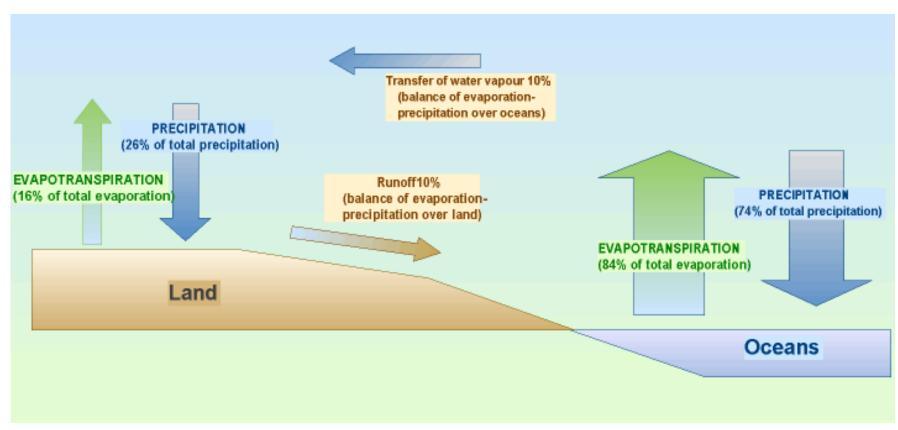
Metallhunger von Pflanzen

Einige Pflanzenarten zeigen die Fähigkeit zur Hyperakkumulation von Schwermetallen → einsetzbar zur Sanierung von schwermetall-

belasteten Böden und Gewässern

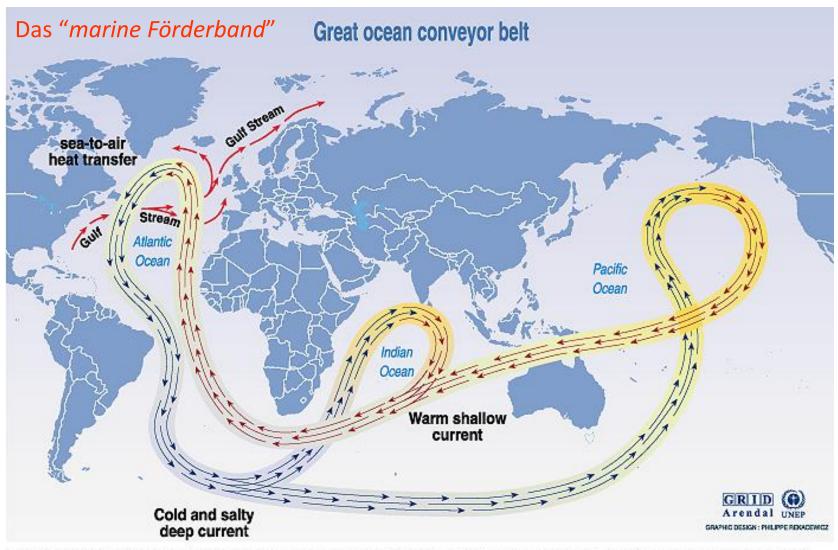

Arabidopsis halleri ist ein Hyperakkumulierer, der auf vielen metallbelasteten Standorten in Mitteleuropa wächst (z.B. im Harz), die aufgrund geologischer oder anthropogener Einflüsse metallreich sind.

Hydrosphäre


Wasser

- Wasser bedeckt 71% der Erde
- 97% davon in den Ozeanen
- Wassermolekül polar Wasserstoffbrückenbindung
- Hohe Löslichkeit (Ausnahme: Öl!)
- Hohe Wärmekapazität
- Hohe Verdunstungswärme
- Transportmedium
- Salinität (variiert um 35g Salz pro kg Meerwasser)

World Water Balance



Hydrosphäre

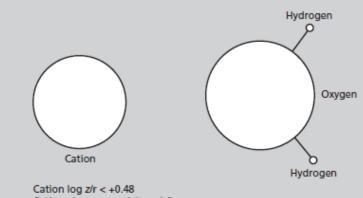
- Oceans are the main reservoir of water on the Earth ~97% by volume.
- Much higher contents of dissolved solids than most other natural waters (35 g / kg water)
- Compared to other natural waters, seawater is remarkably homogeneous in composition

Total dissolved solids (g/kg)		
Rain	0.005	
River	0.1	
Ocean	35	

Thermohaline Zirkulation

Source: Broecker, 1991, in: Climate change 1995, Impacts, adaptations and mitigation of climate change: scientific-technical analyses, contribution of working group 2 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge press university, 1996.

Hydrosphäre


Georg Forchhammer (1794-1865)
 Danish Mineralogist

"The quantity of different elements in seawater is **not** proportional to the quantity of elements which river water pours into the sea..."

Binnengewässer (Süßwasser)

Table 5.1 Comparison of the major cation composition of average upper continental crust (from Wedepohl 1995) and average riverwater (from Berner & Berner 1987); except aluminium and iron from Broecker and Peng (1982).

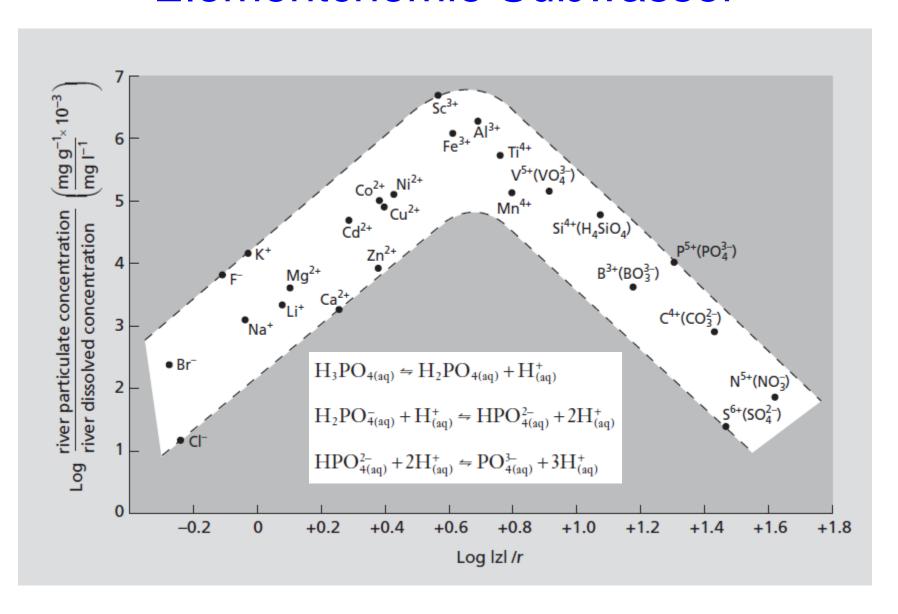
	Upper continental crust (mg kg ⁻¹)	Riverwater (mg kg ⁻¹)
Al	77.4	0.05
Fe	30.9	0.04
Ca	29.4	13.4
Na	25.7	5.2
K	28.6	1.3
Mg	13.5	3.4

