Gemäß ihrer Häufigkeit werden Elemente unterteilt in *Haupt*- und *Spurenelemente*

Haupt- und Spurenelemente in der Erdkruste Hauptelemente (>0.1%): Spurenelemente (<0.1%)*: O, Rb, Si, Sr, AI, Zn, Mg, Zr Fe, etc. Ca, Na, K Ausnahmen, Beispiel Kalium (K)

Diese 8 Elemente bauen zu mehr als 98% der Erdkruste auf * in ppm bzw. $\mu g/g$ (0.1% = 1000 ppm)

Hauptelement in Granit aber Spurenelement in Peridotit Literatur: W. White Chapter 7 Trace Elements in Igneous Processes

https://www.imwa.info/geochemistry/Chapters/Chapter07.pdf

Spurenelemente

- 1. Große Variationen in den Konzentrationen
- 2. Große Anzahl von Spurenelementen
- 3. Stark unterschiedliches Verhalten in geochemischen Prozessen

Spurenelemente

 Bilden normalerweise keine stöchiometrischen Phasenbestandteile

• Treten in Defekten der Kristallgitter auf oder substituieren bestimmte Hauptelemente

 Spurenelemente beeinflussen normalerweise nicht die chemischen und physikalischen Eigenschaften des Kristalls, allerdings z.T. farbgebend,

Beispiel: Cr in Diopsid oder Spinell:

Aber: Monazit – (SEE)[PO₄]

V.M. Goldschmidt's geochemische Gliederung der Elemente

- Basiert darauf, wie sich Elemente zwischen verschiedenen Schmelz- oder Gasphasen verteilen
- Ein bestimmtes Element kann mehreren Gruppen angehören

Atmophile (gas-loving): H, Edelgase, O, (C, N)

Lithophile (silicate-loving): (H), Li, Be, B, (C), O, F, Na, Mg, Al, Si, P, Cl, K, Ca, (Ga), (Ge), Br, Rb, Sr, I, Cs, Ba, (Ti) Sc, Ti, V, Cr, Mn, (Fe), Y, Zr, Nb, REE, Hf, Ta, W, Th, U

Siderophile (iron-loving): Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Mo, Re, Au, (W), C, P, Ge, Sn, (As), (Pb)

Chalcophile (sulfide-loving): Cu, Zn, Ga, Ag, Cd, In, Hg, Tl, (Ge), (As), S, (Sn), Sb, Se, Pb, Bi, Te, (Cr, Fe, Mo)

Analogie zum Hochofen-Prozess

Siderophile Elemente haben die Neigung, sich mit Fe zu legieren. Sie gehen in die Metallschmelze und formen den Bodenkörper ("Ofensau") beim Hochofen-Prozess

Chalkophile Elemente zeigen die Tendenz, Sulfide zu bilden; sie reichern sich im Kupferstein des Hochenofen-Prozesses an

Lithophile Elemente neigen dazu, sich mit O₂ unter Bildung von Silikaten, Oxiden, Karbonaten zu verbinden. Sie gehen beim Hochofenprozess in die leichte Silikatschmelze, die beim Abkühlen im Hochofen zur Schlacke erstarrt

Atmophile Elemente leichtflüchtig; reichern sich in den Gichtgasen an

Goldschmidt Klassifikation der Elemente

Aus R. Gill: Chemische Grundlagen der Geowissenschaften Verteilung der Elemente zwischen den Hauptreservoiren der Erde:

Kern – Mantel + Kruste – Hydrosphäre + Atmosphäre

Geochemistry, First Edition. William M. White.

Elektronegativität und geochemischer Charakter

- Bindungsart
- Reaktionsenthalpie

E < 1,6 Lithophil			1,6 <i>< E <</i> 2,0 Chalkophil				2,0 < <i>E</i> < 2,4 Siderophil		
Cs^+	0,7			Pb ²⁺	1,6			$\leftarrow \ As^{3+}$	2,0
Rb^+	0,8			\leftarrow Fe ²⁺	1,65 →				
K+	0,8			$\leftarrow \mathrm{Co}^{2+}$	1,7 →				
Ba ²⁺	0,85			\leftarrow Ni ²⁺	1,7 →				
Na ⁺	0,9			$\leftarrow Zn^{2+}$	1,7				
Sr ²⁺	1,0	U ⁴⁺	1,7			P ⁵⁺	2,1		
Ca ²⁺	1,0	W ⁴⁺	1,7					Ru ⁴⁺	2,2
Li ⁺	1,0	Si ⁴⁺	1,8					Rh ³⁺	2,2
REE	1,05–1,2			$\leftarrow \mathrm{Ge}^{^{4+}}$	1,8 →			Pd ²⁺	2,2
Mg ²⁺	1,2			$\leftarrow \ \mathrm{Fe}^{3+}$	1,8 →			Os ⁴⁺	2,2
Sc ³⁺	1,3			$\leftarrow Cu^{\scriptscriptstyle +}$	1,8 →			lr ⁴⁺	2,2
Th ⁴⁺	1,3			Ag^+	1,9			Pt ²⁺	2,2
V ³⁺	1,35			$\leftarrow ~\rm Sn^{4+}$	1,9 →			Au^+	2,4
Zr ⁴⁺	1,4			Hg ³⁺	1,9				
Mn ²⁺	1,4 →			Sb ³⁺	1,9 →				
Be ²⁺	1,5			Bi ³⁺	1,9				
Al ³⁺	1,5			Re ³⁺	1,9 →				
Ti ⁴⁺	1,5			$\leftarrow \mathrm{Cu}^{2+}$	2,0 →				
Cr ³⁺	1,6 →								

