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Abstract The Altai orogen forms the southern part of the

Central Asian Orogenic Belt (CAOB), the world’s largest

accretionary orogen. However, its tectonic evolution, par-

ticularly during the late Paleozoic, is still not well under-

stood. U–Pb zircon analyses for the Bulgen alkaline granite

yield crystallization ages of 358 ± 4 Ma (SHRIMP) and

354 ± 4 Ma (LA-ICP-MS). These ages are significantly

younger than published emplacement ages for subduction/

collision-related syn-orogenic granitoids (460–375 Ma) in

this region. The Bulgen granite has high SiO2, total alkalis,

rare earth elements, HFSE (Th, Zr, Hf, Nb, and Ce), and

low Ba, Sr with pronounced negative anomalies in Eu, Ba,

Sr, P, and Ti, showing a clear A-type geochemical signa-

ture. The granite records high eNd(t) values of ?6.3 to

?6.4 and young model ages (TDM) of ca. 600 Ma. The

Bulgen alkaline granite is largely undeformed as opposed

to the early-middle Paleozoic counterparts, which form

elongated deformed bodies parallel to the prevailing tec-

tonic fabric (NW direction). Available data suggest that

magmatism in the southern Altai region evolved from

early-middle Paleozoic I-type tholeiitic and calc-alkaline

granitoids to late Paleozoic A-type alkaline granitoids. The

high eNd(t) values of the Bulgen alkaline granite indicate a

homogeneous juvenile mantle source, whereas the early-

middle Paleozoic granitoids are characterized by lower and

more variable eNd(t) values (-2.6 to ?4.2). These differ-

ences provide an important insight into the late Paleozoic

orogenic processes of the Chinese Altai and indicate a

significant change of the tectonic regime from a syn-oro-

genic regional compression setting to a post-orogenic

extensional one. Major tectonic movements in this region

ceased after the early Carboniferous.

Keywords Zircon U–Pb � Chinese Altai � Alkaline

granite � Post-orogenic � Central Asian Orogenic Belt

Introduction

The Central Asian Orogenic Belt (CAOB, Jahn et al. 2000),

also termed Altaid Tectonic Collage, or Altaids (Sengör

et al. 1993; Yakubchuk 2004; Kovalenko et al. 2004;

Windley et al. 2007), is the world’s largest Paleozoic to

Mesozoic accretionary orogen (Sengör et al. 1993; Jahn

et al. 2000; Hong et al. 2004; Jahn 2004). It extends

southwards from the Siberian craton to the North China

and Tarim cratons, and eastwards from the Urals to the

Pacific Ocean (Fig. 1, inset). Formation of this orogenic

belt started at c. 1.0 Ga (Khain et al. 2002; Kovalenko et al.

2004; Windley et al. 2007) and the tectonic evolution

continued until the Permian, when the Palaeo-Asian ocean

closed along the Solonker suture (Xiao et al. 2003, 2008a).

Sengör et al. (1993) proposed that the Altaids formed by

successive fore-arc accretion of a long-lived, single sub-

duction system. Recent studies, however, have revealed

that a single subduction-accretion model is not sufficient to

explain the complexity of the belt (e.g., Coleman 1989;

Mossakovsky et al. 1993; Hu et al. 2000; Windley et al.
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2002; Badarch et al. 2002). Therefore, one of the major

questions is whether a long-lasting continuous or an epi-

sodic evolution process accomplished the accretion of the

CAOB.

The Altai orogen makes up of the southern part of the

CAOB and includes the Altai mountains in Mongolia,

China, Russia, and Kazakhstan. The Chinese Altai moun-

tains are a key area for understanding the development of

the accretion orogen in the CAOB. This region is charac-

terized by major granitoids and granitic gneisses, which

occupy more than 70% of the area (Windley et al. 2002).

Based on previous Rb–Sr, K–Ar, and Ar–Ar ages (e.g., Zou

et al. 1989; Zhao et al. 1993; He et al. 1994), the granitoids

were considered to have been emplaced during the late

Paleozoic. Consequently, this belt was considered as a late

Paleozoic (‘‘Hercynian’’) orogen. However, new U–Pb

zircon ages demonstrate that most plutons already formed

during the early-middle Paleozoic (460–375 Ma) (Fig. 1,

e.g., Tong et al. 2005, 2007; Wang et al. 2006; Yuan et al.

2007; Yang et al. 2008; Sun et al. 2008, 2009a). Wang

et al. (2006) and Long et al. (2007, 2010) proposed a new

tectonic model for the early-middle Paleozoic syn-orogenic

evolution, which provides a better explanation for the

subduction and accretion processes through the Paleozoic.