(a)

(b)

(c)

Cation electronegativity < 1.2


Cation log z/r between +0.48 and +1.08 Cation electronegativity between 1.2 and 1.9

Ca²⁺, Na⁺, K⁺ and Mg²⁺

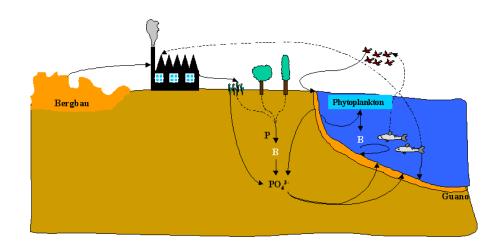
$$Fe_{(aq)}^{3+} + 3H_2O_{(1)} \rightarrow FeOH_{3(s)} + 3H_{(aq)}^+$$

$$\begin{split} S(VI)_{(s)} + 4H_2O_{(1)} \rightarrow & SO_{4(aq)}^{2-} + 2H_{(aq)}^+ \\ & \text{Oxyanion} \end{split}$$

Elementchemie Süßwasser

Beispiel Phosphor

P: 0.1 Gew.% in Erdkruste; wichtiger Nährstoff


Phosphatminerale: Apatit: Ca₅(PO4)₃(F,CI,OH)

im Wasser oder in Bodenlösung: Phosphat-Anionen

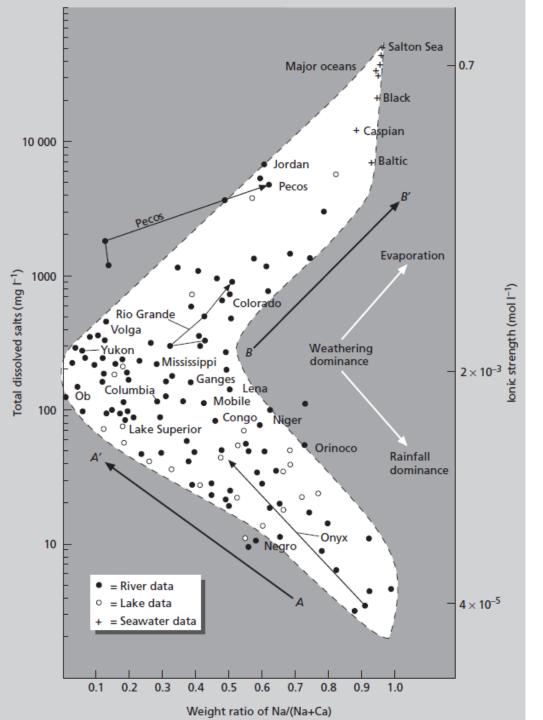
schwach basische Wässer **Hydrogenphosphat**-Anion (HPO₄²⁻)

schwach saure Wässer **Dihydrogenphosphat**-Anion (H₂PO₄⁻)

Dünngungsmittel (Überdüngung → Eutrophierung) entgegenwirken durch chemische P-Fällung, z.B.: Fe³+ + PO₄³- → FePO₄

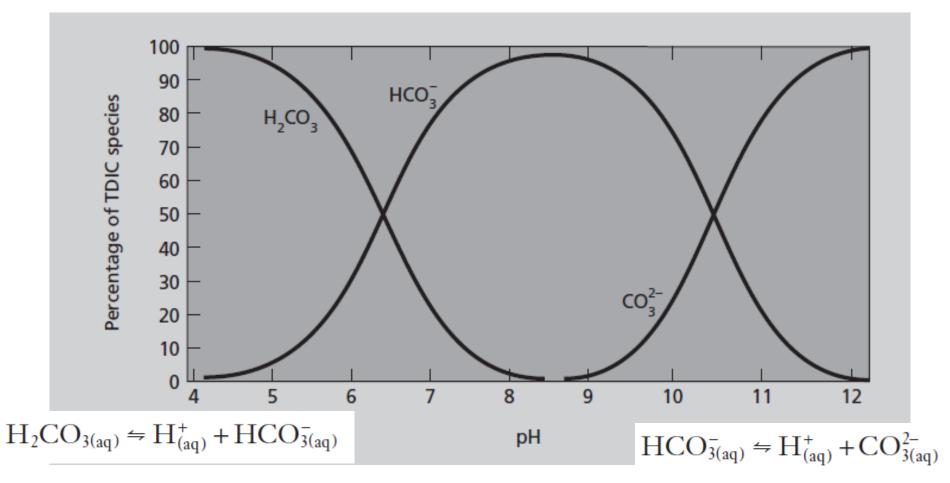
Grundwasserchemie

Table 5.3 Chemical analyses of US groundwater from various rock types (mmoll⁻¹). Adapted from Todd (1980). This material is used by permission of John Wiley & Sons, Inc.