Lithophile Elemente dunkel schattiert

Gibbsche Energie (Δ G) einiger Oxide

Quellennachweiß

Oxide	$-\Delta G_{f}^{o}$ (kJ/mole/oxygen)	Oxide	–∆G ° (kJ/mole/oxygen)
CaO	604.0	In ₂ O ₃	304.2
ThO ₂	584.6	SnO ₂	260.0
MgO	569.4	FeO	245.9
Al_2O_3	527.3	WO ₃	247.3
ZrO_2	521.6	CdO	221.9
CeO ₂	512.6	NiO	211.6
TiO ₂	444.7	MoO ₃	215.4
SiO ₂	428.1	Sb ₂ O ₃	207.9
Na ₂ O	398.3	PbO	189.3
Ta ₂ O ₃	374.0	As ₂ O ₃	180.1
MnO	362.8	Bi ₂ O ₃	168.8
Cr_2O_3	353.1	CuO	127.6
ZnO	318.4	Ag ₂ O ₃	10.9

Goldschmidt Klassifikation der Elemente

FeNi-rich core

SiMg-rich mantle

SiAl-rich crust

V.M.Goldschmidt scheme:

Atmophile (gas loving) H, N, noble gases.... Lithophile (silicate loving) Si, Al, Mg, Na, K, Ca, Ti... Chalcophile (sulfur loving) Cu, Se, Cd.... Siderophile (iron loving) Fe, Ni, Co, Pt, Au, W, PGE....

Elementeinteilung nach Verhalten in BSE

Volatile Elemente

Löslichkeit von Edelgasen in Schmelzen

Löslichkeit abhängig vom Atomradius und der Schmelzzusammensetzung

Semivolatile Elemente

Semivolatile Elemente

Entmischung (Liquid immiscibility)

Kohlenstoff als CO₂ Schwefel als SO₂ oder H₂S

Liquide Entmischung von Sulfidschmelzen

Liquide Entmischung von CO_2 \rightarrow Karbonatite

SCIENCEDFIOLOCIERARY

Seltenerdelemente (SEE)

Ionenradien der Seltenerdelemente (SEE)

Lanthanidenkontraktion

http://lablemminglounge.blogspot.com/

Konzentrationen der Seltenerdelemente (SEE) Oddo-Harkins Effekt

Seltenerdelemente (SEE)

Chondritnormierung

SEE-Gehalte

akzessorische Minerale

Quelle: F. Bea (1996, 2015)

Selten-Erd Elemente

Selten-Erd Elemente

Kruste und Mantel

"Ordinary chondrites" is modified from Nakamura (1974), Orgueil are the values tabulated by Palme and Jones (2005), Leedy, an ordinary chondrite, is from Masuda (1973), and Average Shale is from Piper (1974).

W. White: Geochemistry

Selten-Erd Elemente

Meerwasser und Tiefseesedimente

W. White: Geochemistry

Alkali- und Erdalkalielemente

Lithophile (Spuren)elemente

- Aufgrund ihrer Elektronenstruktur gehen die lithophilen Elemente überwiegend Ionenbindungen ein
- Das geochemische Verhalten der lithophilen Elemente wird durch die Möglichkeit der Substitution anderer Ionen in Kristallgittern bestimmt
- Die Substitution wird im Wesentlichen von Ladung und Radius bzw. dem Ionenpotential bestimmt

HFSE

Ionenpotential

Ionenpotential = Ladung/Radius (Å)

- Maß für die Dichte der elektrischen Ladung an der Oberfläche eines lons (und damit Maß für die Kraft, ein Anion zu polarisieren)
- Beispiele:
 - K⁺ = 1/1.46 Å = 0.68
 - Rb⁺ = 1/1.57 Å = 0.64
 - Sr²⁺ = 2/1.21 Å = 1.65
 - Nb⁵⁺ = 5/0.7 Å = 7.14

Das Ionenpotential eines Kations gibt einen wichtigen Hinweis auf sein Verhalten in magmatischen und wässrigen Systemen

LILE: large ion lithophile elements: Großionige lithophile Elemente HFSE: high field strenght elements: Elemente mit hoher Feldstärke

mobile Elemente - immobile Elemente

Kompatibel vs. Inkompatibel

Elemente, deren Ladung und/oder Ionenradius sich deutlich von dem ersetzten Ion im Kristallgitter unterscheiden, reichern sich bei partieller Aufschmelzung in der Schmelzphase an. Diese Elemente heißen inkompatibel Beispiele: K, Rb, Ba, Cs, LSEE, HFSE

Elemente, die sich aufgrund der Ähnlichkeit ihrer Ladung und ihres Ionenradius zu dem ersetzten Ion im Kristallgitter leicht einbauen lassen, bleiben während der partiellen Aufschmelzung in den festen Mineralphasen. Diese Elemente heißen kompatibel Beispiele: Ni, Cr, Co

Normierte Diagramme

Selten-Erd-Diagramm

Spider-Diagramm bzw. Multi-Element Diagramm

Spiderdiagramm – kontinentale Kruste

Spiderdiagramm – Basalte

Weitere wichtige Elemente: Bor

Bor isotope als Paleo-pH proxy

Die Verteilung von B(OH)₃ (trigonal) und B(OH)₄ (tetraedrisch) im Meerwasser ist abhängig vom pH-Wert