However, a number of issues regarding the late-stage tec-

tonic processes during the late Paleozoic evolution of the

Altai orogen remain unclear. One issue is whether the

early-middle Paleozoic syn-orogenic processes prevailed

until the late Paleozoic (e.g., Xiao et al. 2006, 2008b; Chen

et al. 2006; Long et al. 2006; Hu et al. 2006; Cai et al.

2007) or changed into a post-orogenic setting (Mao et al.

2006; Tong et al. 2006a, b). One approach to address this

problem is to study the alkaline granites in the region. In

this paper, we present new SHRIMP and LA-ICP-MS U–

Pb zircon data for the Bulgen alkaline granite. Combined

with petrological and geochemical data, these provide

important constraints on the tectonic evolution of the

Chinese Altai.

Geological setting

The Chinese Altai is located between the Sayan orogenic

belt in the north and the Junggar block in the south (Fig. 1).

It consists of numerous terranes (Windley et al. 2002) or

tectonic units (He et al. 1990; Li et al. 2003; Xiao et al.

2004) and can be divided into three units (Wang et al.

2006, 2009). The northern unit (terrane 1) consists of

middle-late Devonian andesites, dacites, and late Devonian

to early Carboniferous metasediments (shale, siltstone,

greywacke, sandstone, and limestone). The volcanic rocks

formed in an island arc setting, and the metasediments

were deposited in a fore-arc basin.

The central unit (terranes 2 and 3) consists predomi-

nantly of Neoproterozoic to middle-late Ordovician low-

grade sedimentary and volcanic rocks in the northwest

Fig. 1 Generalized geological

map of the Chinese Altai.

Tectonic subdivision is

modified from Windley et al.

(2002) and Xiao et al. (2004).

Important Paleozoic plutons are

marked by their names and

zircon ages. Data sources:

a Wang et al. (1998); b Windley

et al. (2002); c Yuan et al.

(2007); d Wang et al. (2006);

e Wang et al. (2007); f Yang

et al. (2008); g Sun et al.

(2009a); h Lou (1997); i Tong

et al. (2007); j Liu et al.

(2008b); k Tong et al. (2005);

l Yuan et al. (2006); m Sun et al.

(2008); n Wang et al. (2005);

o Sun et al. (2009b); p Han et al.

(2006); q Tong et al. (2006a);

r Zhou et al. (2007b); s Zhou

et al. (2007a); t Zhang et al.

(2006); u Tong et al. (2006b);

v Zhang et al. (2003); w Liu

et al. (1996); Han et al. (1997);

x Li et al. (2004); and others are

our unpublished data
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(Shan et al. 2005; Long et al. 2008), and middle-Ordovi-

cian to Silurian amphibolite- and greenschist-facies me-

tasediments and metavolcanic rocks in the southwest.

Some high-grade metamorphic rocks are thought to be

Neoproterozoic in age (e.g., Windley et al. 2002; Li et al.

2003; Xiao et al. 2004), and these rocks were considered to

constitute the nuclei of the Altai microcontinent (Hu et al.

2000; Li et al. 2003; Xiao et al. 2004; Wang et al. 2009).

The southern unit is composed of terranes 4 and 5.

Terrane 4 can be divided into the Kangbutiebao Formation

and the Altai Formation (Windley et al. 2002). The Kan-

gbutiebao Formation consists mainly of arc-type volcanic

and pyroclastic rocks, and minor basic volcanics and spi-

lites, and two similar zircon ages of 407 ± 9 Ma (Zhang

et al. 2000) and 413 ± 4 Ma (Chai et al. 2008) were

obtained from the volcanic rocks. The Altai Formation is

made up of low-grade metamorphic rocks, such as a

turbiditic sandstone-shale sequence, together with minor

basalts, siliceous volcanics, and limestones, which contain

middle Devonian fossils. These rocks are interpreted as

having been deposited in a fore-arc basin (Windley et al.

2002; Long et al. 2007). Recently, an ophiolite complex

was found in the eastern part (Kuerti area) of terrane 4

(Fig. 1) (Xu et al. 2001), and a related plagiogranite yiel-

ded a SHRIMP U–Pb zircon age of 372 ± 19 Ma (Zhang

et al. 2003). There are also amphibolite-greenschist-facies

metasedimentary rocks in terrane 4 (particularly in the

southern part), which are considered as pre-Ordovician in

age (e.g., Hu et al. 2000; Wang et al. 2006). Terrane 5

contains high-grade gneisses and schists, which formed in

the Carboniferous (Liu et al. 2008a), instead of being

Precambrian in age as previously suggested (Qu and Chong

1991).