	Granite South Carolina	Metamorphic schist Georgia	Limestone Texas
Ca ²⁺	0.3	0.7	1.8
Ca ²⁺ Mg ²⁺	0.2	0.2	0.4
Na ⁺	0.4	0.7	1.0
K ⁺	0.1	0.2	0.2
Cl-	0.1	0.1	0.7
SO ₄ ²⁻	0.1	0.1	0.2
HCO₃	1.2	2.3	4.5
Al	0.004	0	_
Fe	0.003	0.002	0.001
SiO ₂	0.6	0.35	0.18
Na ⁺ /(Ca ²⁺ + Na ⁺)	0.57	0.50	0.36

Wasserchemie und Verwitterungsregime

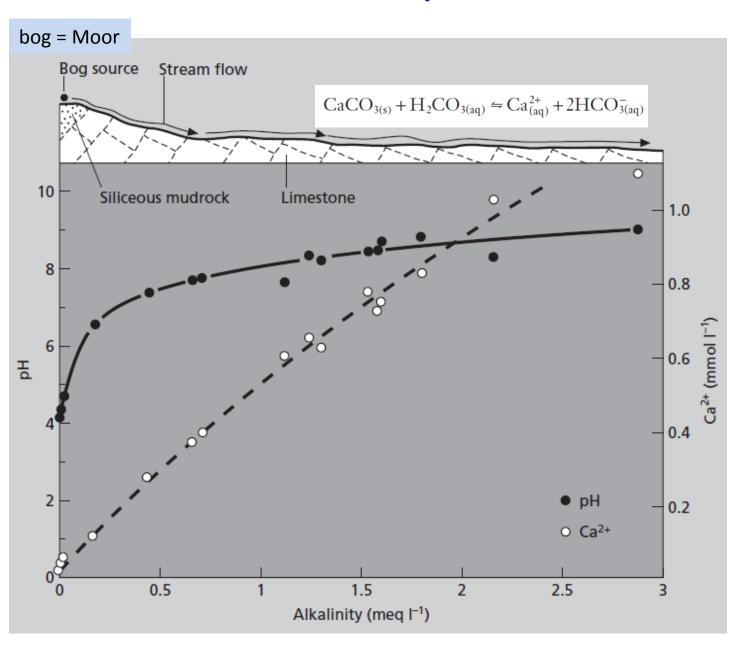
Table 5.2 Dissolved major ion composition (mmoll⁻¹) of some major rivers. Data from Meybeck (1979); except Rio Grande from Livingston (1963).


	Mackenzie (1)	Orinoco (2)	Ganges (3)	Rio Grande (4)
Ca ²⁺	0.82	0.08	0.61	2.72
Mg^{2+}	0.43	0.04	0.20	0.99
Na⁺	0.30	0.06	0.21	5.10
K ⁺	0.02	0.02	0.08	0.17
Cl-	0.25	0.08	0.09	4.82
SO_4^{2-}	0.38	0.03	0.09	2.48
HCO ₃	1.82	0.18	1.72	3.00
SiO ₂	0.05	0.19	0.21	0.50

Drainage basin characteristics: (1) northern arctic Canada; (2) tropical northern South America; (3) southern Himalayas; (4) arid southwestern North America.

Lösungsfracht Von Flüssen

Alkalinität


$$K_1 = \frac{aH^+ \cdot aHCO_3^-}{aH_2CO_3} = 10^{-6.4}$$

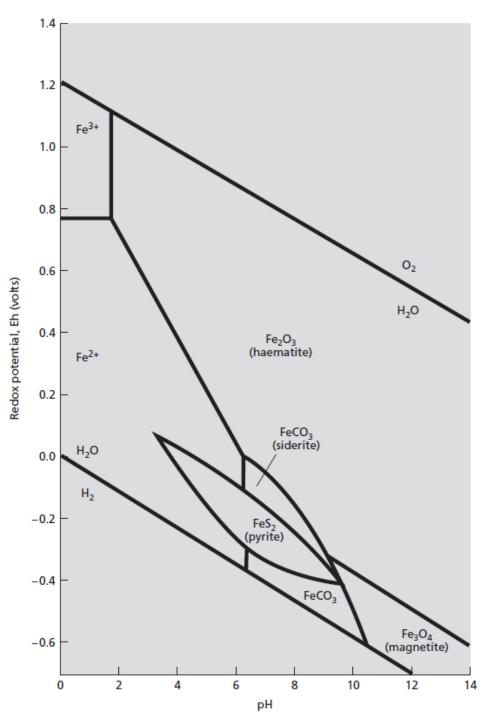
$$K_2 = \frac{a\mathrm{H}^+ . a\mathrm{CO}_3^{2-}}{a\mathrm{HCO}_3^-} = 10^{-10.3}$$

für pH 8 (pH = $-\log 10aH^+$) gilt:

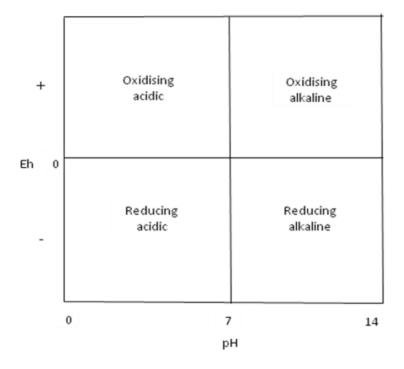
$$a\mathrm{HCO}_{3}^{-} = \frac{10^{-8} \cdot a\mathrm{CO}_{3}^{2-}}{10^{-10.3}} = \frac{1 \times 10^{-8} \cdot a\mathrm{CO}_{3}^{2-}}{5 \times 10^{-11}} = 200 \, a\mathrm{CO}_{3}^{2-}$$

