References

[1]   Baake M, Kramer P, Schlottmann M, and Zeidler D,
Planar patterns with fivefold symmetry as sections of periodic structures in 4-space, In J Mod Phys B 4 (1990) 2217-68

[2]   Bohr H,
Zur Theorie der fastperiodischen Funktionen I, Acta Mathematicae 45 (1925) 29-127

[3]   Bohr H,
Zur Theorie der fastperiodischen Funktionen II, Acta Mathematicae 46 (1925) 101-214

[4]   Bravais A,
Les systemes formes par des points distribues regulierement sur un plan ou dans l’ espace, J Ecole Polytech 19 (1850) 1-128

[5]   de Bruijn N G,
Algebraic theory of Penrose’s non-periodic tilings of the plane I, Proc Koninklijke Nederlandse Akademie van Wetenschapen, 84 (1981) 39-52

[6]   de Bruijn N G,
Algebraic theory of Penrose’s non-periodic tilings of the plane II, Proc Koninklijke Nederlandse Akademie van Wetenschapen 84 (1981) 53-66

[7]   Brown H, Bülow R, Neubüser J, Wondratschek H and Zassenhaus H,
Crystallographic groups of 4-dimensional space, Wiley, New York 1978

[8]   Conway J H and Sloane N J A,
Sphere packings, lattices and groups, Springer New York 1988

[9]   Danzer L,
Three-dimensional analogues of the planar Penrose tilings and quasicrystals, Discrete Math 76 (1989) 1-7

[10]   Dürer Albrecht,
Unterweisung der Messung, Nürnberg 1525, reprint Nördlingen 1983

[11]   Gummelt P,
Penrose tilings as coverings of congruent decagons, Geometriae Dedicata 62 (1996) 1-17

[12]   Guyot P, Kramer P, and de Boissieu M,
Quasicrystals, Rep Prog Phys 54 (1991) 1373-1425

[13]   Hermann C,
Kristallographie in Räumen beliebiger Dimensionszahl, Acta Cryst 2 (1949) 139-145

[14]   Janner A,
Modulated space groups, in: Proc 5th Int Coll Group theoretical Methods in Physics, Montreal 1976, Academic Press, New York

[15]   Kepler J,
Gesammelte Werke KGW 1-24, Ed. Max Caspar, München starting 1937

[16]   Kepler J,
Strena seu de nive sexangula in: [15] KGW IV (1941): KLeinere Schriften 1602-1611

[17]   Kepler J,
Mysterium Cosmographicum in; [15] KGW I (1937)

[18]   Kepler J,
Harmonices Mundi Libri V in: [15] KGW VI (1940)

[19]   Kramer P,
Non-periodic Central Space Filling with Icosahedral Symmetry using Copies of Seven Elementary Cells, Acta Cryst A 38 (1982) 257-64

[20]   Kramer P and Neri R,
On periodic and non-periodic space fillings obtained by projection, Acta Cryst A 40 (1984) 580-587

[21]   Kramer P,
Nichtperiodische Quasikristalle mit fünfzähliger Symmetrie, Phys. Blätter 41 (1985) 103-4

[22]   Kramer P,
Grundgedanken zur Symmetrie im Werk von Johannes Kepler, in: [39] (1986) Band 1, p. 115-27

[23]   Kramer P and Kramer L,
Icosahedral tiling model projected from the 6-dimensional hypercubic lattice, photograph, in: [39] (1986) Band 3, p. 91

[24]   Kramer P,
On the theory of a non-periodic quasilattice associated with the icosahedral group,
I: Z Naturf 40 a (1985) 775-788, II: Z Naturf 41 a (1986) 897-911

[25]   Kramer P,
Atomic order in quasicrystals is supported by several unit cells, Mod Phys Lett B 1 (1987) 7-18

[26]   Kramer P and Schlottmann M,
Dualization of Voronoi domains and klotz construction; a general method for the generation of proper space filling, J Phys Math and Gen A 22 (1989) L1097-l1102