The Erqis (or Irtysh, Ertix, and Erqishi) fault, one of the

largest strike-slip faults in Asia, separates the Altai orogen

from the Junggar block to the south (Fig. 1). The fault

underwent right-lateral movement in the late Carboniferous

and early Permian (Tong et al. 2006a; Zhou et al. 2007b;

Briggs et al. 2007). Two alkaline granite belts (Bulgen belt

and Ulungur belt,\100 km) developed on the northern and

southern side of this large fault zone (Fig. 1). U–Pb and

Rb–Sr isotopic analyses define ages between 320 and

300 Ma for the Ulungur alkaline plutons (Liu et al. 1996;

Han et al. 1997, 2006) and an age of 286 ± 1 Ma for the

Takeshiken syenite from the Bulgen belt (Tong et al.

2006b).

The Bulgen granite

The Bulgen alkaline granite crops out in the Erqis fault

zone, about 10 km south of the Mongolia–China border

(southeast Qinghe country, Xinjiang Uygur Autonomous

Region). The Takeshiken syenite is located 12 km SE of

the Bulgen pluton (Figs. 1, 2). Country rocks are Protero-

zoic-Ordovician, Devonian, and Carboniferous strata,

chiefly composed of volcanic tuff, breccia, tuffstone,

sandstone, andesite, and porphyrite. Mesozoic sediments

are very rare, whereas Quaternary deposits cover large

areas.

The Bulgen pluton, the only typical alkaline granite in

this region, shows an irregular shape and is virtually

undeformed. It covers an area of 1–2 km2 and consists

mainly of medium-grained arfvedsonite alkaline granite.

Medium- to fine-grained porphyritic alkaline granites occur

in the eastern part of the pluton, whereas fine-grained

alkaline granitic dykes with chilled margins can be found

in the northern part. These rocks contain up to 30% crystals

of arfvedsonite. Analyses were carried out on two arfv-

edsonite alkaline granites:

Sample 4001 was collected from the eastern part of the

Bulgen pluton, E 46�11008.200, N 90�48036.800. The rock is

composed of alkali feldspar (60%), plagioclase (8%),

quartz (20%), arfvedsonite (10%), and biotite (\2%).

Simultaneous growth of quartz and feldspar has produced a

typical graphic texture. Most arfvedsonite crystals are flaky

and acicular, show a navy blue color in plain polarized

light and are partly replaced by biotite. Alkali feldspars are

mainly perthite. Accessory minerals include magnetite,

zircon, and sphene. The zircon grains extracted from this

sample are colorless or pink, and transparent. Most of them

tend to occur as euhedral crystals with short prism faces,

usually 100–200 lm along long axis. Concentric oscilla-

tory zoning typical of magmatic origin is developed in all

crystals. Few grains have premagmatic domains with

rounded cores and oscillatorily zoned rims (e.g., spot 9,

Fig. 3).

Fig. 2 Geological map of the Bulgen alkaline granite
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Sample 40042 comes from the eastern part of the pluton,

E46�11021.400, N 90�48053.700. It contains perthite (55%),

plagioclase (5%), quartz (25%), arfvedsonite (12%), and

biotite (3%). Accessory minerals are sphene, zircon,

magnetite, and apatite. Miarolitic textures, presence of

alkali feldspar, quartz, and arfvedsonite can be seen under

the microscope and bear evidence for magmatic volatile

exsolution. The zircons from this sample have similar

features as those in sample 4001, and most of them are fine

crystals with typical magmatic features that lack inherited

cores (Fig. 3).

Analytical methods

U–Pb zircon geochronology

CL imaging of polished zircons embedded in epoxy was

conducted on a JEOL scanning electron microscope. Zircon

U–Pb dating was performed at the Beijing SHRIMP center

of the Chinese Academy of Geological Sciences, using

standard operating condition (Williams 1998). U-Th-Pb

ratios were determined relative to the TEMORA standard

zircon (Black et al. 2003), and the U, Th concentrations

were measured relative to SL13. Pb isotope ratios were

corrected for common Pb using non-radiogenic 204Pb, and

an average crustal composition (Stacey and Kramers 1975)

appropriate to the age of the mineral was assumed. U–Pb

isotope data were calculated and plotted using the SQUID

(1.02) and Isoplot 3.0 (Ludwig 2003) programs. Individual

analyses (Table 1) are presented as 1r error boxes on the

concordia diagrams, and age uncertainties are quoted at the

95% confidence level (2r).

In situ zircon analysis (Laser ablation ICP-MS) was

carried out on an Agilent 7500A ICP-MS system, equipped

with a GeoLas 200 M (MicroLas, Göttingen, Germany), in

the Key Laboratory of Continental Dynamics, Northwest

University, Xi’an; the spot size was 30 lm. Zircon 91500

and NIST SRM 610 were used as external standards for the

age and concentration calculation, respectively, and 29Si

(32.8% SiO2) was chosen as the internal standardization.

