[1] Baake M, Kramer P, Schlottmann M, and Zeidler D,
Planar patterns with fivefold symmetry as sections of periodic structures
in 4-space, In J Mod Phys B 4 (1990) 2217-68
[2] Bohr H,
Zur Theorie der fastperiodischen Funktionen I, Acta Mathematicae 45
(1925) 29-127
[3] Bohr H,
Zur Theorie der fastperiodischen Funktionen II, Acta Mathematicae 46
(1925) 101-214
[4] Bravais A,
Les systemes formes par des points distribues regulierement sur un plan
ou dans l’ espace, J Ecole Polytech 19 (1850) 1-128
[5] de Bruijn N G,
Algebraic theory of Penrose’s non-periodic tilings of the plane I, Proc
Koninklijke Nederlandse Akademie van Wetenschapen, 84 (1981) 39-52
[6] de Bruijn N G,
Algebraic theory of Penrose’s non-periodic tilings of the plane II, Proc
Koninklijke Nederlandse Akademie van Wetenschapen 84 (1981) 53-66
[7] Brown H, Bülow R, Neubüser J, Wondratschek H and Zassenhaus
H,
Crystallographic groups of 4-dimensional space, Wiley, New York 1978
[8] Conway J H and Sloane N J A,
Sphere packings, lattices and groups, Springer New York 1988
[9] Danzer L,
Three-dimensional analogues of the planar Penrose tilings and
quasicrystals, Discrete Math 76 (1989) 1-7
[10] Dürer Albrecht,
Unterweisung der Messung, Nürnberg 1525, reprint Nördlingen 1983
[11] Gummelt P,
Penrose tilings as coverings of congruent decagons, Geometriae Dedicata
62 (1996) 1-17
[12] Guyot P, Kramer P, and de Boissieu M,
Quasicrystals, Rep Prog Phys 54 (1991) 1373-1425
[13] Hermann C,
Kristallographie in Räumen beliebiger Dimensionszahl, Acta Cryst 2
(1949) 139-145
[14] Janner A,
Modulated space groups, in: Proc 5th Int Coll Group theoretical Methods
in Physics, Montreal 1976, Academic Press, New York
[15] Kepler J,
Gesammelte Werke KGW 1-24, Ed. Max Caspar, München starting 1937
[16] Kepler J,
Strena seu de nive sexangula in: [15] KGW IV (1941): KLeinere Schriften
1602-1611
[17] Kepler J,
Mysterium Cosmographicum in; [15] KGW I (1937)
[18] Kepler J,
Harmonices Mundi Libri V in: [15] KGW VI (1940)
[19] Kramer P,
Non-periodic Central Space Filling with Icosahedral Symmetry using
Copies of Seven Elementary Cells, Acta Cryst A 38 (1982) 257-64
[20] Kramer P and Neri R,
On periodic and non-periodic space fillings obtained by projection, Acta
Cryst A 40 (1984) 580-587
[21] Kramer P,
Nichtperiodische Quasikristalle mit fünfzähliger Symmetrie, Phys.
Blätter 41 (1985) 103-4
[22] Kramer P,
Grundgedanken zur Symmetrie im Werk von Johannes Kepler, in: [39]
(1986) Band 1, p. 115-27
[23] Kramer P and Kramer L,
Icosahedral tiling model projected from the 6-dimensional hypercubic
lattice, photograph, in: [39] (1986) Band 3, p. 91
[24] Kramer P,
On the theory of a non-periodic quasilattice associated with the
icosahedral group,
I: Z Naturf 40 a (1985) 775-788, II: Z Naturf 41 a (1986) 897-911
[25] Kramer P,
Atomic order in quasicrystals is supported by several unit cells, Mod
Phys Lett B 1 (1987) 7-18
[26] Kramer P and Schlottmann M,
Dualization of Voronoi domains and klotz construction; a general method
for the generation of proper space filling, J Phys Math and Gen A 22
(1989) L1097-l1102
[27] Kramer P, Papadopolos Z and Zeidler D,
The root lattice D6 and icosahedral quasicrystals, in: Frank A, Seligman
T H and Wolf B, (eds.), Group theory in Physics, American Institute of
Physics Conf Proc 266, New York 1992, 179-200
[28] Kramer P, Papadopolos Z, Schlottmann M and Zeidler D,
Projection of the Danzer tiling, J Phys Math and GenA 27 (1994)
4505-17
[29] Kramer P, Quandt A, Schlottmann M, and Schneider T,
Atomic clusters and electrons in the Burkov model of AlCuCo, Phys
Rev B 51 (1995) 8815
[30] Kramer P, Quandt A, Schneider T and Teuscher H,
Simulation of Mössbauer absorption spectra for decagonal AlCuCo, Phys
Rev B 55 (1997)
[31] Gazeau J-P and Kramer P,
From quasiperiodic tilings with τ-inflation to τ-wavelets,
Mat Sci Eng 294-296 (2000) 425-8
[32] Kramer P, Papadopolos Z, Eds.
Coverings of Discrete Quasiperiodic Sets, Springer, Berlin 2003
[33] Kramer P,
Quasiperiodic systems, in: Encyclopedia of Mathematical Physics, Eds.
J-P Francoise, G L Naber, Sh Tsun Tsou, Elsevier, Amsterdam (2006)
pp. 308-315
[34] Levine D and Steinhardt P J ,
Quasicrystals: A new class of ordered structures.
Phys Rev Lett 53 (1984) 2477-80
[35] Levine D and Steinhardt P J ,
Quasicrystals. I. Definition and structure.
Phys Rev B 34 (1986) 596-616
[36] Levine D and Steinhardt P J,
Quasicrystals. II. Unit-cell configurations. Phys Rev B 34 (1986) 617-47
[37] Mackay A L,
De Nive Quinquangula: On the Pentagonal Snowflake Kristallogafiya 26
(1981) 910-9, Sov Phys Cryst 26 (1981) 517-22
[38] Mackay A L,
Crystallography and the Penrose Pattern, Physica 114 A (1982) 609-13
[39] Mazzola G Ed.,
Symmetrie in Kunst, Natur und Wissenschaft,
Katalog der Ausstellung Mathildenhöhe Darmstadt 1. Juni bis 24. August
1986,
Band 1 Texte, Band 2 Kunst, Band 3 Spiel, Natur und Wissenschaft
Verlag E Roether, Darmstadt 1986
[40] Mosseri R and Sadoc J F,
Two and three dimensional non-periodic networks obtained from
self-similar tiling, in: The structure of non-crystalline materials, Taylor
and Francis, London 1982, pp. 137-50
[41] Nelson D R,
Quasicrystals, Scientific American 255 (1985) 42-51
[42] Penrose R,
The role of Aesthetics in Pure and Applied Mathematical Research, Bull
Inst Math and its Appl 10 (1974) 266-71
[43] Platon,
Timaios, in: Sämtliche Werke VIII, Insel Verlag, Frankfurt 1991, pp.
197-425
[44] Radin C,
The pinwheel tilings of the plane, Annals of Math 139 (1994) 661-702
[45] Shechtman D, Blech I, Gratias D, and Cahn J W,
Metallic phase with long-range orientational order and no translational
symmetry,
Phys Rev Lett 53 (1984) 1951-3
[46] Schwarzenberger R L E,
N-dimensional Crystallography, Pitman, San Francisco 1980
[47] Wigner E P,
Group theory and its application to the quantum mechanics of atomic
spectra,
Academic Press, New York 1959
[48] Zassenhaus H,
Über einen Algorithmus zur Bestimmung der Raumgruppen, Comm Math
Helv 21 (1948) 117-141