

Method is based on the following three decay reactions:

$$^{238}U \rightarrow ^{206}Pb T_{1/2} = 4.468 Ga$$

 $^{235}U \rightarrow ^{207}Pb T_{1/2} = 0.704 Ga$
 $^{232}Th \rightarrow ^{208}Pb T_{1/2} = 14.01 Ga$

²⁰⁴Pb is a non–radiogenic, stable isotope. We can therefore write:

$$\frac{\frac{206}{204}Pb}{\frac{204}{Pb}} = \left(\frac{\frac{206}{204}Pb}{\frac{204}{Pb}}\right)_{0}^{0} + \frac{\frac{238}{204}U}{\frac{204}{Pb}}(e^{\lambda_{1}t}-1)$$
$$\frac{\frac{207}{204}Pb}{\frac{204}{Pb}} = \left(\frac{\frac{207}{204}Pb}{\frac{204}{Pb}}\right)_{0}^{0} + \frac{\frac{235}{204}U}{\frac{204}{Pb}}(e^{\lambda_{2}t}-1)$$
$$\frac{\frac{208}{204}Pb}{\frac{204}{Pb}} = \left(\frac{\frac{208}{204}Pb}{\frac{204}{Pb}}\right)_{0}^{0} + \frac{\frac{232}{204}Th}{\frac{204}{Pb}}(e^{\lambda_{3}t}-1)$$

benefit of
equation
above:This equation is especially useful as the
present-day 235U/238U is a constant,
eliminating the need to measure U.
Concentration of Pb can also be ignored.
Equation can be used to calculate an age by
linear fitting in 206Pb/204Pb=207Pb/204Pb space,
or if initial Pb is negligible, then the measured
(207Pb/206Pb)* can be used to directly
calculate a date. In both cases, the equation
must be solved iteratively; this is commonly
called the Pb=Pb date.h is
two

h isochron two eqns

$$\frac{\left(\frac{^{207}\text{Pb}}{^{204}\text{Pb}}\right) - \left(\frac{^{207}\text{Pb}}{^{204}\text{Pb}}\right)_{0}}{\left(\frac{^{206}\text{Pb}}{^{204}\text{Pb}}\right) - \left(\frac{^{206}\text{Pb}}{^{206}\text{Pb}}\right)_{0}} = \left(\frac{^{235}\text{U}}{^{238}\text{U}}\right)\frac{\left(e^{\lambda_{235}t} - 1\right)}{\left(e^{\lambda_{238}t} - 1\right)} = \left(\frac{^{207}\text{Pb}}{^{206}\text{Pb}}\right)^{*}$$

B. Schoene (2014) Treatise on Geochemistry

B. Schoene (2014) Treatise on Geochemistry

$$\left(\frac{{}^{206}\text{Pb}^*}{{}^{238}\text{U}}\right) = \left(e^{\lambda_{238}t} - 1\right)$$

$$\left(\frac{{}^{207}\text{Pb}^*}{{}^{235}\text{U}}\right) = \left(e^{\lambda_{235}t} - 1\right)$$

$$\left(\frac{{}^{208}\text{Pb}^*}{{}^{232}\text{Th}}\right) = \left(e^{\lambda_{232}t} - 1\right)$$

U-Pb Concordia diagram

 $^{206}Pb^{*/238}U = (e^{\lambda t^{1}}-1), \,^{207}Pb^{*/235}U = (e^{\lambda t^{2}}-1)$

U-Pb Concordia diagram

Numerical values of $e^{\lambda_1 t} - 1$, $e^{\lambda_2 t} - 1$, and of the radiogenic ²⁰⁷Pb/²⁰⁶Pb ratio as a function of age (t)