Isotope ratios and elemental concentrations were calculated

and plotted by using the GLITTER 4.0 software (Mac-

quarie University), and the age calculation was performed

with Isoplot 3.0 (Ludwig 2003). For common Pb correc-

tion, the software developed by Andersen (2002) was

employed.

Major and trace element analysis

Major and trace elements were analyzed at the Key Lab-

oratory of Continental Dynamics of the Northwest Uni-

versity, Xi’an. Major element abundances, except Fe2O3

and LOI that were analyzed by wet chemical methods,

were determined by X-ray fluorescence (RIX2100X

sequential spectrometer). Accuracies of the XRF analyses

are greater than 5%. Trace elements and REE were deter-

mined by ICPMS (Elan 6100DRC). The analytical accu-

racies are greater than 5% for Co, Ni, Zn, Ga, Rb, Y, Zr,

Nb, Hf, Ta, and LREE and vary between 5 and 15% for

other elements.

Sr and Nd isotope compositions

Sr–Nd isotope analyses were conducted on a multicollector

VG-354 thermal ionization mass spectrometer at the Iso-

tope Laboratory of the Institute of Geology and Geophys-

ics, Chinese Academy of Sciences, Beijing. The analytical

procedures are given in Qiao (1988). Rb, Sr, Sm, and Nd

concentrations were determined by the isotope dilution

method using a mixed 87Rb-84Sr-149Sm-150Nd spike solu-

tion. All measured 87Sr/86Sr and 143Nd/144Nd ratios were

normalized to 86Sr/88Sr 0.1194 and 146Nd/144Nd 0.7219,

respectively. The La Jolla Nd standard gave a mean
143Nd/144Nd ratio of 0.511863 ± 7 (2r, n = 6). Uncer-

tainties for 87Rb/86Sr are 2% and for 147Sm/144Nd ca. 0.5%.

Information on the calculation of eNd, fSm/Nd, and TDM, as

well as blank values, analytical precision, and accuracy of

the Sr and Nd isotope data, is listed in Table 3.

Results

U–Pb Zircon ages

Ten U–Pb SHRIMP analyses were obtained on zircons

from sample 4001 (Table 1; Fig. 4a). The core domain of

one zircon gave an old 206Pb/238U age of 395 ± 6 Ma,

Fig. 3 CL images and U–Pb ages of zircons from the Bulgen alkaline

granite
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Table 1 Zircon U–Pb isotopic analytical data of the Bulgen alkaline granite

Spot %206Pbc U Th 206Pb* 232Th 207Pb* ± 207Pb* ±

ppm ppm ppm /238U /206Pb* % /235U %

Sample 4001, SHRIMP (358 ± 4 Ma)

4001.1 0.00 359.60 207.10 17.30 0.60 0.0563 5.1 0.4330 5.3

4001.2 0.34 201.15 95.18 9.49 0.49 0.0517 5.1 0.3900 5.3

4001.3 0.00 346.94 296.33 17.20 0.88 0.0556 2.4 0.4420 2.7

4001.4 0.18 692.55 717.40 34.00 1.07 0.0520 2.1 0.4080 2.6

4001.5 0.09 397.25 237.23 19.90 0.62 0.0526 2.5 0.4240 2.9

4001.6 0.35 252.95 115.34 12.60 0.47 0.0487 5.1 0.3870 5.3

4001.7 0.43 234.56 103.13 11.70 0.45 0.0519 4.7 0.4140 5.4

4001.8 0.23 268.49 116.66 13.40 0.45 0.0532 3.3 0.4240 3.7

4001.9* 0.00 338.05 259.23 18.30 0.79 0.0544 4.6 0.4740 4.8

4001.10 0.34 419.17 288.43 20.60 0.71 0.0557 3.7 0.4390 5.9

Sample 40042, LA-ICP-MS (354 ± 4 Ma)

