Sm-Nd method

147Sm decays to 43Nd by o-decay,
decay process: '*’Sm 2> o + *3Nd

half-life =106 billion years!!

147Sm=15%
4 other isotopes

143Nd=12.2%
6 other isotopes

De Paolo: Neodymium Isotope Geochemistry: an introduction
Springer-Verlag 187pp.

A. Dickin: Nd in the oceans:
http://www.onafarawayday.com/Radiogenic/Ch4/Ch4-5.htm




Sm-Nd method
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Promethium - unstable
(otherwise purification of Sm and Nd would have been more difficult)

Sm and Nd are rare earth elements

REE have 3+ charge, ionic radii decrease with increasing Z
all REE are “incompatible” (they prefer the melt), but light REE are more incompatible




Sm-Nd method
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Promethium - unstable
(otherwise purification of Sm and Nd would have been more difficult)

Nd is slightly more incompatible during mantle melting than Sm

Sm parent will be enriched in “depleted” sources (i.e. MORB)
(opposite to Rb/Sr system, where parent enriched in continents)




Sm-Nd method
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Promethium - unstable
(otherwise purification of Sm and Nd would have been more difficult)

High Sm/Nd rocks produce more 43Nd
Low Sm/Nd rocks produce less 43Nd

Although the difference is small, 143Nd/44Nd increases faster in the mantle than in the
crust. Thus, mantle-derived rocks have higher (43Nd/'#4Nd), than crustal rocks.




Sm-Nd method

Sm/Nd ratios for terrestrial materials:

MORB 0.32
cont. crust ~0.2
seawater 0.211

shale 0.209
garnet 0.539



Sm-Nd method

Based on the decay:
147Sm > 3Nd  T,, = 106 Ga (A=6.54x1012y-")

(e” ~1)

143777 143 17 147Sm
144Nd: 144Nd 144Nd

virtually same equation as for Rb/Sr system

Sm-Nd method is useful in Ca-bearing rocks because
REE substitute for Ca and garnet (high Sm/Nd ratio)

Sm-Nd method relatively resistant to alteration



Meteorites, i.e. basaltic
achondrites

Very old rocks from moon and

Earth

Garnet-bearing metamorphic

rocks
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Sm-Nd method

MSWD good MSWD poor
Age good | Age poor
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Large variations in Sm/Nd ratios in natural rocks are rare

Therefore difficulty in obtaining a wide range of Sm/Nd ratios from a single rock body
Combined with greater technical demands of Nd-isotope work has limited applications
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Appllcatlons

Mineral isochrons for Sm Nd
often work quite successfully
because variations in partition
coefficients causes moderate
variations in Sm-Nd ratios

Garnet and Cpx have differenet
partition coefficients which
therefore give rise to large
variations in Sm/Nd ratios

Common occurrence of garnet +
cpx is in eclogites where Sm-Nd
has been used extensively to

date the timing of metamorphism

.@L‘.} ??-L.




Sm-Nd remobilisation and re-equilibration
Sm-Nd as REE are relatively immobile and may 5¢ 8
therefore not fully re-equilibrate during
~ metamorphism

'{.:Z Omphacite

Garnet

_______________________ 4:}_ _—_—

14?5 mf144Nd



Mineral transformation
Transformation of igneous augite to metamorphic omphacite
— Relatively minor cation exchange

— (Ca,Mg,Fe,Al),(Si,Al),O5 = (Na,Ca)(Mg,Fe,Al)Si,Oq4

— Monoclinic = Monoclinic

— Often does not completely re-equilibrate

Transformation of plagioclase to garnet

Major chemical exchange and structural re-organisation
CaAl,Si, O, 2 Ca,AlSi;O,,
Triclinic - Isotropic

Likely to completely reset Sm-Nd systematics and give the
metamorphic age



Effect of LREE-rich inclusions on garnet dating

143N d Pure garnet
144N d

(E“]?I% \Measured

Measured garnet

Inclusion

147Sm/144Nd

Price et al. (2000) Chem.Geol. 168



The evolution of Nd isotopes with time in the mantle, the
continental crust and the bulk Earth (CHUR)
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The evolution of Nd isotopes with time in the mantle, the
continental crust and the bulk Earth (CHUR)
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Epsilon notation

] (143
144
N d sample

Vi

ENd CHUR =

(143 Nd 144Nd)

CHUR

—1
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The mantle has a higher #/Sm/'44Nd ratio than
CHUR, so the mantle has been evolving values
of 143Nd/'4*Nd greater than CHUR with time, so
€na.chur > 1 for mantle. The crust has a lower
147Sm/144Nd ratio than CHUR, so the crust has
been evolving values of #3Nd/144Nd less than
CHUR with time, so g4 cyur < 1 for crust.