 $B(OH)_3 + H_2O \rightarrow B(OH)_4^- + H^+$

$$K_{B} = \frac{[B(OH)_{4}^{-}][H^{+}]}{[B(OH)_{3}]}$$

Edelmetalle, PGE

Weitere Elemente: Siderophile Elemente

Siderophile Elemente in Gesteinen des oberen Erdmantels

Elementkonzen	trationer	n im	$V = 4/3 \times \pi \times r^3$ R = 6370 km (Erdradius) R = 3470 km (Kernradius)			
Erdmantel - Hi	nweise z	ur				
Akkretionsgesc	hichte de	er Erde				
	Co	Ni	Vol% Masse%			
Gesamterde (chondritisches Modell)	1107 ppm	2.40%	Erdmantel82.067.2Erdkern16.232.4			
Erdmantel (gemessen)	105 ppm	0.20%	\rightarrow (1107 ppm x 1) - (105 ppm x 0 672) = 1036 ppm			
Erdkern (berechnet)	3200 ppm	7.50%	1036 ppm/0.324 = 3200 ppm			
Kern/Mantel	31	38	→ 3200 ppm/105 ppm = 30.5			
D ^{M/S}	710	8200	→ 3200 ppm/710 = 4.5 ppm			
Erdmantel (berechnet)	4.5 ppm	9.0 x 10-4%	\rightarrow 105 ppm/4.5 ppm = 23			
Überanreicherung im Erdmantel	23	222				
(gemessen/berechnet)			lata vanaar bynathaaia			
⊸M/S · · · · · ·			nate veneer hypothesis			

D^{M/S} = experimentell bestimmte Metall/Silikat Verteilungskoeffizienten bei 1400 °C.
Radiogene Isotopensysteme

Grafik von: http://de.wikipedia.org/wiki/Goldschmidt-Klassifikation

Spurenelemente

Verteilung von Spurenelementen zwischen koexistierenden Phasen

Verteilungskoeffizient (Partition or distribution coefficient):

$$D_i^{\alpha-\beta} = \frac{C_i^{\alpha}}{C_i^{\beta}}$$

Solid-liquid partition coefficient:

$$D_i^{s/l} = \frac{C_i^s}{C_i^l}$$

 $D_{(i)} = x^1 K d_{(i)}^1 + x^2 K d_{(i)}^2 + x^3 K d_{(i)}^3 + \dots (x^1 - \text{proportion of mineral 1})$

Spurenelemente

Thermodynamische Zusammenhänge

$$D_i^{\alpha-\beta} = \frac{\lambda_i^{\beta}}{\lambda_i^{\alpha}} \exp\left(\frac{-\Delta G_i^{o\alpha-\beta}}{RT}\right)$$

Druckabhängigkeit des Verteilungskoeffizienten:

$$D_i^{\alpha-\beta} = \frac{h_i^{\beta}}{h_i^{\alpha}} \exp\left(\frac{\mu_i^{o\beta} - \mu_i^{o\alpha}}{RT}\right)$$

$$\left(\frac{\partial \ln D_i}{\partial P}\right)_T = \frac{-\Delta V}{RT}$$

 α , β : Phasen

 μ : chemisches Potential von Element i in Phasen α & β

- $\lambda = Aktivitäten$
- *h* = Henry Konstante
- R = Gaskonstante
- T = Temperatur

http://www.imwa.info/geochemistry/Chapters/Chapter07.pdf

Spurenelemente

kompatibles & inkompatibles Verhalten

Begriffe beziehen sich gewöhnlich auf die Verteilung zwischen Phasen, die in mafischen/ultramafischen Gesteinen gesteinsbildend sind, und silikatischen Schmelzen

Ionenpotential und Verteilungskoeffizienten

Goldschmidtsche Regel(n)

ein vollständiger Austausch (Substitution) ist zwischen Atomen möglich, die gleiche Ladung besitzen und deren Radien sich um nicht mehr als 10-15 % unterscheiden.

So lassen sich lückenlose Mischkristallreihen erklären, z.B. zwischen

Fayalit (Fe₂SiO₄) und Forsterit (Mg₂SiO₄)

Gitterplätze in gesteinsbildenden Mineralen sind meißtens mit zweiwertigen Kationen (Mg, Fe, Ca) besetzt.

Goldschmidtsche Regel(n)

Je größer die Differenz in der Ladung zwischen dem "normalen" Ion im Kristall und dem ersetzenden Ion, desto schwieriger wird die Substitution

Was passiert bei ungleicher Ladung?

Goldschmidt: "...ions whose charges differ by one unit substitute readily for one another provided electrical neutrality of the crystal is maintained."

→ gekoppelte Substitution:

z.B. die zwischen den Plagioklas-Feldspäten

Albit (NaAlSi₃O₈) und Anorthit (CaAl₂Si₂O₈)

Substitutionen sind allgegenwärtig Minerale zeigen *chemische Variation* oder sind *zoniert*

Beispiel Zirkon (ZrSiO₄) SEE (La-Lu) substituieren Zr:

 $(Y, SEE)^{3+} + (Nb, Ta)^{5+} = 2Zr$

verschiedenen Farben durch Einbau unterschiedlicher Mengen an SEE

Modifikation der Goldschmidt Regel(n)

Substitutionen sind limitiert bei gleicher lonengröße (und Ladung), wenn die lonen unterschiedliche Elekronegativitäten haben oder unterschiedliche Bindungen eingehen.

