Based on the decay reaction: $^{87}_{37}Rb \rightarrow ^{87}_{38}Sr + \beta^{-}$

with a half-life

geochronometry equation written in terms of the ratio ⁸⁷Sr/⁸⁶Sr because ratios are more accurately determined by mass spectrometry

The Rb-Sr method is commonly used to date Rb-rich minerals such as muscovite, biotite and K-feldspar; these minerals usually do not incorporate much Sr at the time of their formation (Goldschmidt's rules).

During the last decades also cogenetic whole rock samples were analysed by this method.

What accounts for huge range in Rb/Sr ratios of rocks?

- 1. Rb subsitutes for K in K-bearing minerals while Sr substitutes for Ca in Ca-bearing minerals
- 2. Rb and Sr are fractionated by igneous processes: Rb tends to prefer melt (more incompatible than Sr)

High Rb/Sr rocks contain more ⁸⁷Sr Low Rb/Sr rocks contain less ⁸⁷Sr

Igneous Processes and ⁸⁷Sr/⁸⁶Sr ratios

⁸⁷Rb goes into the melt

⁸⁷ Sr/ ⁸⁶ Sr ratios of igneous rocks:		
MORB	0.7025	
Ocean Islands	>0.704	
Continents	0.7119	

igneous rocks are heterogeneous, different mineral phases will have different Rb/Sr ratios, even though they have the same crystallization age and the same ⁸⁷Sr/⁸⁶Sr initial

how to get the initial ⁸⁷Sr/⁸⁶Sr ratio?

> usually the isochron method is employed to determine the age and initial ⁸⁷Sr/⁸⁶Sr ratio of a suite of rock samples

Rb-Sr isochron diagram for a series of cogenetic rock samples formed at the same time

Exercise 11

Isochron (part II): regression treatment with pocket calculator

<u>sample</u>	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr
L14	446.6	2.76164
L12	600.4	3.4311
L16	820.6	4.4054
L15	999.1	5.1927

Rb-Sr isochron diagram illustrating how the isochron evolves as a function of time. M_1 and M_2 are cogenetic minerals and R_1 and R_2 are cogenetic minerals and R_1 and R_2 are cogenetic rocks, all with different initial Rb/Sr ratios

Response of Rb/Sr-system during metamorphism

Response of Rb/Sr-system during metamorphism

Sr isotopic evolution of the Earth

Continental crust: 32-78 ppm Rb, 260-333 ppm Sr Depleted Mantle: 0.6 ppm Rb, 19.9 ppm Sr ⁸⁷Sr/⁸⁶Sr ratio of the crust is higher than that of the mantle due to the preferential partitioning of Rb into the crust relative to Sr.

Tracking (⁸⁷Sr/⁸⁶Sr)_i through time

 $({}^{87}Sr/{}^{86}Sr)_i$ ratios indicate how enriched or depleted its mantle source was i.e. $({}^{87}Sr/{}^{86}Sr)_i = 0.7020$ at 1 Ga means a depleted source

(⁸⁷Sr/⁸⁶Sr)_i value of 0.728 at 1 Ga?

The evolution of ⁸⁷Sr/⁸⁶Sr with time in the continental crust and mantle

(87Sr/86Sr)₀ ratios can be used as a tracer to determine if a magma evolved from the mantle or if crust was involved

For mantle-derived rocks: $(87Sr/86Sr)_0 \approx 0.700-0.706$

For crustal involvement: $(87Sr/86Sr)_0 \approx 0.705-0.740$

Sr isotopes as tracer of rock origin

Sr isotopes as tracer of rock origin

Sr in the oceans through time

Sr isotope composition of the oceans is determined by the relative contributions of Sr from river waters and hydrothermal sources

Why is the river Sr isotope value the highest? Why is the hydrothermal Sr isotope value the lowest? Why is carbonate recrystallization Sr isotope value equal to that of seawater?

Sr in the oceans through time

Elemental- and isotopic mixtures

Binary mixtures

$$f_A = A / (A + B)$$

 $f_B = 1 - f_A$
 $(X)_M = (X)_A f_A + (X)_B (1 - f_A)$

$$\left(\frac{{}^{87}Sr}{{}^{86}Sr}\right)_{M} = \left(\frac{{}^{87}Sr}{{}^{86}Sr}\right)_{A} \times f_{A}\left(\frac{Sr_{A}}{Sr_{M}}\right) + \left(\frac{{}^{87}Sr}{{}^{86}Sr}\right)_{B} \times (1 - f_{A})\left(\frac{Sr_{B}}{Sr_{M}}\right)$$

Binary mixtures

$$(X)_{M} = (X)_{A}f_{A} + (X)_{B}(1-f_{A})$$

$$\left(\frac{{}^{87}Sr}{{}^{86}Sr}\right)_{M} = \left(\frac{{}^{87}Sr}{{}^{86}Sr}\right)_{A} \times f_{A}\left(\frac{Sr_{A}}{Sr_{M}}\right) + \left(\frac{{}^{87}Sr}{{}^{86}Sr}\right)_{B} \times (1 - f_{A})\left(\frac{Sr_{B}}{Sr_{M}}\right)$$

G. Faure, 1977, 2005

Water mixing in estuaries

Models for crustal contamination

AFC - process

Sr isotopic fingerprinting

Sr isotope fingerprinting

Sr isotope fingerprinting

Isochron or mixing line?

"Redwitzites": amphibole composition

Siebel et al. (1998) Geology 26

"Redwitzites": ⁴⁰Ar-³⁹Ar geochronology

Siebel et al. (1998) Geology 26

Source contamination vs. crustal contamination