Ga	$e^{\lambda_1 t}$ - 1	$e^{\lambda_2 t}$ - 1	$\left(\frac{\frac{207}{Pb}}{\frac{206}{Pb}}\right)^*$	Ga	$e^{\lambda_1 t}$ - 1	$e^{\lambda_2 t}$ - 1	$\left(\frac{\frac{207}{Pb}}{\frac{206}{Pb}}\right)^*$
0	0.0000	0.0000	0.04607	2.4	0.4511	9.6296	0.15492
0.2	0.0315	0.2177	0.05014	2.6	0.4968	11.9437	0.17447
0.4	0.0640	0.4828	0.05473	2.8	0.5440	14.7617	0.19693
0.6	0.0975	0.8056	0.05994	3.0	0.5926	18.1931	0.22279
0.8	0.1321	1.1987	0.06584	3.2	0.6428	22.3716	0.25257
1.0	0.1678	1.6774	0.07254	3.4	0.6946	27.4597	0.28690
1.2	0.2046	2.2603	0.08017	3.6	0.7480	33.6556	0.32653
1.4	0.2426	2.9701	0.08886	3.8	0.8030	41.2004	0.37232
1.6	0.2817	3.8344	0.09877	4.0	0.8599	50.3878	0.42525
1.8	0.3221	4.8869	0.11010	4.2	0.9185	63.5753	0.48951
2.0	0.3638	6.1685	0.12306	4.4	0.9789	75.1984	0.55746
2.2	0.4067	7.7291	0.13790	4.6	1.0413	91.7873	0.63969

U-Pb Concordia diagram

On a plot of ²⁰⁶Pb^{*}/²³⁸U vs. ²⁰⁷Pb^{*}/²³⁵U, the locus of all points yielding concordant dates is called the <u>concordia curve</u>

Samples experiencing no Pb or U mobility move along the concordia as they age. Samples that do not plot on the concordia yield discordant dates.

The concordia curve bends over because ²³⁵U decays much faster than ²³⁸U; this causes ²⁰⁷Pb to be produced faster than ²⁰⁶Pb. This diagram was introduced by Wetherill in 1956 and termed *Concordia diagram* (remember *Nicolaysen diagram* for Rb-Sr)

U-Th-Pb method of dating

- With this geochronometer, we can get three independent age determinations of minerals or rocks containing both U and Th.
- All three equations will give the same ages, provided no gain or loss of U, Th or Pb occurred during the lifetime of the system being dated. The ages are then said to be <u>concordant</u>.
- Often, the three dates do not agree, i.e., they are <u>discordant</u>.

Generally, discordancy results from loss of Pb.

U-Pb Concordia method of dating

During episodic Pb loss or U gain, minerals are displaced from the concordia and move along the discordia line

If Pb loss occurred, the rocks plot along a line below the concordia.

- If U loss occurred, the rocks would plot along a line above the concordia.
- The line that results from discordant samples is called discordia line. The upper discordia intercept may represent the age of formation of the rock. The lower intercept may represent the date of Pb loss, if this loss occurred in a single stage, and not continuously.

U-Pb concordia method of dating

Wetherill & Tera-Wasserburg concordia

Tera-Wasserburg concordia

B. Schoene (2014) Treatise on Geochemistry

U-Pb Concordia method of dating

²⁰⁷Pb/²³⁵U

Pb loss models (for zircons)

Continuous diffusion model (Ahrens 1955, Tilton 1960)

Episodic Pb loss model – Pb loss due to thermal event(s) (Wetherill 1956)

"Dilatancy model" – fluid driven Pb loss (Goldrich & Mudrey 1972)

Higher Pb loss in U-rich zircons (greater radiation damage) (Silver & Deutsch 1963)

Discordant Pb in filling defect and voids, concordant Pb in the lattice itself (Kober 1987)

Concordia-discordia diagram for zircon grains in granulite facies metasediments from Sri Lanka

Towards more concordancy

Chemical leaching (Krogh & Davis 1975)

Air abrasion method (Krogh 1982)

Chemical abrasion/annealing method (Mattinson 2005)

Chemical abrasion

Magmatic or metamorphic zircon?

Concordia diagram vs. Tera-Wasserburg plot

Correction for initial lead

The isotope geology of Pb

http://www.dmg-home.de/Ressourcen/Internet-Kurse/Isotopengeochemie.pdf

Intermediate daughter product disequilibria

$$t_{\text{excess}} = \left(\frac{1}{\lambda_{238}}\right) \ln \left[1 + (f-1)\left(\frac{\lambda_{238}}{\lambda_{230}}\right)\right]$$

$$f = \left\lfloor \frac{(\text{Th/U})_{\text{mineral}}}{(\text{Th/U})_{\text{liquid}}} \right\rfloor$$

B. Schoene (2014) Treatise on Geochemistry

The reverse discordant effect in monazite is largely due to excess ²⁰⁶Pb, which is derived from disequilibrium incorporation of ²³⁰Th into the crystal lattice as an intermediate daughter product of the ²³⁸U decay chain (Schärer 1984; Parrish 1990). In such case, the ²⁰⁷Pb/²³⁵U ages are commonly regarded as the more reliable crystallization age of monazite.