40042-1 0.51 12.00 47.12 4.15 1.00 0.0536 5.45 0.4075 5.18

40042-2 0.52 85.85 242.15 26.58 0.67 0.0542 1.99 0.4158 1.59

40042-3 0.00 57.16 99.69 16.38 0.40 0.0537 2.01 0.4194 1.60

40042-4 0.29 60.50 112.59 17.35 0.43 0.0532 5.49 0.4067 3.10

40042-5 0.73 91.15 103.47 30.91 0.48 0.0547 3.77 0.4375 3.39

40042-6 0.00 337.39 88.78 109.18 0.42 0.0528 2.01 0.4156 1.61

40042-7 0.04 57.34 121.98 16.66 0.48 0.0546 2.01 0.4085 1.60

40042-8 0.00 113.68 119.59 84.42 0.48 0.0538 2.01 0.4308 1.61

40042-9 0.48 48.31 96.16 110.87 0.48 0.0548 3.69 0.4243 3.30

40042-10 0.15 53.46 103.31 15.52 0.45 0.0539 2.00 0.4104 1.61

40042-11 0.02 49.55 88.74 19.35 0.42 0.0557 2.01 0.4290 1.63

40042-12 0.05 60.55 117.01 52.30 0.45 0.0539 2.00 0.4117 1.63

40042-13 0.00 58.07 141.72 17.38 0.59 0.0535 2.02 0.4142 1.63

40042-14 0.00 68.04 64.82 18.30 0.38 0.0535 1.98 0.4197 1.62

Spot 206Pb* ± 206Pb/238U 207Pb/206Pb 208Pb/232Th

/238U % (Ma) (Ma) (Ma)

Sample 4001, SHRIMP (358 ± 4 Ma)

4001.1 0.0558 1.5 350 ± 5 464 ± 110 342 ± 8.9

4001.2 0.0547 1.6 343 ± 5 273 ± 120 328 ± 16

4001.3 0.0577 1.4 361 ± 5 438 ± 53 364 ± 8.9

4001.4 0.0570 1.4 357 ± 5 285 ± 48 347 ± 6

4001.5 0.0584 1.5 366 ± 5 314 ± 56 366 ± 9.9

4001.6 0.0576 1.4 361 ± 5 132 ± 120 347 ± 16

4001.7 0.0579 2.7 363 ± 10 280 ± 110 337 ± 19

4001.8 0.0578 1.5 362 ± 5 337 ± 75 363 ± 12

4001.9* 0.0632 1.5 395 ± 6 388 ± 100 421 ± 10

4001.10 0.0571 4.6 358 ± 16 442 ± 83 358 ± 25

Sample 40042, LA-ICP-MS (354 ± 4 Ma)

40042-1 0.0552 1.74 346 ± 6 352 ± 126 358 ± 4

40042-2 0.0557 1.58 349 ± 6 377 ± 16 330 ± 4

40042-3 0.0566 1.59 355 ± 6 358 ± 16 365 ± 4

40042-4 0.0555 1.62 348 ± 6 335 ± 82 364 ± 4

40042-5 0.0581 1.69 364 ± 6 398 ± 86 400 ± 4

40042-6 0.0571 1.58 358 ± 6 318 ± 16 391 ± 4

40042-7 0.0542 1.59 340 ± 6 396 ± 16 341 ± 4
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similar to the ages obtained from the widespread early-

middle Paleozoic granitic gneisses and gneiss granitoids

(Fig. 1); consequently, this zircon domain is interpreted to

be inherited. The other nine data points (one spot analysis

on a zircon core and eight on rim zones) define a homo-

geneous age group, yielding a weighted mean 206Pb/238U age

of 358 ± 4 Ma (MSWD = 0.64). This age is interpreted as

the crystallization age of these zircons and thus as the for-

mation age of the pluton.

Zircons from sample 40042 were analyzed by LA-ICP-

MS (Table 1; Fig. 4b). Fourteen data points are concordant,

yielding a weighted mean 206Pb/238U age of 354 ± 4 Ma

(MSWD = 0.96), an age indistinguishable from that of

sample 4001.

Geochemical and Sr–Nd isotope composition

Our new data and other data from Zhao et al. (1993) and Liu

et al. (1996) show that the rocks of the Bulgen pluton are

enriched in silica (SiO2 from 71.5 to 77.1%), total alkalis

(Na2O ? K2O = 8.56–10.62%), and Fe* [FeOt/(FeOt ?

MgO) = 0.88–0.98] (Table 2). Except sample k-1-3 (por-

phyritic alkaline granite), all other samples are mildly

metaluminous to peralkaline, with A/CNK (molar ratio of

Al2O3/[CaO ? Na2O ? K2O]) and A/NK (molar ratio of

Al2O3/[Na2O ? K2O]) ratios generally ranging from 0.87

to 1.02 and 0.81 to 1.02, respectively. The samples have low

abundances of Al2O3 (11.73–12.67%), MnO (0.03–0.11%),

P2O5 (B0.06%), and TiO2 (0.08–0.37%) (Table 2).

The Bulgen granite is highly enriched in rare earth

elements (REE), with total REE = 185–509 ppm. In a

chondrite-normalized REE diagram, samples show uniform

compositions with light REE enrichment, pronounced

negative Eu anomalies (Eu/Eu* = 0.02–0.20), LaN/YbN

ratios of 2.9–7.1, and flat heavy REE pattern (Fig. 5a). In

normalized trace element diagrams (Fig. 5b), all rocks

have high concentrations of high-field-strength elements

(HFSE, Th, Zr, Hf, Nb, and Ce) and show negative

anomalies in Ba, Sr, P, and Ti. 10000*Ga/Al ratios range

from 2.7 to 4.9. All these geochemical characteristics are

also observed in typical alkaline (A-type) granites (Whalen

et al. 1987).