Beispiel, Na⁺ and Cu⁺ haben den gleichen Radius und Ladung aber substituieren sich nicht gegenseitig.

Spurenelement-Substitutionen

diadocher Ersatz eines häufigeren Elements durch ein selteneres von gleicher Wertigkeit und ähnlichem Ionenradius (ähnliches Ionenpotential)

Rb⁺ (1.57 Å; Z/r = 0.637) \rightarrow K⁺ (1.46 Å, Z/r = 0.68) in Kfsp

 $Sr^{2+} \rightarrow Ca^{2+}$

 $Ga^{3+} \rightarrow AI^{3+}$

Zr⁴⁺ (0.80 Å); Hf⁴⁺ (0.79 Å)

Hf bildet keine eigenen Minerale; tritt getarnt auf in Zirkon ($ZrSiO_4$)

Spurenelement-Substitutionen

diadocher Ersatz eines häufigeren Elements durch ein selteneres von *anderer Wertigkeit*, aber mit ähnlichem Ionenradius,

Ba²⁺ (1.44 Å; Z/r = 1.39)
$$\rightarrow$$
 K⁺ (1.46 Å, Z/r = 0.68)

Voraussetzung: gekoppelte Substitution wegen Ladungsausgleich:

$$K^+ + Si^{4+} \leftrightarrow Ba^{2+} (Sr^{2+}) + Al^{3+}$$

 $ND^{J^+} \rightarrow II^{4^+}$

Quantitative Betrachtungen

• Substitutsionsreaktion:

 $CaO^{\ell} + MgO^{\ell} + 2SiO_{2}^{\ell} \rightleftharpoons CaMgSi_{2}O_{6}$ $M^{\ell} + CaMgSi_{2}O_{6} \rightleftharpoons Ca^{\ell} + MMgSi_{2}O_{6}$

• Gibbs Freie Energie für diese Reaktion:

$$\Delta \ G_{r} = \Delta \ G_{exchange}^{M-Ca} - \Delta \ G_{melting}^{Di}$$

• Der Verteilungskoeffizient für Element M hängt ab von den zwei Komponenten der Freien Energie:

$$D_{M}^{Di/\ell} = \exp\left(\frac{\Delta G_{melting}^{Di} - \Delta G_{ex}^{M-Ca}}{RT}\right)$$

"Crystal-strain Theorie" und Verteilungskoeffizienten

$$D_{i}^{s/\ell} = D^{o} \exp\left(\frac{-4\pi E N_{A} \left[\frac{r_{0}}{2}(r_{M} - r_{0})^{2} + \frac{1}{3}(r_{M} - r_{0})^{3}\right]}{RT}\right)$$

E = Elastizitätsmodul N = Avogadrozahl $r_0 = idealer lonenradius$ $r_M = tatsächlicher lonenradius$

(NaAlSi₂O₆) im Cpx nimmt zu

SEE-Verteilung zwischen Cpx und Glas in verschiedenen Schmelzzusammensetzungen

Abhängigkeit des Verteilungskoeffizienten von der Zusammensetzung

NBO/T = non-bridging oxygens per tetrahedral cation

Spurenelemente in magmatischen Prozessen

Magmatische Prozesse

Aufschmelzung und Kristallisation

Crystals settle or stick to side walls of chamber Mixing of two magmas Magma of different composition, not miscible with main magma PARTIAL MELTING OF ROCKS OF DIFFERENT COMPOSITIONS

Assimilation, Kontamination

Magmenmischung

Schmelzbildung

Modelle der Schmelzbildung

 Gleichgewichtsschmelzen = Batch (equilibrium) melting: Eine bestimmte Menge an Schmelze equilibriert mit dem Residualgestein

 Fraktionierte Aufschmelzung = Fractional melting: Die Schmelze wird sofort nach ihrer Bildung extrahiert

 Kontinuierliche Aufschmelzung = Continuous melting: Die Schmelze wird kontinuierlich extrahiert, aber ein Teil der Schmelze bleibt im System um die Porenräume zu füllen

Modelle der Schmelzbildung

Was für ein Schmelzbildungsprozess hat hier stattgefunden?

Modelle der Schmelzbildung

Modal

Ausgangsgestein und Schmelze haben gleiche modale Zusammensetzung

Nicht modal

Ausgangsgestein und Schmelze haben unterschiedliche modale Zusammensetzung

Inkongruent

die feste Phase reagiert mit der Schmelze. Bildung neuer Mineralphasen

Schmelzbildung

Schmelzbildung

Spurenelemente in magmatischen Prozessen

Verteilungskoeffizient:

$$Kd = \frac{C_i^{\min}}{C_i^{\text{Schmelze}}}$$

Gesamtverteilungskoeffizient D

$$D_i = x_1 K d_i^{\min 1} + x_2 K d_i^{\min 2} + x_3 K d_i^{\min 3}$$

Massenbilanz:

$$C_i^o = C_i^s (1 - F) + C_i^l F$$

i = Element

C° = Ursprüngliche Konzentration in den festen Phasen

C^I = Konzentration in der Schmelze

C^s = Konzentration in den residualen festen Phasen nach der Aufschmelzung

F = Aufschmelzgrad

Gleichgewichtsschmelzbildung Batch melting bzw. equilibrium melting

Aufgabe: "Batch melting modeling"