U-Pb monazite dating (LREE Th)PO₄

Greater Himalaya Sequence, Nyalam

U-Pb monazite dating (LREE Th)PO₄

Chronological tool in metamorphic rocks

- Minimal concentrations of common Pb
- Minor risk of isotopic inheritance
- High resistance to Pb loss

~525°

apatite + allanite + muscovite + sillimanite + quartz \rightarrow monazite + annite + anorthite + fluid (Simpson et al.2000)

Measurement techniques

Uncertainties

Zircon U-Pb geochronology

Clean room laboratory

Mass spectrometry

Common lead correction

http://www.dmg-home.de/Ressourcen/Internet-Kurse/Isotopengeochemie.pdf

Sources of uncertainty

B. Schoene (2014) Treatise on Geochemistry

Orthoanatexite, Bayerischer Wald

Orthoanatexite, Bayerischer Wald

Zircon U-Pb geochronology

Mainstay in geochronology since many years

Highly radiogenic Pb can be produced in U- and Th-rich accessory minerals like zircon, titanite, monazite, uraninite

Zircon <u>500μm</u>

Zircon $(ZrSiO_4)$ - most commonly used mineral for U-Pb isotope dating and often the only method of choice in complex rocks

grain with premagmatic, inherited and older core

Cathodofluorescence (CL) images of

polished zircon grains

Zircon U-Pb geochronology

rim most likely to lose Pb (rims may also be formed by overgrowth)
Single zircon evaporation technique

$$\frac{\left(\frac{^{207}\text{Pb}}{^{204}\text{Pb}}\right) - \left(\frac{^{207}\text{Pb}}{^{204}\text{Pb}}\right)_{0}}{\left(\frac{^{206}\text{Pb}}{^{204}\text{Pb}}\right) - \left(\frac{^{206}\text{Pb}}{^{204}\text{Pb}}\right)_{0}} = \left(\frac{^{235}\text{U}}{^{238}\text{U}}\right)\frac{\left(e^{\lambda_{235}t} - 1\right)}{\left(e^{\lambda_{238}t} - 1\right)} = \left(\frac{^{207}\text{Pb}}{^{206}\text{Pb}}\right)^{*}$$

The ²⁰⁷Pb-²⁰⁶Pb age

The ²⁰⁷Pb-²⁰⁶Pb method often yields older dates than the individual U-Pb geochronometers because the ratio of Pb isotopes is not as sensitive to recent Pb loss

²⁰⁷Pb-²⁰⁶Pb zircon geochronology

Example 2: Zircon without core

Anthropogenic Pb

from Alan P. Dickin: http://www.onafarawayday.com/Radiogenic/

Anthropogenic Pb

Correspondence between lead ore compositions (•) and gasolines (o) from different countries on a Pb/Pb isotope plot (Chow 1970).

Strong correlation between the Pb isotope composition of gasoline Pb and local pollutant Pb.

→ gasoline additives were the principal source of pollutant lead in the environment

Pb composition in Shanghai

After phasing out of leaded gasoline blood lead level of children strongly correlates with the lead concentration in atmospheric particles, and the latter correlates with the coal consumption instead of leaded gasoline.

Anthropogenic Pb

from Alan P. Dickin: http://www.onafarawayday.com/Radiogenic/

Pb isotopes in the ocean

Chow & Patterson 1959, 1962: First major Pb isotope studies on manganese nodules and pelagic sediments

Result: General distinction between the Pb isotope signatures of Atlantic and Pacific samples. Within each ocean, manganese nodules and pelagic sediments give relatively consistent results

Conclusions: Pb has a relatively short residence time in seawater. Distinct Pacific and Atlantic Ocean signatures reflect average Pb isotope composition of the continents surrounding each ocean

