Terrestrial cosmogenic isotopes

Great impact on environmental and earth sciences over the last decade

Methodological process is accelerating

Many novel tools

Cockburn & Summerfield 2004

Terrestrial cosmogenic isotopes

The "centre of mass" of many geoscience departments has shifted from solid Earth subfields towards surface processes (Bruce Watson, Elements 2009)

Davis et al. 2003: papers containing "U-Pb" and "zircon" as key words

Improvements: particle accelerators instead of counting

AMS has a factor of a millon lower detection limit for ¹⁴C, ³⁶Cl, ¹⁰Be, ²⁶Al compared to counting methods

Why studying cosmogenic isotopes?

Understanding the geological evolution of the Earth surface

Landscape dynamics (e.g. erosion rates) on the million year time scale

Variation of solar radiation

ocean circulation

Dating of Holocene climate changes

Discovery of cosmic-rays

Libby introduced radiocarbon dating (¹⁴C) in 1947 (received Nobel Prize in chemistry in 1960)

Discovery of ¹⁰Be, ⁷Be (1956-1957) Arnold (Chicago) Peters, Devendra Lal (Bombay)

Victor Hess discovered the "cosmic rays" in his balloon flights of 1911-1912 (received Nobel Prize in physics in 1936)

Cosmic-rays

Galactic cosmic rays: originate in sources outside the solar system, throughout our Milky Way galaxy.

Solar energetic particles: nuclei and electrons accelerated in association with energetic events on the Sun

http://heasarc.gsfc.nasa.gov/docs/objects/heapow/ archive/large_scale_structure/egret_allsky.html

Galactic cosmic rays derive their energy from supernova explosions *Crab nebula (Krebsnebel)*

http://www.spacetelescope.org/images/html/heic0515a.html

Cosmic-rays

The light elements Li, Be and Bor (skipped by nucleosynthesis) are produced by cosmic rays (Walker et al. 1985)

3-alpha process

$${}^{4}_{2}\text{He} + {}^{4}_{2}\text{He} \rightarrow {}^{8}_{4}\text{Be}$$

 ${}^{8}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + \gamma$

Energy of cosmic-rays

Components of galactic cosmic-rays

87-89% protons

10-12% α -particles

1-2% electrons

1% heavier elements

Secondary cosmic-rays

Pions \rightarrow muons, neutrinos, γ -rays electrons positrons

Particle colliders *Tevatron, Fermilab, USA LHC, CERN, Geneva*

Variation of production rate

When the sun is active, we get fewer cosmic rays here

What about long-term averaged intensity variation in the Earth's magnetic field?

Variation of production rate Variation of cosmic ray flux at the Earth' surface 8 20 6 40 Elevation 60 Latitude

The rate of production of cosmogenic isotopes depends on the concentrations of the target elements (O, K, Ca, Mg), elevation, surface orientation, and geomagnetic latitude

Comparison with redness of a person's skin (suntan) Gosse and Phillips (2001)

Suntan – wears away Cosmogenic nuclide – decays

Suntan lotion shields skin from radiation Atmosphere and snow shields a landform from radiation

Not everybody tans to the same degree of redness Nuclide production varies in different minerals

and the second states and the second states and the

Terrestrial cosmogenic isotopes

Basic applications

- 1. Dating via radioactive decay
- 2. Dating via nuclide accumulation
- 3. Exchange rate quantification via nuclide accumulation and extraction
- 4. Nuclide concentrations as function of paleomagnetic and solar intensity

Production of cosmogenic isotopes

Major *in-situ* produced cosmogenic nuclides in terrestrial materials

Isotope	Production rate (atoms / g / year)	Half-life (years)	Target elements in terrestrial rocks
³ He	75 – 100 (olivine)	stable	O, Si, Al, Mg
¹⁰ Be	5 – 7 (quartz)	1.5 x 10 ⁶	O, Si, Al, C
¹⁴ C	18 – 20	5730	C, O
²¹ Ne	18 – 21 (quartz)	stable	Mg, Na, Si, Al
²⁶ AI	30 – 36 (quartz)	0.71 x 10 ⁶	Si, Al
³⁶ Cl	8 – 10 (basalt)	0.30 x 10 ⁶	Cl, K, Ca
⁵³ Mn	?	3.7 x 10 ⁶	Fe

Cerling & Craig (1994) Annu. Rev. Earth Planet. Sci. 22

Major target minerals:

³He: olivine, pyroxene hornblende ¹⁰Be, ¹⁴C, ²¹Ne, ²⁶Al: quartz ³⁶Cl: calcite, K-feldspar Cosmogenic isotopes are produced in near surface rock by collisions of high energy neutrons and muons with specific target elements in rocks and minerals. All production rates scaled to sea-level high latidude (>60°)

Nuclide	$T_{\scriptscriptstyle 1/2} \ {\cal Y}$	$\lambda \\ y^{-1}$	Principal Uses
¹⁰ Be	1.5 × 10 ⁶	0.462×10^{-6}	Dating marine sediment, Mn-nodules glacial ice, quartz in rock exposures, terrestrial age of meteorites, and petrogenesis of island-arc volcanics
¹⁴ C	5730 ± 40	$0.1209 imes 10^{-3}$	Dating of biogenic carbon, calcium carbonate, terrestrial age of meteorites
²⁶ Al	0.716×10^{6}	$0.968 imes 10^{-6}$	Dating marine sediment, Mn-nodules glacial ice, quartz in rock exposures, terrestrial age of meteorites
³² Si	276 ± 32	$0.251 imes 10^{-2}$	Dating biogenic silica, glacial ice
³⁶ Cl	$0.308 imes 10^6$	$2.25 imes10^{-6}$	Dating glacial ice, exposures of volcanic rocks, groundwater, terrestrial age of meteorites
³⁹ Ar	269	$0.257 imes 10^{-2}$	Dating glacial ice, groundwater
⁵³ Mn	$3.7 imes 10^6$	0.187×10^{-6}	Terrestrial age of meteorites, abundance of extraterrestrial dust in ice and sediment
⁵⁹ Ni	$8 imes 10^4$	0.086×10^{-4}	Terrestrial age of meteorites, abundance of extraterrestrial dust in ice and sediment
⁸¹ Kr	$0.213 imes 10^6$	$3.25 imes 10^{-6}$	Dating glacial ice, cosmic-ray exposure age of meteorites

 Table 23.1
 Principal long-lived cosmogenic radionuclides and their uses in isotope geoscience