<u>Batch Melting</u> is the melting process whereby the liquid remains in equilibrium with the residue until the liquid is removed.

$$C_L/C_0 = 1/[D_S + F(1 - D_S]]$$
 bzw. $\frac{C_L}{C_0} = \frac{1}{\overline{D}*(1 - F) + F}$
 $C_S/C_0 = D_S/[D_S + F(1 - D_S)]$

 C_o = concentration of the element in the starting material (in the case of mantle melting, the concentration in the original mantle). C_S = concentration of the element in the solid (i.e. residuals) C_L = concentration of the element in the liquid (i.e. melt) D_S = bulk partition coefficient for the residual mantle F = weight fraction of melt produced [= melt/(melt + rock)]

Geochemische Diagramme

	$C_{L}/C_{O} = 1/(E_{O})$		
	D _{Rb}	D _{Sr}	
F	0.045	0.848	Rb/Sr
0.05	9.35	1.14	8.19
0.1	6.49	1.13	5.73
0.15	4.98	1.12	4.43
0.2	4.03	1.12	3.61
0.3	2.92	1.10	2.66
0.4	2.29	1.08	2.11
0.5	1.89	1.07	1.76
0.6	1.60	1.05	1.52
0.7	1.39	1.04	1.34
0.8	1.23	1.03	1.20
0.9	1.10	1.01	1.09

Batch melting and the Rb/Sr ratio

Veränderung der Rb und Sr Konzentrationen in der Schmelze mit steigendem Aufschmelzungsgrad. Basaltisches Ausgangsgestein (Plagioklas, Augit, Olivin).

Winter (2001) Introduction to Igneous and Metamorphic Petrology

Datensatz "Batch melting modeling"

D-values	Срх	Орх	Ol	Plag	Chondrite	Со
Residue Proportion	10%	20%	70 %		ppm	ppm
La	0.01	0.00017	0.0001	0.217	0.237	0.640
Се	0.03	0.00026	0.00015	0.166	0.613	1.655
Pr	0.07	0.0004	0.0002	0.152	0.0928	0.251
Nd	0.15	0.0006	0.00025	0.138	0.457	1.234
Pm						
Sm	0.4	0.00077	0.0003	0.124	0.148	0.400
Eu	0.55	0.001	0.00035	0.183	0.0563	0.152
Gd	0.7	0.0011	0.0004	0.095	0.199	0.537
Tb	0.8	0.0012	0.00045	0.0838	0.0361	0.097
Dy	0.85	0.0015	0.0005	0.0781	0.246	0.664
Но	0.89	0.002	0.00055	0.0725	0.0546	0.147
Er	0.9	0.0025	0.0006	0.0669	0.16	0.432
Tm	0.95	0.003	0.00065	0.0613	0.0247	0.067
Yb	1	0.0035	0.0007	0.0556	0.161	0.435
Lu	1.1	0.004	0.00075	0.05	0.0246	0.066

Berechnen Sie C_I, C_o, C_s

X 🖵	17 (°	- -	-	-	-	-	-		an age a	batch_melti	ing.xls -	Microsoft	Excel	-		-	-	-		-			, 0 -	x
Datei	Start	Einfügen	Seitenlayout	Formein	Daten	Überprüfen	Ansicht A	crobat	Change	daved			===_}	Standa	rd (2+				Σ AutoS	umme 🛪 👔	^ A _ (₽ X3
Einfüg	📄 🗈 Kopie	eren *					E Verbin	umpruch	Stand	oro 🔸	,0 ,00	Beding	te Als Tabel	le Neutra		Schlecht	- Ein	illiaen Lösch	en Format	🐺 Füllbe	reich + Sc	ZI 🛙	ien und	
÷.	Form Twischenabl	at übertragen	I A O	briftart				iden dha zenalerei		70 000 ,	00 *,0	Formatieru	ung * formatiere	n *	-	, en le en le	—	▼ ▼ Zeller		Z Lösche	n * und Rearb	Filtern * Ausw	/ählen ∗	
	san	age is	£	mintart	13		Austicituity		13	2011	13			Tormatvori	agen			Zellel			Dearb	eiten		~
	^	P	<u> </u>	D	E	c	G	Ц	1			V	1	M	N	0	D	0		D	c	т		
1	A	U	C	U	L		U			,		K	L.	IVI	IN IS	0	- F		4	N		· ·		<u> </u>
2 Kd	's	Срх	Орх	OI	Plg	Chondrite	Co (ppm)	F	Ds	CI/Co	CI	l (ppm)	Cl/Condr	Co/Condr	Cs (ppm)	Cs/Condr								
3 m	elt%=res%	0,1	0,2	0,7	C)							Cl	Со		Cs								
4 La		0,01	0,00017	0,0001	0,217	7 0,237	0,64	0,1																
5 Ce	2	0,03	0,00026	0,00015	0,166	o 0,613	1,655	0,1																_
6 Pr		0,07	0,0004	0,0002	0,152	0,0928	0,251	0,1																_
7 No	1	0,15	0,0006	0,00025	0,138	3 0,457	1,234	0,1																_
8 SN	n	0,4	0,00077	0,0003	0,124	0,148	0,4	0,1																_
10 Go	4	0,55	0.0011	0.0004	0.095	, 0,0303 5 0,199	0,132	0,1																
11 Tb	- I	0,8	0,0012	0,00045	0,0838	0,0361	0,097	0,1																
12 Dy	/	0,85	0,0015	0,0005	0,0781	0,246	0,664	0,1																
13 Ho)	0,89	0,002	0,00055	0,0725	0,0546	0,147	0,1																
14 Er		0,9	0,0025	0,0006	0,0669	0,16	0,432	0,1																
15 Tn	n	0,95	0,003	0,00065	0,0613	3 0,0247	0,067	0,1																
16 Yb)	1	0,0035	0,0007	0,0556	5 0,161	0,435	0,1																
17 Lu		1,1	0,004	0,00075	0,05	0,0246	0,066	0,1																_
18																								_
20						10%	batch m	elting																≡
21				1(-																
22					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																			
23																								
24				Ę.																				
25				눹																				
26				<u>ಕ</u>																				_
27										—ci														
28				atic						—Co														_
30				L L						-Cs										ſ		1		
31				nce																		-1		
32				Ŝ																				
33																								
34					1.00																			
35				· · ·	1 2	3 4 5	6 7 8	9 10 11 12	13 14															
36							-																	
37																								
38																								
39			/#																					-
Rereit	M Tabel	le1 / Tabelle2	2 / 💱 /																	F		0%		
Berelt							•					_		_		_		_					14.50	
		W) (Ö			A												DE	🛃 🔞 🤇) 🍈 🖻	iv 🖬 🕩	12.05.201	15