Pb isotopes in the ocean

The age of the Earth

Lead isotope isochron that Clair Patterson used to determine the age of the solar system and Earth (Patterson 1956)

http://www.dmg-home.de/Ressourcen/Internet-Kurse/Isotopengeochemie.pdf

Pb-Pb dating

Combine the two U-Pb geochronometers:

$$\frac{\frac{207}{204}Pb}{\frac{207}{204}Pb} = \left(\frac{207}{204}\frac{Pb}{204}\right)_{0} + \frac{\frac{235}{204}\frac{U}{Pb}}{\frac{204}{Pb}}(e^{\lambda_{2}t} - 1)$$

$$\frac{\frac{206}{204}Pb}{\frac{206}{204}Pb} = \left(\frac{\frac{206}{204}\frac{Pb}{204}}{\frac{204}{Pb}}\right)_{0} + \frac{\frac{238}{204}\frac{U}{Pb}}{\frac{204}{Pb}}(e^{\lambda_{1}t} - 1)$$

$$\frac{\left(\frac{207}{204}\frac{Pb}{Pb}\right)}{\frac{204}{Pb}} - \left(\frac{\frac{207}{204}\frac{Pb}{Pb}}{\frac{204}{Pb}}\right)_{0} = \frac{\frac{235}{238}\frac{U}{U}}{\frac{e^{\lambda_{2}t} - 1}{e^{\lambda_{1}t} - 1}}$$

$$\frac{\left(\frac{207}{204}Pb\right)}{\left(\frac{207}{204}Pb\right)} - \left(\frac{207}{204}Pb\right)_{0}} = \frac{1}{137.88} \left(\frac{e^{\lambda_{2}t} - 1}{e^{\lambda_{1}t} - 1}\right)$$

The ²⁰⁷Pb-²⁰⁶Pb age

The left-hand side of this equation is written as:

The ²⁰⁷Pb-²⁰⁶Pb method often yields older dates than the individual U-Pb geochronometers because the ratio of Pb isotopes is not as sensitive to recent Pb loss

Pb-Pb dating

A plot of ²⁰⁷Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb for rocks or minerals of the same age should yield a straight line. This line is called Pb-Pb isochron.

10

20

238U/204Pb

30

In this example uranium was lost in recent weathering processes. This invalidates the U-Pb isochron method, but since the Pb isotope ratios in the rock reflect the preweathering U concentrations, they are not upset by the recent alteration event.

Pb-Pb dating

A plot of ²⁰⁷Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb for rocks or minerals of the same age should yield a straight line. This line is called Pb-Pb isochron.

Pb-Pb isochron diagram for iron and stony meteorites (\blacksquare, \square) and a 'Bulk Earth' sample of oceanic sediment (\bullet), showing that the Earth lies on the meteorite isochron, therefore also called the 'geochron'. After Patterson (1956).

 $206Pb_{t} = 206Pb_{0(bzw,T)} + 235U(e^{\lambda_{235}T} - e^{\lambda_{235}t})$

(Isotope ratios of Pb in troilite of the iron meteorite Canyon Diablo)

http://www.dmg-home.de/Ressourcen/Internet-Kurse/Isotopengeochemie.pdf

Pb-Pb isochron diagram showing a compilation of many analysed **galenas** from different environments. Stanton and Russell (1959)

Pb-Pb isochron diagram showing galena ores that form the basis of the 'conformable' Pb model. Stanton and Russell (1959)

http://www.dmg-home.de/Ressourcen/Internet-Kurse/Isotopengeochemie.pdf

Plumbotectonics

Schematic illustration of the operation of the 'plumbotectonics' model, showing mixing of crustal and mantle reservoirs into the orogene (galena source) reservoir. Doe & Zartman (1979)

Pb-Pb isochron diagram showing isotopic evolution of the four reservoirs computed by the plumbotectonics model. Doe & Zartman (1979)

Anthropogenic Pb

Correspondence between lead ore compositions (•) and gasolines (o) from different countries on a Pb/Pb isotope plot. After Chow (1970). The data reveal a very strong correlation between the Pb isotope composition of gasoline Pb and local pollutant Pb, conclusively demonstrating that gasoline additives were the principal source of pollutant lead in the environment.