Alkalinität und pH Puffer

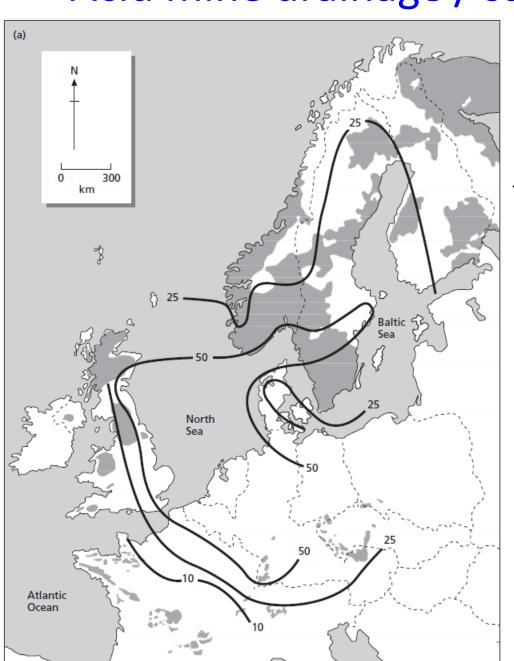
Aluminiumlöslichkeit und Säuregrad


Al gelöst

unter sauren Bedingungen als Al³⁺(aq)


unter neutralen oder alkalischen Bedingungen als Al(OH)₄- (aq)

$$Al(OH)_{3(s)} + OH_{(aq)} = Al(OH)_4^-$$


$$Al(OH)_{3(s)} = Al_{(aq)}^{3+} + 3OH_{(aq)}^{-}$$

Eh-pH Diagram

Acid mine drainage / saure Grubenwässer

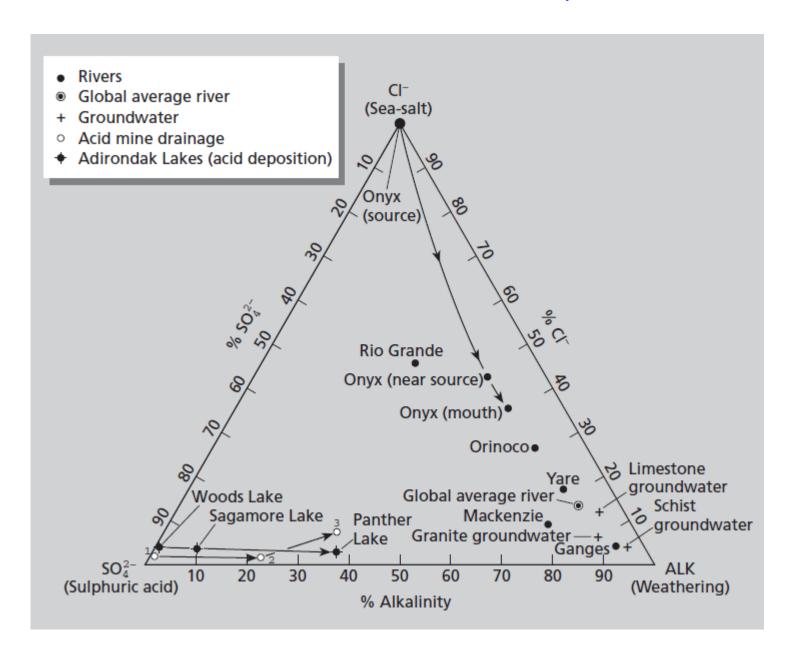
$$2FeS_{2(s)} + 2H_2O_{(l)} + 7O_{2(g)} \longrightarrow 4H_{(aq)}^+ + 4SO_{4(aq)}^{2-} + 2Fe_{(aq)}^{2+}$$
(pyrite oxidation)

Bei pH 3.5 – 4.5 Oxidation von Eisen katalysiert durch Bakterien Metallogenicum, Thiobacillus thiooxidans)

$$4Fe_{(aq)}^{2+} + O_{2(g)} + 10H_2O_{(l)} \longrightarrow 4Fe(OH)_{3(s)} + 8H_{+(aq)}$$
(Fe(II))
(Fe(III))

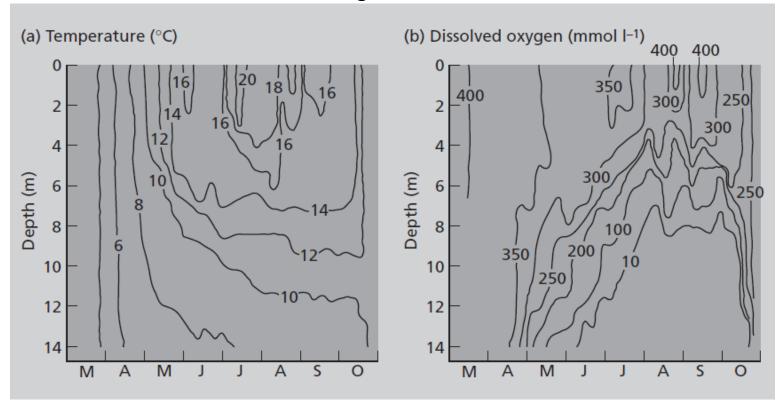

Rio Tinto

Acid mine drainage / saure Grubenwässer


ab pH > 3-4:

$$Fe_{(aq)}^{3+} + 2H_2O_{(l)} \rightarrow FeOOH_{(s)} + 3H_{(aq)}^+$$

Alkalinität - Cl⁻ - SO₄²⁻

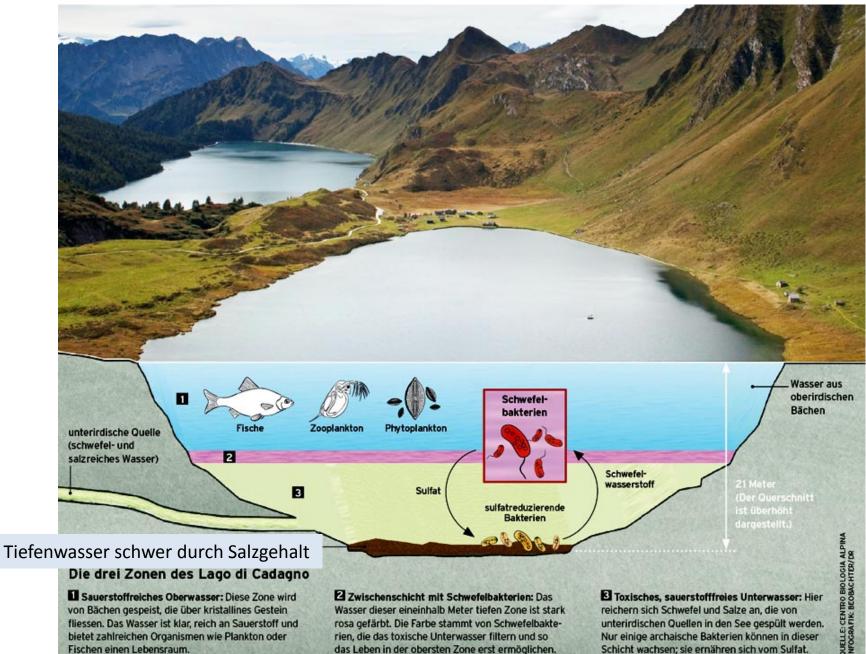


Biologische Prozesse

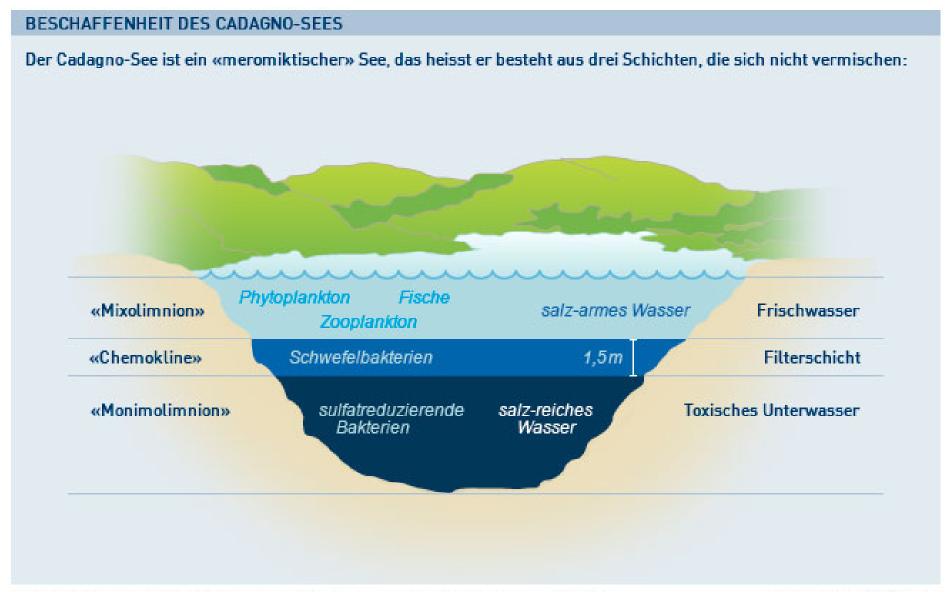
$$CO_{2(g)} + H_2O_{(l)} \xrightarrow{light} CH_2O_{(s)} + O_{2(g)}$$


$$CH_2O_{(s)} + O_{2(s)} \rightarrow CO_{2(g)} + H_2O_{(l)} \quad \Delta G = -475 \text{ kJ mol}^{-1}$$

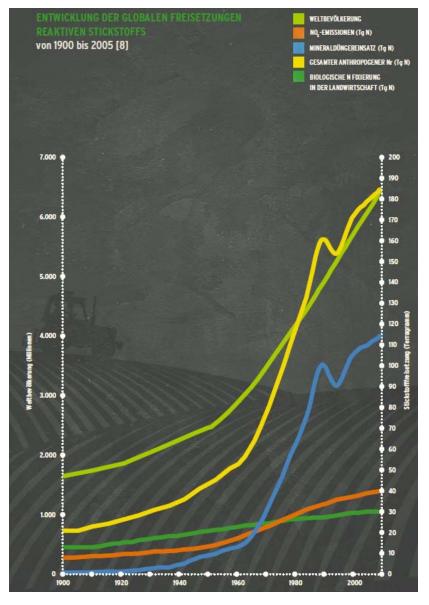
Seewasser: Lake Esthwaite, NW England



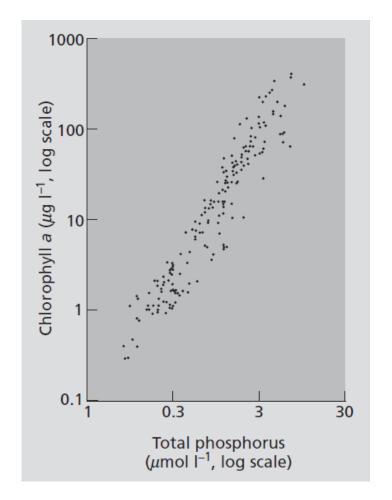
Alatsee – meromiktischer See


keine Wasserzirkulation ab 15 m Tiefe fast sauerstofffrei Schwefelhaltiges Tiefenwasser Herkunft des Schwefels?