Nd model ages

Model age - a measure of the length of time a
sample has been separated from the mantle
from which it was originally derived.

Model ages can be calculated for an individual
rock from a single pair of Sm-Nd isotopic
ratios.

The basis of all such model ages is an
assumption about the isotopic composition of
the mantle source region from which the
samples were originally derived.

Care must be exercised in their interpretation.
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Nd model ages
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Nd model ages
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143Nd/144Nd

Nd model ages
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Nd model ages
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143Nd/144Nd

Nd-Sr isotope correlation diagram
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Nd-Sr isotope correlation diagram
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Summary Sm-Nd

Igneous rock formation

Primordial

» | high Sm residual
Mantle J
equivalent to CHUR partial
melting

uh

low Sm melt

-Rocks formed from
magma depleted mantle
-high 143Nd/144Nd

-high Sm/Nd

-€ is positive

, -crustal rocks

-low 143Nd/144Nd
-low Sm/Nd
—¢€ IS negative

Same timescales as Rb-Sr and K-Ar (Ar-Ar)
More resistant to changes during metamorphism and ion exchange
Better adherence to closed system assumptions



146Sm-142Nd chronometer

1465 m-192Nd evidence from Isua 1%2Nd Evidence for Early

metamorphosed sediments for early (>4.53 Ga) Global Differentiation
differentiation of the Earth’s mantle of the Silicate Earth

Guillaume Caro*, Bernard Bourdon®, Jean-Louis Birck* &
Stephen Moorbath+ M. Boyet™ and R. W. Carlson

Nature 423, p428 (2003) Science 309, p576 (2005)
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Nd Iin the oceans

% Nd is not well-mixed in the ocean, because it has a short oceanic
residence time (shorter than ocean mixing time) and ratios
reflect regional changes in water (or volcanic) inputs.

anything with a re me shorter than the turnover time of the
ocean (~1500 y) will




Nd in the oceans

Nd (and Sr) from different continental sources have isotopic signatures specific
to the source rock of the watershed.

Total conc. may be changed during fluvial transport (e.g. Nd = f(pH) )

Wl North American Rivers But isotopic ratios 143Nd/‘I 44Nd retained

- Both Nd and Sr isotopes changed in ocean
over time.

log Nd, ppt
N w
o o
I T

The change in %3Nd/'+*Nd and
87Sr/86Sr indicate varying contributions from

. <« Ocean .
ol e different sources of water to the oceans.
rain . \/
LYY Sr has long oceanic residence time and ratios
4 6 8 10 reflect global changes

Nd has short oceanic residence time (shorter than ocean mixing time) and ratios
reflect regional changes in water (or volcanic) inputs.



North American Rivers
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Table 19.3. Average Weighted Concentrations

and Isotope Ratios of Nd in River Water Prior

to Losses due to Sorption in Estuaries

Discharge,

River Water km'/y  Nd, ppt '“Nd/'*Nd2

Atlantic Ocean 20,323 55.7 0.511991
rivers

Pacific Ocean 13,123 27.8 0.512489
rivers

Indian Ocean 4,878 26.6 0.512191
rivers

Arctic Ocean 4,115 21.6 0.511319
rivers

All rivers 42,439 40.5 0.511330

Source: Goldstein and Jacobsen, 1987.
“Relative to 0.512638 for CHUR-Nd.

All rivers plotted drain a variety of

| __—continental crusts. Relatively low Nd ratio,

relatively high Sr ratio

Atlantic — drains continental crust
silicates (low Nd ratio)

Pacific — drains rocks that were
mantle derived volcanics (high Nd ratio)



Nd in the oceans

Comparison of seawater isotope compositions with sea floor Fe-Mn nodules and

possible source reservoirs. 0.5120 0.5125
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Good isotopic correspondence between river discharge water, seawater, and
ferro-manganese nodules

from Alan P. Dickin: http.//www.onafarawayday.com/Radiogenic/



Rise of continental crust source to the Atlantic
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Rise of volcanic (mantle source) inputs to the Pacific
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Some differences due to bottom
water inputs...deep circulation.

Short residence time of Nd in the
ocean relative to ocean mixing
rates allows to obtain basin
specific information



Nd Iin the oceans
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Nd Iin the oceans
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