Claude J. Allègre

Stable Isotopes

Stable Isotopes

Table 1.2 Characteristic physical properties of $H_2^{16}O$, $D_2^{16}O$, and $H_2^{18}O$

Property	$H_{2}^{16}O$	D ₂ ¹⁶ O	$H_{2}^{18}O$
Density (20 °C, in g cm ⁻³)	0.997	1.1051	1.1106
Temperature of greatest density (°C)	3.98	11.24	4.30
Melting point (760 Torr, in °C)	0.00	3.81	0.28
Boiling point (760 Torr, in °C)	100.00	101.42	100.14
Vapor pressure (at 100 °C, in Torr)	760.00	721.60	
Viscosity (at 20 °C, in centipoise)	1.002	1.247	1.056

"isotope effects":

Differences in chemical and physical properties arising from variations in atomic mass of an element or molecule

Jochen Hoefs (Stable Isotopes)

Stable Isotopes

Evaporation/precipitation

The lighter isotopes evaporate more easily

Heavyer isotopes enriched in remaining liquid phase

Property	H ₂ O	D ₂ O	H ₂ ¹⁸ O
Density at 20°C [g cm ⁻³]	0.9982	1.1051	1.1106
Melting point [°C]	0	3.81	0.28
Boiling point [°C]	100	101.42	100.14

Stable Isotopes

Jochen Hoefs (Stable Isotopes)

Isotope fractionation during chemical, physical and biological processes:

reversible chemical reaction at equilibrium state $A \leftarrow \rightarrow B$

physical changes – phase transitions water – vapor

biological and biochemical reactions CO_2 into C_{org}

1. Isotope exchange reaction (equilibrium isotope distribution)

reversible reaction that has reched an equilibrium,

 $A \leftrightarrow B$

Examples: chemical equilibrium, phase equilibrium

2. **Kinetic processes** which depend primarily on differences in reaction rates of isotopic molecules Non-reversible reaction, $A \rightarrow B$ Examples: reaction products, diffusion

> Isotopensignatur von Wasserdampf über einer Wasseroberfläche deutlich leichter, als eine Gleichgewichtsfraktionierung vorhersagen würde

1. isotope exchange reactions (equilibrium isotope distribution)

$$aA_1 + bB_2 = aA_2 + bB_1$$

$$\mathbf{K} = \frac{\left(\frac{\mathbf{A}_2}{\mathbf{A}_1}\right)^a}{\left(\frac{\mathbf{B}_2}{\mathbf{B}_1}\right)^b}$$

K (equilibrium constant), although close to 1, is different to 1 (Urey 1947, Bigeleisen & Meyer 1947)

$$\alpha_{A-B} = \frac{R_A}{R_B}$$

 $\alpha = K^{1/n}$

n = number of exchangeable atoms. Usually α = K (see next slide)

1. isotope exchange reactions – example

$$H_2^{18}O + \frac{1}{3}CaC^{16}O_3 \Leftrightarrow H_2^{16}O + \frac{1}{3}CaC^{18}O_3$$

$$\alpha_{\text{CaCo}_3-\text{H}_2\text{O}} = \frac{\left(\frac{^{18}\text{O}}{^{16}\text{O}}\right)_{\text{CaCo}_3}}{\left(\frac{^{18}\text{O}}{^{16}\text{O}}\right)_{\text{H}_2\text{O}}} = 1.031 \text{ at } 25^{\circ}\text{C}$$

 $\epsilon = \alpha - 1$

ε = isotope enrichment factor ε x 1000 ~δ-value (see next slide)

1. isotope exchange reactions - Delta-value (δ)

$$\boldsymbol{\delta} = \left(\frac{\text{sample isotope ratio} - \text{standard isotope ratio}}{\text{standard isotope ratio}}\right) \times 10^3$$

δ is a relative deviation from a standard, expressed as the number of parts per mil.
 Isotope ratios are expressed with the heavier isotope in the numerator, e.g.:
 ¹⁸O/¹⁶O, D/H, ¹³C/¹²C

 $^{\Delta}$ A-B

1.00

^αA-B

1.001

δB

0

δA

1.00

Table 1.3 Comparison between δ , α , and $10^3 \ln \alpha_{A-B}$

	5.00	0	5.00	1.005	4.99
$\Delta_{AB} = \delta_A - \delta_{B}$	10.00	0	10.00	1.01	9.95
	15.00	0	15.00	1.015	14.98
$\alpha_{A-B}=\frac{R_A}{R_B}$	20.00	0	20.00	1.02	19.80
	10.00	5.00	5.00	1.00498	4.96
	20.00	15.00	5.00	1.00493	4.91
	30.00	15.00	15.00	1.01478	14.67
	30.00	20.00	10.00	1.00980	9.76
	30.00	10.00	20.00	1.01980	19.61

For the two compounds A and B, the δ -values and fractionation factor α are related by:

$$\delta_{\rm A} - \delta_{\rm B} = \Delta_{\rm A-B} \approx 10^3 \ln \alpha_{\rm A-B} \tag{1.12}$$

Jochen Hoefs (Stable Isotopes)

 $103 \ln \alpha_{A-B}$

1.00

Exercise 1

Oxygen has three stable isotopes, ¹⁶O, ¹⁷O, and ¹⁸O, with average abundances of 99.756%, 0.039%, and 0.205%, respectively.