Übung: Schmelzbildung im Erdmantel

Normierte Diagramme

Selten-Erd-Diagramm

Spider-Diagramm bzw. Multi-Element Diagramm

Kristallisationsm a

Fraktionierte Kristallisation bzw. R

Trennung zwischen Kristallen und Sb durch gravitatives Absinken oder Flc

С

е

Kristallisationsmodelle

Kristallisation vom Rand zur Mitte (Kristallisationsfront)

Intrusion of mafic bodies into a crystallizing magma chamber or pluton in which a crystallization front was developed

Kristallisationsmodelle

(<45 vol% Kristalle Kristallbrei, Suspension

(45-60 vol% Kristalle Trennung von Kristallen und Schmelze

(> 60 vol% Kristalle hohe Viskosität geringe Permeabilität

Bachmann & Bergantz (2008) Elements

Fraktionierte Kristallisation Fractional crystallization bzw. Rayleigh fractionation

$$\frac{C_R}{C_O} = DF^{(1-D)}$$

Modelle der Schmelzbildung

- Schmelzbildung von Gesteinen ist oft komplexer als durch die bisherigen Gleichungen beschrieben
 - Verläuft typischerweise inkongruent
 - Minerale -> Minerale + Schmelze -> Schmelze

z.B. A ol + B cpx \rightarrow C opx + D liquid

Inkongruentes Schmelzen

(non-modal melting)

- komplexer aber realistischer
- setzt Kenntnisse über
 Schmelzbildungsreaktionen voraus

feste Phase reagiert mit der Schmelze. Die resultierende Schmelze hat danach einen anderen Chemismus als die feste Ausgangsphase

Modelle der Schmelzbildung

Inkongruentes Schmelzen Beispiele:

Incongruent melting of a **spinel peridotite** at 10 kbar (1 MPa; Kinzler & Grove, 1992):

0.82 cpx + 0.40 opx + 0.08 sp ----> 0.30 ol + 1.00 melt

Incongruent melting of a **biotite - sillimanite - gneiss** (Zeck, 1970): :

0.27 qtz + 0.43 bt + 0.30 sil ----> 0.72 cordierite + 0.28 melt

Modelle der Schmelzbildung

Modal composition of the <u>solid</u> (here: Lherzolite, "Pyrolite")

"Modal composition" of the <u>melt</u> (i.e. eutectic composition, here: basaltic melt)

$$C_L/C_0 = 1/[D_S + F(1 - P)]$$

 D_s = Verteilungskoeffizient zu Beginn der Aufschmelzung P = Verteilungskoeffizient der Minerale in der Schmelze

Komplexe Magmakammer

AFC-Modeler: a Microsoft[®] Excel[©] workbook program for modelling assimilation combined with fractional crystallization (AFC) process in magmatic systems by using equations of DePaolo (1981)

Mehmet KESKİN*

İstanbul University, Faculty of Engineering, Department of Geological Engineering, 34320 Avcılar, İstanbul, Turkey

Received: 12.10.2011 • Accepted: 29.03.2012 • Published Online: 27.02.2013 • Printed: 27.03.2013

Komplexe Magmakammer

TECTONIC PROVINCE DISCRIMINATION DIAGRAMS

Rollinson (1993)

Table 5.1 Discrimination diagrams which may be used to determine the tectonic setting of basalts