Lago di Cadagno - geogene Meromixis

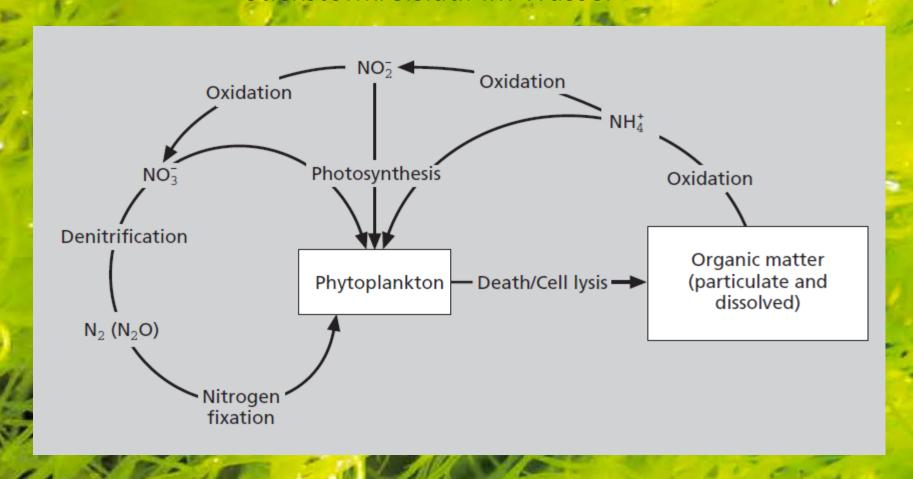


Lago di Cadagno - geogene Meromixis

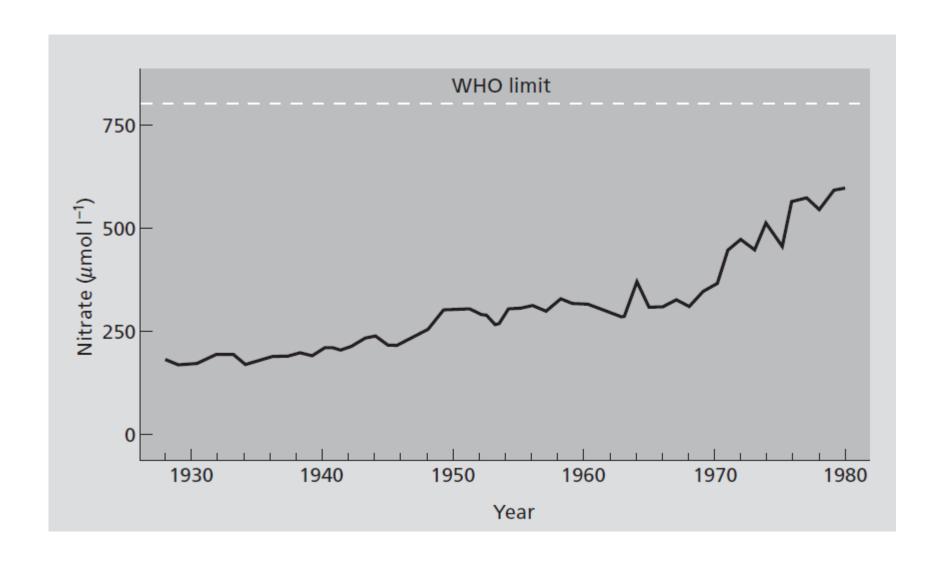


Nährstoffe und Eutropisierung

Mg²⁺ häufig vorhanden; aber: P, N - biokritisch, wachstumslimitierend



Bioverfügbarkeit N/P-Verhältnis

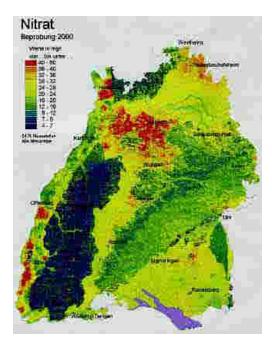


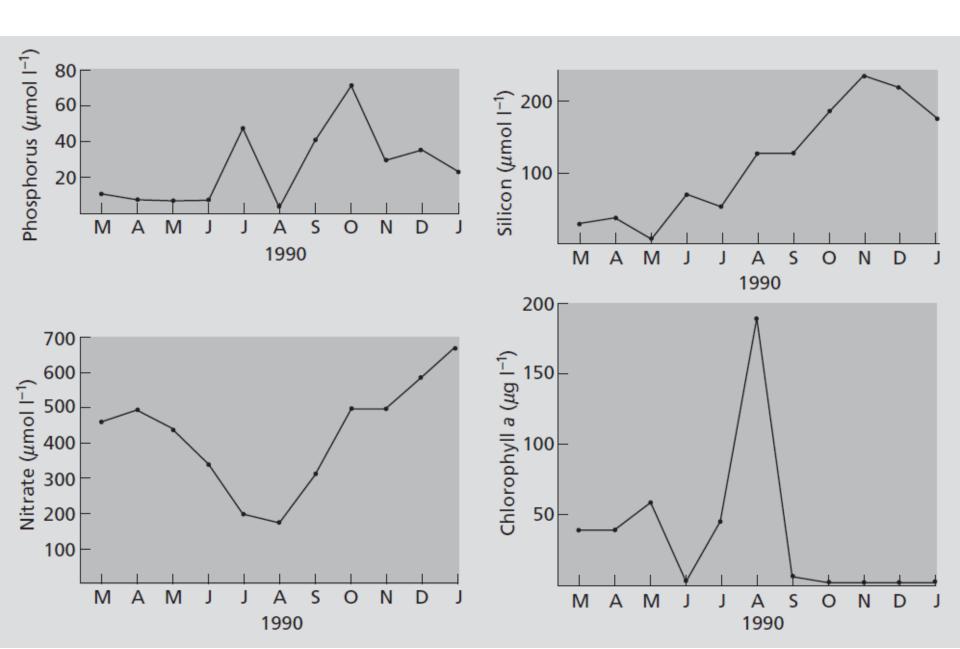
Nährstoffe und Eutropisierung

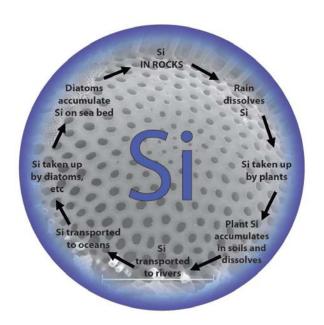
Stickstoffkreislauf im Wasser

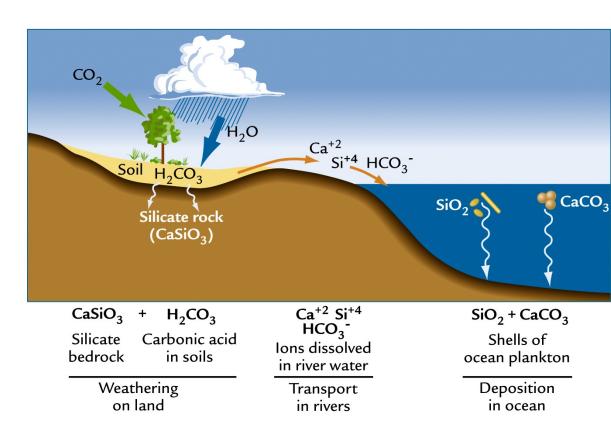
Nitratbelastung in Flüssen

Nitratbelastung des Grundwassers