[27]   Kramer P, Papadopolos Z and Zeidler D,
The root lattice D6 and icosahedral quasicrystals, in: Frank A, Seligman T H and Wolf B, (eds.), Group theory in Physics, American Institute of Physics Conf Proc 266, New York 1992, 179-200

[28]   Kramer P, Papadopolos Z, Schlottmann M and Zeidler D,
Projection of the Danzer tiling, J Phys Math and GenA 27 (1994) 4505-17

[29]   Kramer P, Quandt A, Schlottmann M, and Schneider T,
Atomic clusters and electrons in the Burkov model of AlCuCo, Phys Rev B 51 (1995) 8815

[30]   Kramer P, Quandt A, Schneider T and Teuscher H,
Simulation of Mössbauer absorption spectra for decagonal AlCuCo, Phys Rev B 55 (1997)

[31]   Gazeau J-P and Kramer P,
From quasiperiodic tilings with τ-inflation to τ-wavelets,
Mat Sci Eng 294-296 (2000) 425-8

[32]   Kramer P, Papadopolos Z, Eds.
Coverings of Discrete Quasiperiodic Sets, Springer, Berlin 2003

[33]   Kramer P,
Quasiperiodic systems, in: Encyclopedia of Mathematical Physics, Eds. J-P Francoise, G L Naber, Sh Tsun Tsou, Elsevier, Amsterdam (2006) pp. 308-315

[34]   Levine D and Steinhardt P J ,
Quasicrystals: A new class of ordered structures.
Phys Rev Lett 53 (1984) 2477-80

[35]   Levine D and Steinhardt P J ,
Quasicrystals. I. Definition and structure.
Phys Rev B 34 (1986) 596-616

[36]   Levine D and Steinhardt P J,
Quasicrystals. II. Unit-cell configurations. Phys Rev B 34 (1986) 617-47

[37]   Mackay A L,
De Nive Quinquangula: On the Pentagonal Snowflake Kristallogafiya 26 (1981) 910-9, Sov Phys Cryst 26 (1981) 517-22

[38]   Mackay A L,
Crystallography and the Penrose Pattern, Physica 114 A (1982) 609-13

[39]   Mazzola G Ed.,
Symmetrie in Kunst, Natur und Wissenschaft,
Katalog der Ausstellung Mathildenhöhe Darmstadt 1. Juni bis 24. August 1986,
Band 1 Texte, Band 2 Kunst, Band 3 Spiel, Natur und Wissenschaft
Verlag E Roether, Darmstadt 1986

[40]   Mosseri R and Sadoc J F,
Two and three dimensional non-periodic networks obtained from self-similar tiling, in: The structure of non-crystalline materials, Taylor and Francis, London 1982, pp. 137-50

[41]   Nelson D R,
Quasicrystals, Scientific American 255 (1985) 42-51

[42]   Penrose R,
The role of Aesthetics in Pure and Applied Mathematical Research, Bull Inst Math and its Appl 10 (1974) 266-71

[43]   Platon,
Timaios, in: Sämtliche Werke VIII, Insel Verlag, Frankfurt 1991, pp. 197-425

[44]   Radin C,
The pinwheel tilings of the plane, Annals of Math 139 (1994) 661-702

[45]   Shechtman D, Blech I, Gratias D, and Cahn J W,
Metallic phase with long-range orientational order and no translational symmetry,
Phys Rev Lett 53 (1984) 1951-3

[46]   Schwarzenberger R L E,
N-dimensional Crystallography, Pitman, San Francisco 1980

[47]   Wigner E P,
Group theory and its application to the quantum mechanics of atomic spectra,
Academic Press, New York 1959

[48]   Zassenhaus H,
Über einen Algorithmus zur Bestimmung der Raumgruppen, Comm Math Helv 21 (1948) 117-141