Sr and Nd isotope data of this study, together with

literature data, are given in Table 3. The Bulgen alkaline

granite has high 143Nd/144Nd ratios (0.51277–0.51290).

Fig. 4 SHRIMP and LA-ICP-MS U–Pb zircon concordia diagrams

for the Bulgen alkaline granite. Error ellipses are 2r; weighted mean

of 206Pb/238U ages are reported, with data marked by white ellipse

excluded from weighted mean calculation

Table 1 continued

Spot 206Pb* ± 206Pb/238U 207Pb/206Pb 208Pb/232Th

/238U % (Ma) (Ma) (Ma)

40042-8 0.0580 1.59 363 ± 6 363 ± 16 357 ± 4

40042-9 0.0562 1.64 353 ± 6 402 ± 84 375 ± 4

40042-10 0.0552 1.59 346 ± 6 366 ± 16 338 ± 4

40042-11 0.0558 1.61 350 ± 6 439 ± 16 349 ± 4

40042-12 0.0553 1.63 347 ± 6 368 ± 16 349 ± 4

40042-13 0.0560 1.61 351 ± 6 350 ± 16 330 ± 4

40042-14 0.0567 1.62 356 ± 6 352 ± 16 349 ± 4

Errors are 1r; Pbc and Pb* indicate the common and radiogenic portions, respectively; Common Pb was corrected using measured 204Pb
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Table 2 Chemical composition of the Bulgen alkaline granite (major elements in wt%, trace elements in ppm)