MORB	Figure	Within-plate basalts	Figure
Ti–Zr	5.2(a b)	Ocean-island tholeiites	
Ti–Zr–Sr	5 3	occun istanta inotentes	
$7r/Y_{-}7r$	5 5	Ti–V	5.10
Ti-V	5.10	FeO-MgO-Al ₂ O ₃	5.20
Cr-Y	5.12	MnO-TiO ₂ -P ₂ O ₅	5.22
Cr–Ce/Sr	5.12	K ₂ O–H ₂ O	5.23
TiOY/Nb	5.15		
FeO-MgO-Al ₂ O	5.20	Ocean-island alkali basalts	
$MnO-TiO_{2}-P_{2}O_{2}$	5.23	MnO-TiO ₂ -P ₂ O ₅	5.22
Discr function (Ti-Zr-Y-Sr)	5.4		
Discr. function (majors)	5.19	Continental tholeiites	
Biser: runetion (majors)	0.17	T. V	5 10
N-type MORB		I I-V	5.10
		La-I-ND TO V(N)	5.11
Zr-Nb-Y	5.8		5.15
Th–Hf–Ta	5.9	FeO-MgO-Al ₂ O ₃	5.20
La-Y-Nb	5.11	$K_2 O - 11 O_2 - P_2 O_5$	5.21
E-type MORB		Continental alkali basalts	
Zr-Nb-Y	5.8	La-Y-Nb	5.11
Th–Hf–Ta	5.9		
La-Y-Nb	5.11	Volcanic-arc basalts	Figure
FeO-MgO-Al ₂ O ₂	5.20		
		Ti–Zr	5.2(b)
Transitional MORB		Zr/Y–Zr	5.5(a)
		Cr-Y	5.12(a)
K ₂ O/Yb–Ta/Yb	5.13	Cr–Ce/Sr	5.12(b)
		FeO-MgO-Al ₂ O ₃	5.20
Back-arc basin tholeiites	Figure	- K ₂ O–H ₂ O	5.23
back are basin molentes	Tigure		
Ti-V	5.10	Island-arc tholentes	
La-Y-Nb	5.11	Ti–Zr–Y	5.1
K_O_H_O	5.73	Ti–Zr	5.2
120 120	0.20	Ti–Zr–Sr	5.3
		- Discr. function (Ti-Zr-Y-Sr)	5.4
Within-plate basalts	Figure	Th-Hf-Ta	5.9
	and the same prices	Ti-V	5.10
Ti–Zr–Y	5.1	La-Y-Nb	5.11
Ti–Zr	5.2(b)	K ₂ O/Yb-Ta/Yb	5.13
Discr. function	5.4	Discr. function (majors)	5.19
Zr/Y–Zr	5.5(a)	MnO-TiO ₂ -P ₂ O ₅	5.22
Zr/Y-Ti/Y	5.6		
Cr-Y	5.12(a)	Continental-arc	
Cr–Ce/Sr	5.12	7./V 7.	5.5(b)
Discr. function (majors)	5.19	217 1-21	5.5(0)
Alkali		Oceanic-arc	
Zr/Y-Nh/Y	5.7	Zr/Y–Zr	5.5(b)
Zr-Nb-Y	5.8		
Th-Hf-Ta	5.0	Calc-alkaline basalts	
Ti_V	5.10	Ti-Zr-Y	5.1
K ₂ O/Yb=Ta/Yb	5.13	Ti–Zr	5.2(a)
TiO_{n-Y}/Nb	5.15	Ti–Zr–Sr	5.3
1107 11110	2.12	Discr. function	5.4
Tholeiitic		Th-Hf-Ta	5.9
the story approximation of sub-		La-Y-Nb	5.11
Ti/Y-Nb/Y	5.7	K ₂ O/Yb-Ta/Yb	5.13
Zr–Nb–Y	5.8	Discr. function (majors)	5.19
K ₂ O/Yb-Ta/Yb	5.13	MnO-TiO ₂ -P ₂ O ₅	5.22
		2 2 2	
Transitional		Shoshonitic basalts	
Ti/Y-Nb/Y	5.7	K ₂ O/Yb-Ta/Yb	5.13
K ₂ O/Yb-Ta/Yb	5.13	Discr. function (majors)	5.19

Elementverteilungsmuster

Ozeaninselbasalte: verglichen mit MORB Quelle angereichert an inkompatiblen Elementen

Laven aus Subduktionszonen: Zufuhr fluid-löslicher Elemente in den Mantelkeil während der Slab-Entwässerung (LIL, Pb, Sr)

Elementverteilungsmuster

Ozeaninselbasalte: verglichen mit MORB Quelle angereichert an inkompatiblen Elementen

Laven aus Subduktionszonen: Zufuhr fluid-löslicher Elemente in den Mantelkeil während der Slab-Entwässerung (LIL, Pb, Sr)

Geochemische Diagramme

Diagrammtypen:

- Bivariante Verteilungen (X-Y)
- Dreiecksdarstellungen
- Normierte Darstellungen (Spider-Diagramme)
- Ziel: Darstellung der Haupt- und Spurenelementvariationen, die Hinweise auf magmatische Prozesse geben können
 - Fraktionierte Kristallisation
 - Magmenmischung
 - Nebengesteinsassimilation/kontamination
 - Partielles Aufschmelzen

Aluminium-Sättigungsindex, ASI

Winter (2001) Alumina saturation classes based on the *molar* proportions of $Al_2O_3/(CaO+Na_2O+K_2O)$ ("A/CNK") after Shand (1927). Common non-quartzofeldspathic minerals for each type are included. After Clarke (1992). Granitoid Rocks. Chapman Hall.

Albit: NaAlSi₃O₈ Anorthit:CaAl₂Si₂O₈ K-fsp: KAlSi₃O₈ Bi: KFe₃AlSi₃O₁₀(OH)₂

Winter (2001) Alumina saturation indices (Shand, 1927) with analyses of the peraluminous granitic rocks from the Achala Batholith, Argentina (Lira and Kirschbaum, 1990). In S. M. Kay and C. W. Rapela (eds.), Plutonism from Antarctica to Alaska. Geol. Soc. Amer. Special Paper, 241. pp. 67-76.