The ${}^{16}O/{}^{18}O$ ratio in a Jurassic limestone is 472.4335. In average sea water, this same ratio is ${}^{16}O/{}^{18}O = 486.594$.

If average sea water is taken as the standard, what is the δ of the limestone in question?

 δ is always expressed relative to the heavy isotope. Must invert the ratios stated in the question, giving 0.0021167 and 0.0020551, respectively

Applying the formula defining δ^{18} O gives δ^{18} O = +30

Claude Allègre (Isotope Geology)

Isotope variations of oxygen

Claude Allègre (Isotope Geology)

Isotope variations – oxygen

Claude Allègre (Isotope Geology)
Naturally occurring stable isotopes of sulfur are ³²S, ³³S, ³⁴S, and ³⁶S. Their average abundances are 95.02%, 0.75%, 4.21%, and 0.017%, respectively. Generally, we are interested in the ratio of the two most abundant isotopes, ³⁴S and ³²S. The standard for sulfur is the sulfide of the Canyon Diablo meteorite with a ³²S/³⁴S value of 22.22.

$$\boldsymbol{\delta} = \left(\frac{({}^{34}\text{S}/{}^{32}\text{S})_{\text{sample}}}{({}^{34}\text{S}/{}^{32}\text{S})_{\text{standard}}} - \mathbf{1}\right) \times \mathbf{10}^{3}$$

We have a sample of sulfur from a natural sulfide with ${}^{32}S/{}^{34}S = 23.20$. What is its $\delta^{34}S$?

Given that the standard has a ${}^{34}S/{}^{32}S$ ratio of 0.0450 and the sample a ratio of 0.0431, $\delta 34S = -42.22$ (negative!) By definition, the standard has a value $\delta = 0$

Given that the δ^{18} O value of a limestone is +24 and that the limestone formed by precipitation from sea water, calculate the overall limestone—sea water fractionation factor α .

$$\boldsymbol{\delta} = \left(\frac{\text{sample isotope ratio} - \text{standard isotope ratio}}{\text{standard isotope ratio}}\right) \times 10^3$$

$$\alpha_{A-B} = \frac{R_A}{R_B} = \frac{1 + \frac{\delta_A}{1000}}{1 + \frac{\delta_B}{1000}} \approx 1 + \frac{(\delta_A - \delta_B)}{1000}$$

following the approximation $(1 + \varepsilon) / (1 + \varepsilon') \sim 1 + (\varepsilon - \varepsilon')$

$$\Delta_{\text{limstone-H2O}} = \delta \text{CaCO}_3 - \delta \text{H}_2\text{O} = 24 - 0$$

$$\alpha = 1.024$$

We measure the δ^{18} O of calcite and water with which we have tried to establish equilibrium. We find $\delta_{cal} = 18.9$ and $\delta_{H2O} = -5$ at 50 °C. What is the calcite–water partition coefficient? Calculate it without and with the approximation

$$(1 + e) / (1 + e') \sim 1 + (e - e')$$

$$\alpha_{A-B} = \frac{R_A}{R_B} = \frac{1 + \frac{\delta_A}{1000}}{1 + \frac{\delta_B}{1000}} \approx 1 + \frac{(\delta_A - \delta_B)}{1000}$$

(1) Without approximation: $\alpha_{cal-H2O} = 1.02402$ (2) With approximation: $\alpha_{cal-H2O} = 1.02390$

Isotope variations during evaporation - condensation

no fractionation if complete turnover

Evaporation-Condensation Processes

Evaporation-Condensation Processes

Temperature dependence of water isotope fractionation

Evaporation-Condensation Processes

Jochen Hoefs (Stable Isotopes)

Isotope variations – oxygen

Quelle: Hydroisotop GmbH

Isotopenvariationen Kontinentaleffekt

Abreicherung der Niederschläge an schwereren Isotopen über Landmassen

Figure 9.8. Variation of δ^{18} O in precipitation as a function of mean annual temperature.