Rock Alkaline granite PA granite

Sample no. 4001 40083 4042 N5-3* k-1-2* k-1-10* kou-3* 8746* 8753* 8725* k-1-3*

SiO2 73.14 74.77 77.07 73.02 73.16 74.64 76.17 71.46 74.27 75.25 76.30

TiO2 0.20 0.20 0.08 0.19 0.23 0.20 0.14 0.37 0.22 0.17 0.11

Al2O3 12.67 11.81 11.89 12.47 12.62 12.04 12.03 11.73 11.90 11.89 12.32

Fe2O3 1.14 1.92 0.71 1.08 1.60 1.67 0.72 1.84 2.51 1.17 1.07

FeO 1.49 0.97 0.79 1.53 1.71 1.15 1.11 1.51 0.76 1.04 0.58

MnO 0.11 0.09 0.04 0.09 0.10 0.03 0.04 0.13 0.13 0.07 0.02

MgO 0.07 0.10 0.10 0.34 0.09 0.09 0.10 0.20 0.05 0.05 0.08

CaO 0.42 0.40 0.29 0.69 0.62 0.87 0.97 0.91 0.54 0.92 0.28

Na2O 4.76 4.30 4.59 4.62 4.77 4.26 4.09 5.23 4.09 4.15 3.91

K2O 5.13 4.96 4.54 5.06 4.57 4.68 4.69 5.39 5.00 4.41 4.70

P2O5 0.01 0.01 0.01 0.03 0.06 0.02 0.02 0.02

H2O 0.40 0.24 0.34 0.19 0.36 0.28 0.08 0.16

LOI 0.28 0.32 0.26

Total 99.82 100.09 100.71 99.31 99.89 99.93 100.16 98.77 99.47 99.12 99.55

NK/A 1.06 0.95 0.95 0.95 0.99 1.00 1.02 0.81 0.98 1.02 1.07

FeOt 2.52 2.70 1.43 2.50 3.15 2.65 1.76 3.17 3.02 2.09 1.54

Rb 219 180 216 200 230 219 250 130

Sr 19.3 13.4 6.3 14.0 14.7 12.8 10.0 20.0

Ba 18.3 19.3 7.3 21.0 23.7 24.2 21.0 20.0

Nb 89 104 91 69 122 91 70 48

Ta 7.2 7.6 7.6 1.1 1.4 1.3 0.1 0.6

Th 19.5 20.1 24.7 19.2 18.1

U 3.3 2.6 6.4

Zr 783 921 438 365 1321 1047 274 272

Hf 22.4 27.5 15.5

Ga 32 30 32 33 25 23 26 21

Zn 179 144 96 98 126 94 77 26

Y 60 91 87 78 111 88 81 39 43 42 48

La 72 109 52 60 61 58 64 48 49 57 50

Ce 139 213 103 122 156 133 127 89 105 114 93

Pr 16.4 22.8 12.3 16.0 12.9 13.6 17.7 11.7 12.8 13.8 12.9

Nd 56 81 45 51 48 42 53 39 43 45 40

Sm 12.4 16.9 12.6 10.9 12.6 0.9 12.1 7.4 7.9 8.7 8.0

Eu 0.19 0.26 0.14 0.20 0.86 1.81 0.27 0.79 0.24 0.66 0.08

Gd 9.6 13.6 12.2 10.2 10.9 9.9 10.9 8.7 9.3 10.7 6.6

Tb 2.0 2.8 2.7 1.8 2.1 1.9 1.9 1.5 1.4 1.7 1.5

Dy 12.6 17.3 17.9 13.3 13.5 13.0 13.2 7.8 8.2 8.9 8.2

Ho 2.8 3.7 4.0 2.7 3.3 2.9 2.7 1.7 1.7 2.0 1.7

Er 8.8 12.0 12.2 8.8 9.8 7.8 8.3 4.7 5.2 5.2 5.5

Tm 1.5 1.9 2.0 1.4 1.8 1.4 1.3 0.8 0.7 0.7 0.9

Yb 10.4 13.0 12.9 10.0 13.2 10.9 9.3 5.3 6.0 5.8 6.5

Lu 1.8 2.0 2.0 1.6 2.0 1.7 1.4 1.0 1.0 1.1 1.0

REE 346 509 291 310 348 298 323 185 185 319 237

PA porphyritic alkaline

NK/A = (Na2O ? K2O)/Al2O3, mol%; FeOt = FeO ? (Fe2O3 * 0.8998)

* Data from Zhao et al. (1993) and Liu et al. (1996)
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The eNd(t) value vary from ?6.3 to ?6.4, and the Nd

model ages (TDM) are between 460 and 773 Ma.

Discussion

The pluton formation age

Wang et al. (1998) reported a whole-rock and mineral Rb–

Sr age of 253 ± 13 Ma for the Bulgen alkaline granite. Liu

et al. (1996) obtained an apparently old whole-rock Rb–Sr

age of 301 Ma. They argued that the alkaline granite must

be younger than the alkali-feldspar granite for which they

obtained a U–Pb zircon age of 287 Ma. The two samples

analyzed in this study yield nearly the same U–Pb ages

(358 ± 4 Ma, 354 ± 4 Ma), and the ages of mantle, core,

and rim domains of various grains are almost identical.

Based on these results, we propose that the Bulgen pluton

formed during the early Carboniferous.

Petrogenesis of the Bulgen alkaline granite

A-type granites play a critical role in granite petrology, but

there is still no consensus on their exact formation. Current

petrogenetic models on the origin of these rocks include

fractional crystallization of alkaline basaltic magma

(Loiselle and Wones 1979; Turner et al. 1992) or partial

melting of relatively refractory granulitic (Collins et al.

1982; Whalen et al. 1987), tonalitic (Creaser et al. 1991) or

alkali-metasomatized (Martin 2006) lower crustal compo-

sitions. It was also reported that some A-type granites have

geochemical characteristics of magma derived from an

oceanic island basalt (OIB)-type source (Eby 1990, 1992).

The Bulgen alkaline granite has high LILE and HFSE

abundances, which could be explained by an OIB-like

component in the magma source. The pronounced negative

Eu anomaly indicates the importance of plagioclase frac-

tionation contemporaneous with crystallization or, alter-

natively, it would require plagioclase in the residue in case

of an anatectic origin (Cullers and Graf 1984). The lack of

negative Nb anomaly seen in all samples suggest that the

granite melts did not originate by partially melting a

(supra) subduction zone environment.

The eNd(t) values of the Bulgen alkaline granite range

from ?6.3 to ?6.4 and are higher than those of the early-

middle Paleozoic granitoids (-2.6 to ?4.2, Wang et al.

2006), but similar to those of the Ulungur alkaline grani-

toids (?5.5 to ?6.7, Han et al. 1997) and the Takeshiken

syenite (?6.2 to ?6.3, Tong et al. 2006b) (Fig. 6). The

positive eNd(t) values for Bulgen granite thus suggest the

addition of juvenile mantle-derived material with negligi-

ble involvement of older crust as opposed to the other

early-middle Paleozoic granitoids, which show a clear

crustal signature.

Tectonic implications

Although some authors argued that A-type granites can

form in back-arc or intra-arc settings (Zhao et al. 2008), it

is commonly accepted that A-type granites form in post-

collision to post-orogenic settings, and continental or

oceanic intra-plate settings (Bonin 1990, 2007; Eby 1992;

Hong et al. 1996 and references therein).

