The Rb-Sr method

Based on the decay reaction:
JRb— JISr+ B”
with a half-life
T,,=48.8 Ga

geochronometry equation written in terms of the
ratio 8/Sr/8Sr because ratios are more
accurately determined by mass spectrometry

/ \

measured always some initial Sy~ Measured
present in a rock



The Rb-Sr method

The Rb-Sr method is commonly used to date
Rb-rich minerals such as muscovite, biotite
and K-feldspar; these minerals usually do not
Incorporate much Sr at the time of their
formation (Goldschmidt’s rules).

During the last decades also cogenetic whole
rock samples were analysed by this method.



The Rb-Sr method

8’'Rb=27.83%
8Rb=72.17%

Rb/Sr ratios for various rocks:

:3?:32523}% Ultrabasic 0.2
r=7. .
865r=9 870/2 ALL STABLE Basa_ltlc 0.06
' Shale 0.46
Sandstone 3

What accounts for huge range in Rb/Sr ratios of rocks?

1. Rb subsitutes for K in K-bearing minerals while
Sr substitutes for Ca in Ca-bearing minerals

2. Rb and Sr are fractionated by igneous processes:
Rb tends to prefer melt (more incompatible than Sr)

High Rb/Sr rocks contain more 87Sr
Low Rb/Sr rocks contain less 8/Sr




Igneous Processes and 8/Sr/8°Sr ratios
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87Sr/86Sr ratios of igneous rocks:
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The Rb-Sr method

igneous rocks are heterogeneous,
different mineral phases will have
different Rb/Sr ratios, even though
they have the same crystallization
age and the same 87Sr/86Sr initial

(87Sr/e8Sr) = 0.702

Rb/Sr=0.6

=Time of
crystallization

t

how to get the
initial 8/Sr/86Sr

] MANTLE
ratio? 87Sr/86Sr = 0.702

usually the isochron method is
employed to determine the age
and initial 87Sr/%°Sr ratio of a suite
of rock samples



Rb-Sr isochron diagram for a series of cogenetic rock
samples formed at the same time
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Exercise 11

Isochron (part ll): regression treatment with pocket calculator

sample 8’Rb/86Sr 87Sr/85Sr
L14 446.6 2.7/6164
L12 600.4 3.4311
L16 820.6 4.4054

L15 999.1 5.1927



BABI - Basaltic Achondrite Best Initial =

The Rb-Sr method
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Rb-Sr isochron diagram illustrating how the isochron evolves as a
function of time. M; and M, are cogenetic minerals and R, and R,
are cogenetic rocks, all with different initial Rb/Sr ratios

87Sr/0sy




Response of Rb/Sr-system
during metamorphism
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Response of Rb/Sr-system during metamorphism
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Response of Rb/Sr-system during metamorphism
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Sr isotopic evolution of the Earth

Rb g,

THE EARTH

In Proportion

2900 km

Continental crust: 32-78 ppm Rb, 260-333 ppm Sr

Depleted Mantle: 0.6 ppm Rb, 19.9 ppm Sr

87Sr/85Sr ratio of the crust is higher
than that of the mantle due to the
preferential partitioning of Rb into the
crust relative to Sr.
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Tracking (8/Sr/80Sr), through time
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(87Sr/88Sr); ratios indicate how enriched or depleted its mantle source was
l.e. (87Sr/86Sr), = 0.7020 at 1 Ga means a depleted source

(87Sr/8Sr), value of 0.728 at 1 Ga?



The evolution of 8/Sr/86Sr with time in the
continental crust and mantle

(87Sr/86Sr), ratios can be
used as a tracer to
determine if a magma
evolved from the mantle or if
crust was involved

For mantle-derived rocks:
(87Sr/86Sr), = 0.700-0.706

For crustal involvement:
(87Sr/86Sr), ~ 0.705-0.740
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Sr isotopes as tracer of rock origin

rock forms from crust at 1.0 Ma

\4
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Sr Isotopes as tracer of rock origin

As crystals form,

Rb enriched in melt,
_eventually can get

ultra-enriched (87Sr/86Sr)

Crystals form in magma chamber,
~ Rb stays in melt

| magma melts
host rock, which
has high 87Sr/8Sr
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e magma chambers
P with different histories
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Sr in the oceans through time

Sr isotope composition of the oceans is determined Why is the river Sr isotope
by the relative contributions of Sr from river waters value the highest?

Why is the hydrothermal Sr isotope
and hydrothermal sources value the lowest?

Why is carbonate recrystallization Sr
river water hydrothermal fluids isotope value equal to that of seawater?

87Sr/86Sr = 0.711 87Sr/86Sr = 0.703
\ / 875,/%g, \ CRUET&g?é_UEs
\ / 708
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Sr in the oceans through time

Controls on
seawater Sr
Isotopic composition

Sr flux rate

Sr isotope ratio
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Elemental- and isotopic mixtures

®




Binary mixtures

Two End Member Mixing Model

fx = A/(A+B)
fs = 1-f,

(X = (K)afa + (X)p(1-14)




Binary mixtures
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Concentration of A

Water mixing in estuaries

A more concentrated in seawater E more concentrated in river water
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Models for crustal contamination
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Sr isotopic fingerprinting

Saldenburg granite

Diorite



Sr isotope fingerprinting

Saldenburg granite

Diorites
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Sr isotope fingerprinting
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Isochron or mixing line?
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“Redwitzites”: amphibole composition

Mg/Mg+Fe

Actinolite

Actinolitic
Hornblende
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Siebel et al. (1998) Geology 26



“Redwitzites”: 40Ar-39Ar geochronology
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Source contamination vs.

crustal contamination
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