Isotope variations of oxygen in the surface oceans

Global Surface Seawater δ^{18} O v1.14

Figure 3. Example of output from the Schmidt et al (1999) global sea-water δ^{18} O database (extracted 1 February 2006). The image shows surface-water δ^{18} O integrated over the top 50 m on a 4° x 5° degree grid.

Geothermal fluids

Correlation diagram for (¹⁸O/¹⁶O, D/H) in geothermal waters. They form horizontal lines cutting the meteoric straight line at the point corresponding to local rainwater. Water has exchanged its oxygen isotopically with the rock but the hydrogen of water does not change because it is an infinite hydrogen isotope reservoir compared with rocks that are poor in hydrogen

Sea water has a δ^{18} O value of 0. Liquid–vapor fractionation at equilibrium at 20 °C is α = 1.0098. What is the composition of the water vapor evaporating if it is in equilibrium with the water?

If the isotope composition of the infinite reservoir is R₀, the "large" reservoir (e.g. sea water) imposes its isotope composition through the fractionation factor:

R = α R₀ and $\delta = \delta_0$ + (α – 1) x 1000

The fractionation factor $({}^{18}O/{}^{16}O)_{vapor}/({}^{18}O/{}^{16}O)_{liquid} = 1/\alpha = 0.99030$ Therefore $(\alpha - 1) = -0.0097$, and $\delta^{18}O = -9.7$ ‰ (per mil, parts per thousand)

Isotope fractionation processes

2. kinetic processes (depend primarily on differences in reaction rates of isotopic molecules)

associated with incomplete and unidirectional processes

evaporation, dissociation reactions, biologically mediated reactions, diffusion

Rayleigh distillation process

Changes in the instantaneous isotopic composition of a reservoir (δR) and an extract (δE) during a Rayleigh distillation process as a function of the partition coefficient α (1.01 & 0.99 resp.)

Let us consider bacterial reduction $SO_4^{2-} \rightarrow S^{2-}$ by Desulfovibrio desulfuricans. The kinetic fractionation factor ³⁴S/³²S between sulfate and sulfide at 25 °C is 1.025. Let us suppose that bacterial reduction occurred in oceanic sediment that Sulfates in was continually supplied with sulfate 50 waters ions. The sulfate stock can therefore 40 Sea water sulfates Old ediment 30 be considered infinite. Granites

What is the composition of the S²⁻ on the ocean floor if the δ^{34} S of the sulfate is = +24?

Applying the equation $\Delta_{AB} = 10^3$ ln α gives $\Delta_{AB} = +24.7$ $\delta_{sulfate} - \delta_{sulfide} = +24.7$ hence it can be deduced that $\delta_{sulfide} = -0.7$

$$\delta_{\rm A} - \delta_{\rm B} = \Delta_{\rm A-B} \approx 10^3 \ln \alpha_{\rm A-B}$$

Sulfur isotopes in sulfur-bearing deposits

Isotope fractionation processes

Mass dependent effects

diffusion, metabolism, temperature dependent equilibrium processes

Mass independent effects (MIF)

Fig. 2.24 Compilation of Δ^{33} S versus age for rock samples. Note large Δ^{33} S before 2.45 Ga, indicated by *vertical line*, small but measurable Δ^{33} S after 2.45 Ga (Farquahar et al. 2007) (Fig. 3.29, 6th edition, p. 167)

Jochen Hoefs (Stable Isotopes)

Mass independent fractionation (MIF)

Isotopic exchange

$$\frac{({}^{18}\text{O}/{}^{16}\text{O})_{\text{AO}}}{({}^{18}\text{O}/{}^{16}\text{O})_{\text{BO}}} = K(T)$$

Three types of water with different compositions brought into contact with quartz at 500°C

Curves show speed of equilibration by water– quartz exchange

Quartz with δ^{18} O = 10

Paleothermometer - Carbonate Thermometer

$$T_{^{\circ}C} = 16.5 - 4.3 \left(\boldsymbol{\delta}_{CO_{3}}^{18} - \boldsymbol{\delta}_{H_{2}O}^{18} \right) + 0.13 \left(\boldsymbol{\delta}_{CO_{3}}^{18} - \boldsymbol{\delta}_{H_{2}O}^{18} \right)^{2}$$
$$\boldsymbol{\delta}_{CO_{3}}^{18} = \left[\frac{\left(\frac{18}{O} / \frac{16}{O} \right)_{CO_{2}, \text{ carbonateX}} - \left(\frac{18}{O} / \frac{16}{O} \right)_{CO_{2}, \text{ standard}}}{\left(\frac{18}{O} / \frac{16}{O} \right)_{CO_{2}, \text{ standard}}} \right] \cdot 10^{3}$$