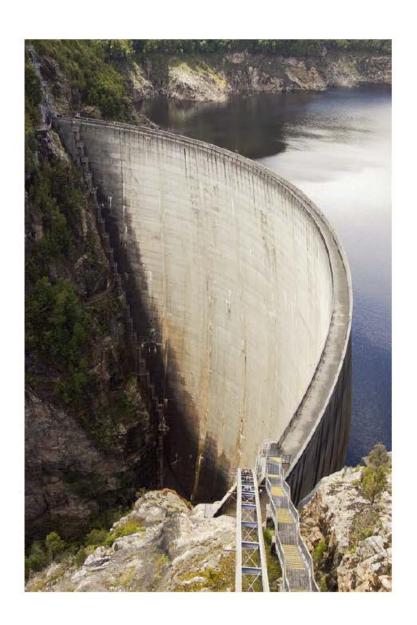

- Guter Zustand
- Schlechter Zustand


Nitratbelastung

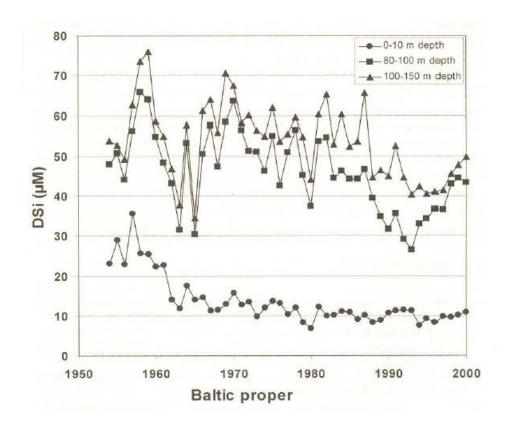


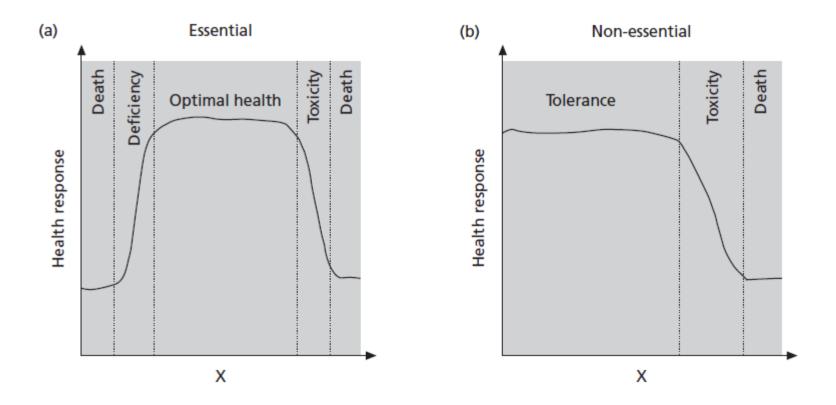


Nitratbelastung in Flüssen



Silizium




River damming

Dams: artificial lake effect Si retention

Schwermetalle

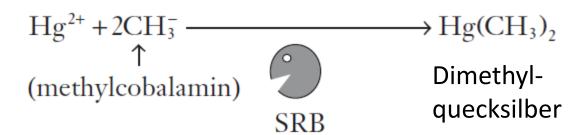
Paracelsus (1493-1541): "Allein die Dosis macht das Gift"

Schwermetalbelastungen

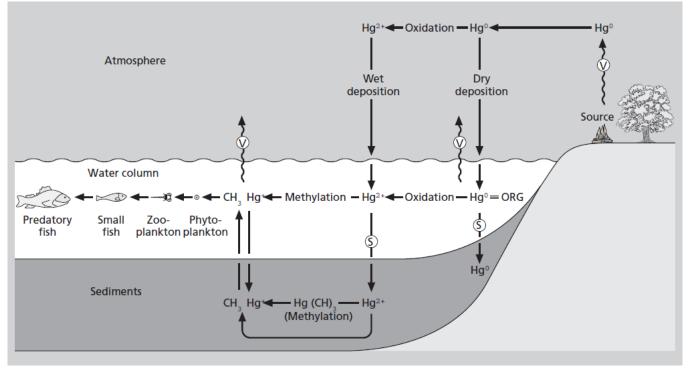
Garimpos, Amazonasgebiet

Einsatz von Quecksilber zur Bindung des Goldes

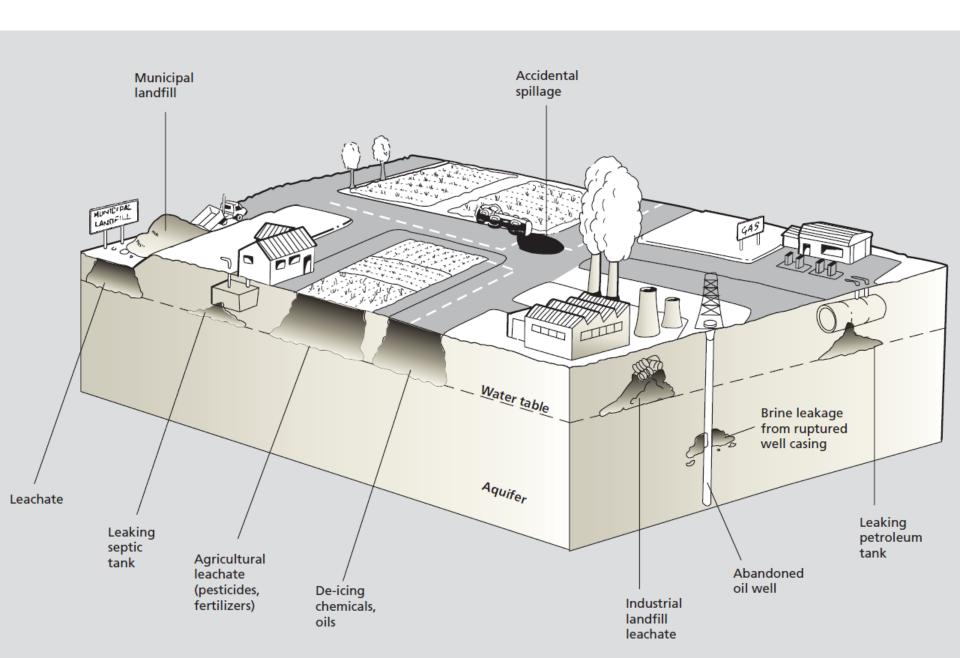
Amalgamverfahren:

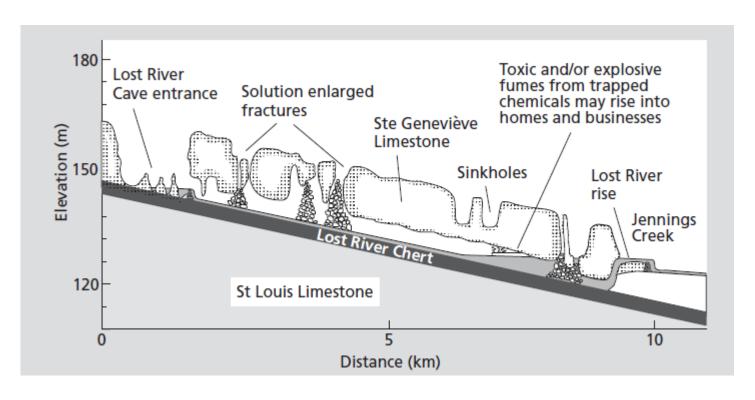

 $Au_{(metal)} + Hg^0 \rightarrow Au-Hg_{(amalgam)}$

Schwermetalbelastungen

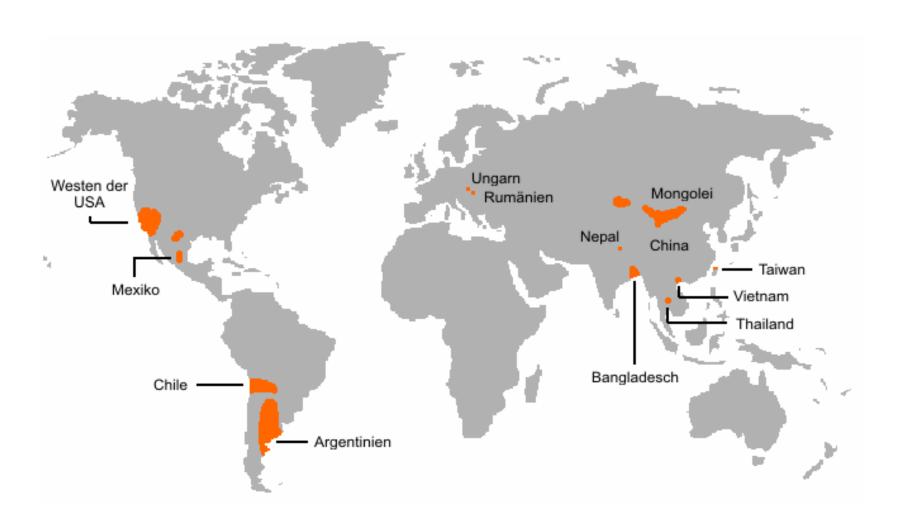

$$Hg^0 + O_3 \rightarrow HgO + O_2$$

$$2H^+ + HgO \rightarrow Hg^{2+} + H_2O$$





Grundwasserkontamination


Grundwasserkontamination

$$C_{6}H_{6(aq)} + 6NO_{3(aq)}^{-} + 6H_{(aq)}^{+} \longrightarrow 6CO_{2(aq)} + 3N_{2(g)} + 6H_{2}O_{(1)}$$
 (benzene)

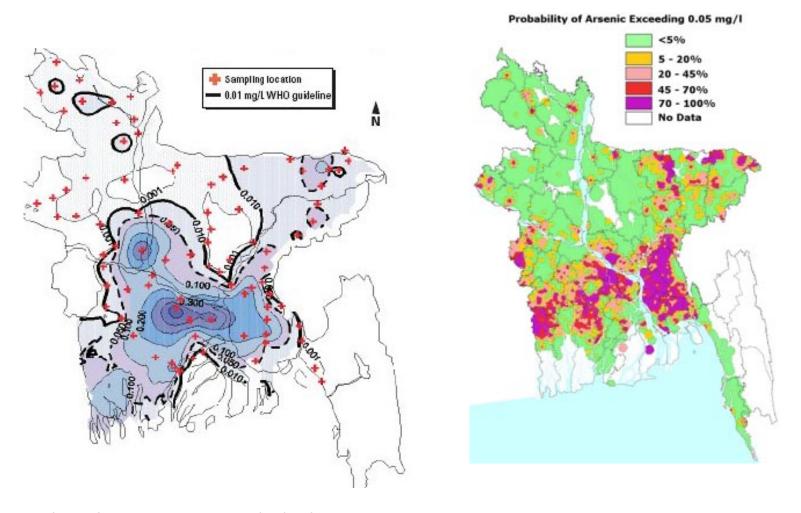
Dechloromonas aromatica

Arsen im Grundwasser

Beispiel Bangladesh

primäre Arsenquellen: Sedimente, As-führende Kohle, Sulfiderze aus Himalaya

Arsen im Grundwasser


Oberflächenwasser mit Krankheitserregern kontaminiert

Bau von Röhrenbrunnen

Steigende Arsenbelastung

As im Grundwasser, Bangladesh

Röhrenbrunnen in Bangladesh Ganges, Brahmaputra und Meghna Delta

Freisetzung von As durch:

Änderungen in den Redox-Bedingungen

Übermäßige Grundwassernutzung (Bewässerung), senkt den Grundwasserspiegel ab und gestattet dem Luftsauerstoff, das im Ton befindliche Arsen freizusetzen.

Starkes Redox-Gefälle zwischen belüftetem (Oxidationszone) und wassergesättigtem Sediment führt zur Bildung von Eisen(III)-oxidhydrat, das bis zu 800 ppm Arsenat enthalten kann

mikrobielle Reduktion As-führender Eisenoxide setzt As frei:

$$4\text{FeOOH}_{(s)} + \text{CH}_2\text{O}_{(s)} + 7\text{H}_2\text{CO}_{3(aq)} \longrightarrow 4\text{Fe}_{(aq)}^{2+} + 8\text{HCO}_{3(aq)}^{-} + 6\text{H}_2\text{O}_{(l)}$$

$$\text{eqn. 5.26}$$