The Bulgen pluton (358–354 Ma), clearly postdating the

syn-orogenic granitoids (460–375 Ma), sheds light on late

Paleozoic orogenic process in the Chinese Altai. From the

early-middle Paleozoic to the late Paleozoic, magmatism in

this region evolved progressively from mostly I-type tho-

leiitic to calc-alkaline igneous activity (Wang et al. 2006;

Zhang et al. 2006) to A-type alkaline granite such as the

Bulgen granite. The A-type granites are characterized by

high Rb, Nb, and Y contents, unlike arc granites and ocean-

ridge granites. The Bulgen pluton is undeformed and

irregular in shape. It is intruded by fine-grained alkaline

granitic dykes, which show typical miarolitic and micro-

graphic textures. In contrast, the early-middle Paleozoic

granitoids plutons occur as elongated deformed bodies,

parallel to the prevailing tectonic fabric of the host rocks.

Fig. 5 Chondrite-normalized

REE patterns and primitive

mantle-normalized spidergrams

for the Bulgen alkaline granite.

Common features of all samples

are the negative anomalies in

Eu, Ba, Sr, P, and Ti. The

chondrite values and values of

primitive mantle are from Sun

and McDonough (1989)
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These variations, together with the progressive change in

eNd values toward mantle values (see above), indicate that

the tectonic regime significantly changed from a syn-oro-

genic regional compression setting to a post-orogenic

extensional setting. This, in turn, suggests that the main

orogenic processes in the Chinese Altai ceased after the

early Carboniferous.

This conclusion is also supported by regional geological

evidence. The folded early Carboniferous ‘‘Nanmingshui’’

Formation in this area was intruded by the undeformed

Bulgenbei biotite monzogranite at about 343 ± 3 Ma

(authors unpublished data) demonstrating that the forma-

tion and deformation of these rocks occurred prior to this

age. The late Carboniferous volcano-sedimentary stratum

formed in a typical continental volcano-sediment system

(Zhang et al. 2007). No major magmatism occurred from

350 to 280 Ma (Fig. 7), and there is no evidence for

regional metamorphism and deformation during this

Fig. 6 eNd(t) versus age (Ma) diagram for granitoids from the

Chinese Altai. Note that the eNd(t) values of the granites increase

from early-middle Paleozoic to late Paleozoic (data from Table 3) Fig. 7 Age histogram of the Chinese Altai granitoids (same data as in

Fig. 1). Alkaline granitoids shown by red bar

Fig. 8 Tectonic model showing

the middle- and late-Paleozoic

evolution of the Chinese Altai

(Fig. 8a after Wang et al. 2006)
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period. Actually, all metamorphosed or deformed rocks are

restricted to the narrow Erqis fault zone, which underwent

right-lateral movement after 290 Ma (Tong et al. 2006a;

Zhou et al. 2007b; Briggs et al. 2007; Sun et al. 2009b).

The ophiolites in the Altai orogen and adjacent regions

formed approximately between 500 and 375 Ma (Li 1995;

Jian et al. 2003; Zhang et al. 2003; Xiao et al. 2004), and

no 350–250 Ma old ophiolites have been reported so far,

which would not give evidence for formation of new

oceanic crust during this period. All these observations

support the view that the Altai orogeny ended during the

late Paleozoic causing a complete consumption of the Erqis

Ocean (Fig. 8).

Generally, successive accretion of arc crust or a collage

of terranes is emphasized as a major process in the for-

mation of the Altaids collage or CAOB (e.g., Coleman

1989; Sengör et al. 1993; Windley et al. 2002; Badarch

et al. 2002; Xiao et al. 2004). The magmatic cycles in the

Altai orogen might have been associated with similar tec-

tonic cycles. This is consistent with the observation that the

Altai orogen underwent a series of processes involving the

formation of an active continental margin, the break-up of

this margin to form a back-arc ocean, and the final closure

of the back-arc ocean. Such a tectonic scenario is probably

very common in other accretionary orogens (Wang et al.

2006). This gives rise to the final hypothesis that the evo-

lution and the long-lived accretionary history of the CAOB

were dominated by a periodic component of synchronous

magmatic and tectonic cycles.

Conclusions

U–Pb dating of zircons with SHRIMP and LA-ICP-MS

shows that the Bulgen alkaline granite formed in the early

Carboniferous (about 358–354 m.y.a.). All geochemical

data indicate that partial melting of juvenile mantle-derived

material in an extensional post-orogenic setting generated

the pluton. Emplacement of the granite took place at least

15 Ma after the formation of the syn-orogenic granitoids

(460–375 Ma). The occurrence of young post-orogenic

A-type granites implies that the tectonic regime of the

Chinese Altai orogen significantly changed from early–

middle Paleozoic syn-orogenic regional compression into a

late Paleozoic post-orogenic extensional setting during late

Devonian to early Carboniferous times.
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