Paleothermometer

Table 7.1 Isoto	ppe fractionation	for minera	I-water pairs

Mineral	Temperature(°C)	A	В
Calcite(CO ₃ Ca)	0-500	2.78	- 2.89
Dolomite	300-500	3.20	- 1.5
Quartz	200-500	3.38	-2.90
Quartz	500-800	4.10	-3.7
Alkali feldspar	350-800	3.13	- 3.7
Plagioclase	500-800	3.13	-3.7
Anorthite	500-800	2.09	- 3.7
Muscovite	500-800	1.9	- 3.10
Magnetite	(reversed slope) 0-500	-1.47	- 3.70

for two minerals in equilibrium:

$$\Delta_{m_1m_2} = \delta_{m_1} - \delta_{m_2} \approx A(10^6 \ T^{-2}) + B = 1000 \ \ln \alpha.$$

Table 7.2 Results of ¹⁸O isotope thermometry based on ¹⁸O/¹⁶O fractionation of mineral pairs

Pair	A	В
Quartz-albite	0.97	0
Quartz-anorthite	2.01	0
Quartz-diopside	2.08	0
Quartz-magnetite	5.57	0
Quartz-muscovite	2.20	-0.6
Diopside-magnetite	5.57	0

Paleothermometer

What is the δ^{18} O composition of a muscovite in quilibrium with water at 600 °C whose $\delta = -10$?

General equation:

 $\Delta = A \times (10^6 \times 1/T^2) + B$

The δ 18O values of the minerals of a metamorphic rock are: quartz +14.8, magnetite +5.

Calculate the equilibrium temperature of quartz-magnetite.

General formula: $\Delta_{quartz - mineral} -B = A \times 10^{6}/T^{2}$

Table 7.2 Results of ¹⁸O isotope thermometry based on ¹⁸O/¹⁶O fractionation of mineral pairs

Pair	A	В
Quartz-albite	0.97	0
Quartz-anorthite	2.01	0
Quartz-diopside	2.08	0
Quartz-magnetite	5.57	0
Quartz-muscovite	2.20	-0.6
Diopside-magnetite	5.57	0

Low-temperature paleothermometry

Isotopologues – clumbed isotope thermometry

Table 1.4Stochasticabundances of CO2isotopologues (Eiler 2007)

Mass	Isotopologue	Relative abundance
44	$^{12}C^{16}O_2$	98.40 %
45	$^{13}C^{16}O_2$	1.11 %
	$^{12}C^{17}O^{16}O$	748 ppm
46	$^{12}C^{18}O^{16}O$	0.040 %
	$^{13}C^{17}O^{16}O$	8.4 ppm
	$^{12}C^{17}O_2$	0.142 ppm
47	¹³ C ¹⁸ O ¹⁶ O	44.4 ppm
	¹² C ¹⁷ O ¹⁸ O	1.50 ppm
	$^{13}C^{17}O_2$	1.60 ppb
48	$^{12}C^{18}O_2$	3.96 ppm
	$^{13}C^{17}O^{18}O$	16.8 ppb
49	$^{13}C^{18}O_2$	44.5 ppb

 ${}^{13}\mathrm{C}{}^{16}\mathrm{O}_3^{2-} + {}^{12}\mathrm{C}{}^{18}\mathrm{O}{}^{16}\mathrm{O}_2^{2-} \Leftrightarrow {}^{13}\mathrm{C}{}^{18}\mathrm{O}{}^{16}\mathrm{O}_2^{2-} + {}^{12}\mathrm{C}{}^{16}\mathrm{O}{}^{2-}_3.$

(61) (62) (63) (60).

Jochen Hoefs (Stable Isotopes)

Isotopologues – clumbed isotope thermometry

$$\Delta_{47} = \left[(47/44)_{\text{sample}} - (47/44)_{\text{reference}} \right] \times 10^3$$

$$\Delta_{47} = 0.0592 \cdot 10^6 T^{-2} - 0.02$$

Isotopic variations of oxygen in rocks

The diet of early humans

Isotopic variations of oxygen, strontium and neodymium