Identifikation von Magmenserien

	Characteristic	Plate Margin		Within Plate		
	Series	Convergent	Divergent	Oceanic	Continental	
	Alkaline	yes		yes	yes	
Sub-	Tholeiitic	yes	yes	yes	yes	
alkalin	Calc-alkaline	yes				

TAS-Diagramm

Diskriminierungsdiagramme

Tektonische Diskriminierungsdiagramme

Figure 9.8 Examples of discrimination diagrams used to infer tectonic setting of ancient (meta)volcanics. (a) after Pearce and Cann (1973), (b) after Pearce (1982), Coish et al. (1986). Reprinted by permission of the American Journal of Science, (c) after Mullen (1983) Copyright © with permission from Elsevier Science, (d) and (e) after Vermeesch (2005) © AGU with permission.

Übung 11: Mineralformelberechnung

Tabelle 8.2 Koordination in Silikaten. Vorkommen Kation Radienquotient Vorhergesagte Koordination in Mineralen r_{Kation} : r_{Anion} Si4+ FELD-0.26 4-facher (tetraedischer) 0.36 Z-Platz A|3+ 0.46 Ti⁴⁺ 0.52 PYROXEN AMPHIBOL Fe³⁺ GRANAT 0.55 GLIMME 6-facher (oktaedrischer) Mn²⁺ 0.56 Platz OLIVIN T Mg^{2+} 0.61 Fe²⁺ 0.65 Ca2+ 0.91 -SPAT 8-facher Na⁺ 0.94 Platz K^+ 1.27 ≥ 12-facher Platz

Mineralformelberechnung Olivin

Mineralformelberechnung

	Relative Molmasse	1 Analyse als Gew.% Oxide ¹⁾	2 Analyse als Mole der Oxide ²⁾	3 Mole Sauerst. (als O ²⁻) ³⁾	4 Kationen pro 4 Sauersto	n ffe ⁴⁾	
SiO ₂	60,09	39,41	0,6558	1,3116	1,0008	Z-Platz	1,001
FeO	71,85	16,46	0,2291	0,2291	0,3496]		
MnO	70,94	0,21	0,0030	0,0030	0,0046	Y-Platz	1,998
MgO	40,32	43,27	1,0732	1,0732	1,6378		
CaO	56,08	0,23	0,0041	0,0041	0,0063		
		99,58		2,6210 · <u>4</u> =			

¹⁾ Siehe Kasten 8.3.

²⁾ Spalte 1 dividiert durch die relative Molmasse.

³⁾ Spalte 2 · Anzahl Sauerstoffe pro Molekül (2 für SiO₂, 1 für den Rest).

⁴⁾ Spalte $2 \cdot 4/2,6210$.

 $(Mg_{1.638}Fe_{0.350}Ca_{0.006}Mn_{0.005})Si_{1.001}O_4$

Kationenplätze in Amphibolen

Mineralformelberechnung Amphibol: $AB_2C_5Z_8O_{22}(OH)_2$

Die Formel eines Amphibols wird normalerweise mit 24 Sauerstoffen geschrieben (OH eingeschlossen), so daß die Analyse auf diese Basis umgerechnet wird.

Die Ionen sind zwischen einer größeren Vielfalt von Lücken aufgeteilt Die Übereinstimmung zwischen

Platz-Besetzungen und der Idealformel ist allerdings weniger gut als für Olivin.

Es gibt zuwenig Si, um die 8 Z-Plätze pro Formeleinheit zu besetzen. Wir setzen voraus, daß der Rest von Al-Ionen (Al^{iv}) besetzt ist, aber das meiste Al bleibt übrig und wird den oktaedrischen C-Lücken zugeteilt (Al^{vi}), genauso wie Fe³⁺, Fe²⁺, Mg²⁺ und Mn²⁺.

Ca²⁺ muß der größeren B-Lücke zugeordnet werden, die auch das Na⁺ aufnimmt.

 K^+ ist zu groß, um etwas anderes als den A-Platz zu besetzen. In diesem Beispiel ist es schwierig, zu erreichen, daß alle A-Plätze besetzt werden, und in vielen Amphibolen bleibt dieser Platz tatsächlich frei.

Mineralformelberechnung Amphibol: AB₂C₅Z₈O₂₂(OH)₂

Coordination number

lon	Radius	Radius ratio	Predicted	Observed
			Coordination#	Coordination#
Cs+	1.70	1.22	12	12
Rb+	1.49	1.06	12	8, 12
K+	1.38	0.98	8	8, 12
Ba ²⁺	1.36	0.97	8	8, 12
Sr ²⁺	1.13	0.81	8	8
Na ⁺	1.02	0.73	6	6, 8
Ca ²⁺	1.00	0.71	6	6, 8
Mn ²⁺	0.82	0.59	6	6
Fe ²⁺	0.77	0.55	6	6
Li+	0.74	0.53	6	6
Mg ²⁺	0.72	0.51	6	6
Ti ⁴⁺	0.67	0.48	6	6
Fe ³⁺	0.65	0.46	6	6
V ³⁺	0.64	0.46	6	6
Cr ³⁺	0.62	0.44	6	6
Al ³⁺	0.53	0.38	4	4, 6
Si ⁴⁺	0.40	0.29	4	4